Seminar: 2.01.800-G Proseminar: Unsupervised Learning - Details

Seminar: 2.01.800-G Proseminar: Unsupervised Learning - Details

You are not logged into Stud.IP.

General information

Course name Seminar: 2.01.800-G Proseminar: Unsupervised Learning
Subtitle inf800
Course number 2.01.800-G
Semester WiSe21/22
Current number of participants 8
expected number of participants 12
Home institute Department of Computing Science
Courses type Seminar in category Teaching
First date Thursday, 21.10.2021 14:00 - 16:00, Room: (BBB)
Type/Form
Lehrsprache --
ECTS points 3

Rooms and times

(BBB)
Thursday: 14:00 - 16:00, weekly (14x)
Tuesday, 15.03.2022 14:00 - 15:00

Module assignments

Comment/Description

In diesem Proseminar werden wir uns mit einer Reihe von Unsupervised-Learning-Algorithmen beschäftigen.

Im Folgenden ist eine Auflistung der möglichen Themen gruppiert nach Anwendungsgebieten:

Clustering
  • k-means
  • mixture model
  • Hierarchical clustering
Latent variable models
  • Expectation–maximization algorithm (EM)
  • Isomap
  • Locally-linear embedding (LLE)
  • Unsupervised Kernel Regression (UKR)
  • Unsupervised Nearest Neighbors (UNN)
  • Independent component analysis (ICA)
  • Singular value decomposition (SVD)
Anomaly Detection
  • Local outlier factor (LOF)
  • Isolation forest
Neural Networks
  • Self-organizing maps (SOM)
  • deep belief network (DBN)
  • Generative adversarial networks (GAN)

Ablauf der Veranstaltung:
  • Zu Beginn (die ersten 2-3 Termine) gibt es eine kurze thematische sowie eine etwas ausführlichere organisatorische Einführung (Hinweise zum wissenschaftlichen Schreiben und Präsentieren usw.)
  • Außerdem werden die Themen zu Beginn (1. oder 2. Termin) verteilt
  • Nach einem Bearbeitungszeitraum, beginnen in der zweiten Hälfte des Semesters dann wöchentliche Vorträge

Admission settings

The course is part of admission "Anmeldung gesperrt (global)".
Erzeugt durch den Stud.IP-Support
The following rules apply for the admission:
  • Admission locked.