Data Science is an interdisciplinary science at the intersection of statistics, machine learning, data visualization, and mathematical modeling. This course is designed to provide a practical introduction to the field of Data Science by teaching theoretical principles while also applying them practically. Topics covered range from data collection and preparation (data sources & formats, data cleaning, data bias), mathematical foundations (statistical distributions, correlation analysis, significance) and methods for visualization (tables & plots, histograms, best practices) to the development of models for classifying or predicting values (linear regression, classification, clustering).