mat705 - Algebraic Number Theory (Complete module description)

mat705 - Algebraic Number Theory (Complete module description)

Original version English PDF download
Module label Algebraic Number Theory
Module code mat705
Credit points 9.0 KP
Workload 270 h
Institute directory Department of Mathematics
Applicability of the module
  • Master's Programme Mathematics (Master) > Mastermodule
Responsible persons
  • Frühbis-Krüger, Anne (module responsibility)
  • Heß, Florian (module responsibility)
  • Stein, Andreas (module responsibility)
Prerequisites
Skills to be acquired in this module
  • Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
  • Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
  • Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
  • Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
  • Verständnis von grundlegenden Konzepten der algebraischen Zahlentheorie
  • Kenntnis der wichtigsten Strukturaussagen über Ringe von ganzen Zahlen algebraischer Zahlkörper, insbesondere die Kenntnis der Dedekindschen Idealtheorie und des Dirichletschen Einheitensatzes
  • Fähigkeit zum Formulieren und Bearbeiten zahlentheoretischer Probleme in Ringen ganzer Zahlen algebraischer Zahlkörper
  • Kennenlernen von weiterführenden Themen in der aktuellen Forschung der algebraischen Zahlentheorie und ihrer Anwendungen
  • Exemplarisches Kennenlernen von weiterführenden Themen in der algebraischen Zahlentheorie wie zum Beispiel Henselsche Körper und Dedekindsche Zetafunktionen
Module contents
Ganzalgebraische Ringerweiterungen, Dedekindringe, explizite Faktorisierung, Erweiterungen von Dedekindringen, Hilbertsche Verzweigungstheorie, Minkowski-Theorie, Klassenzahl, Dirichletscher Einheitensatz, quadratische Zahlkörper, zyklotomische Körper, lokale Körper. Optional: Henselsche Körper, Dedekindsche Zetafunktionen, Dirichletsche L-Reihen.
Recommended reading
H. Koch: Zahlentheorie, algebraische Zahlen und Funktionen, Vieweg 1997.
S. Lang: Algebraic number theory, Springer 1994.
D. Marcus: Number fields, Springer, 1996.
J. Neukirch: Algebraische Zahlentheorie, Springer 2007.
L. Washington : Introduction to cyclotomic fields, Springer 1997.
Links
Languages of instruction German, English
Duration (semesters) 2 Semester
Module frequency regelmäßig
Module capacity unlimited
Reference text
3 KP dieses Moduls werden als Reading Course erbracht. Studienschwerpunkt: B
Type of module Wahlpflicht / Elective
Module level MM (Mastermodul / Master module)
Teaching/Learning method Vorlesung + Übung + Seminar
Type of course Comment SWS Frequency Workload of compulsory attendance
Lecture 3 -- 42
Exercises 1 -- 14
Seminar 2 -- 28
Total module attendance time 84 h
Examination Prüfungszeiten Type of examination
Final exam of module
nach Ende der Vorlesungszeit
KL