Data Science is an interdisciplinary science at the intersection of statistics, machine learning, data visualization, and mathematical modeling. This course is designed to provide a practical introduction to the field of Data Science by teaching theoretical principles while also applying them practically. Topics covered range from data collection and preparation (data sources & formats, data cleaning, data bias), mathematical foundations (statistical distributions, correlation analysis, significance) and methods for visualization (tables & plots, histograms, best practices) to the development of models for classifying or predicting values (linear regression, classification, clustering).
Admission settings
The course is part of admission "Anmeldung gesperrt (global)".
Erzeugt durch den Stud.IP-Support The following rules apply for the admission: