phy694 - Machine Learning II (Vollständige Modulbeschreibung)
Modulbezeichnung | Machine Learning II |
Modulkürzel | phy694 |
Kreditpunkte | 6.0 KP |
Workload | 180 h
( Attendance: 56 hrs, Self study: 124 hrs |
Einrichtungsverzeichnis | Institut für Physik |
Verwendbarkeit des Moduls |
|
Zuständige Personen |
|
Teilnahmevoraussetzungen | Basic knowledge in higher Mathematics taught as part of first degrees in Physics, Mathematics, Statistics, Engineering or Computer Science (basic linear algebra and analysis) is required. Additionally, programming skills are required (Matlab or python). |
Kompetenzziele | The students will deepen their knowledge on mathematical models of data and sensory signals. Building upon the previously acquired Machine Learning models and methods, the students will be lead closer to current research topics and will learn about models that currently represent the state-of-the-art. Based on these models, the students will be exposed to the typical theoretical and practical challenges in the development of current Machine Learning algorithms. Typical challenges are analytical and computational |
Modulinhalte | This course builds up on the basic models and methods introduced in introductory Machine Learning lectures. Advanced Machine Learning models will be introduced alongside methods for ecient parameter optimization. Analytical approximations for computationally intractable models will be de ned and discussed as well as stochastic (Monte Carlo) approximations. Advantages of di erent approximations |
Literaturempfehlungen | Pattern Recognition and Machine Learning, C. M. Bishop, Springer 2006. (best suited for lecture).; Information Theory, Inference, and Learning Algorithms, D. MacKay, Cambridge University Press, 2003. (free online) |
Links | |
Unterrichtssprache | Englisch |
Dauer in Semestern | 1 Semester |
Angebotsrhythmus Modul | jährlich |
Aufnahmekapazität Modul | unbegrenzt |
Modulart | Wahlpflicht / Elective |
Modullevel | MM (Mastermodul / Master module) |
Lehr-/Lernform | Lecture: 2hrs/week, Exercise: 2hrs/week (incl. prog. laboratory) |
Vorkenntnisse | Basic knowledge in higher Mathematics taught as part of first degrees in Physics, Mathematics, Statistics, Engineering or Computer Science (basic linear algebra and analysis) is required. Additionally, programming skills are required (Matlab or python). |
Prüfung | Prüfungszeiten | Prüfungsform |
---|---|---|
Gesamtmodul | written exam (max. 3 hours) or 30 minutes oral exam |
Lehrveranstaltungsform | Vorlesung |
SWS | 4 |
Angebotsrhythmus | SoSe oder WiSe |
Workload Präsenzzeit | 56 h |