Stud.IP Uni Oldenburg
University of Oldenburg
22.01.2022 13:59:18
phy987 - Control of Wind Turbines and Wind Farms (Complete module description)
Original version English Download as PDF
Module label Control of Wind Turbines and Wind Farms
Module code phy987
Credit points 6.0 KP
Workload 180 h
(
180 h (Präsenzzeit 72h, Selbststudium: 108h)
)
Institute directory Institute of Physics
Applicability of the module
  • Master's Programme Engineering Physics (Master) > Schwerpunkt: Renewable Energies
  • Sustainable Renewable Energy Technologies (Master) > Mastermodule
Responsible persons
Kühn, Martin (Authorized examiners)
Petrovic, Vlaho (Authorized examiners)
Kühn, Martin (Module responsibility)
Prerequisites
Skills to be acquired in this module

After successful completion of the course, students

• will have understood the structure and the main components of the control system in a wind farm

• will have understood the main objectives for a wind farm control system and will be able to develop appropriate control algorithms for the said objectives

• will have understood relevant physical phenomena in a wind farm

• will be able to develop a control-oriented model of a wind turbine, and will have understood how to use it for the design and analysis of control algorithms

• will be able to independently apply different techniques from control engineering

• will have trained how to use methods from linear algebra and mathematical analysis for the design and analysis of control algorithms
Module contents

The course covers the main techniques used in wind turbine and wind farm control. The course is structured in five sections:

Section I: Introduction to control in wind energy

• Introduction to the governing physics

• Control objectives in wind energy

• Overview of the control system

Section II: Control oriented modelling

• Modelling in time domain

• Modelling in frequency domain

• Time and frequency response

Section III: Standard wind turbine control

• Torque and pitch control

• Tuning of a PI controller

• Stability analysis

• Control of coupled systems

Section IV: Advanced wind turbine control

• Advanced control design approaches

• State space control

• Estimation techniques

Section V: Wind farm control

• Wake control strategies

• Active power control

• Power maximization
Reader's advisory

Burton et al: Wind Energy Handbook, John Wiley, New York, Second Edition, 2011.

Ogata: Modern Control Engineering, Prentice Hall, Upper Saddle River, New Jersey, Third Edition, 1997
Links
Language of instruction English
Duration (semesters) 1 Semester
Module frequency jährlich
Module capacity unlimited
Modullevel / module level EB (Ergänzungsbereich / Complementary)
Modulart / typ of module Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method Vorlesung: 4 SWS, Übung: 2 SWS
Vorkenntnisse / Previous knowledge Basic knowledge in linear algebra and mathematical analysis is required. Furthermore, a basic understanding of wind turbines and wind farms is required (e.g. Design of Wind Energy Systems). A good grasp of the Matlab/Simulink environment is required for exercises.
Course type Comment SWS Frequency Workload of compulsory attendance
Lecture
2 SoSe oder WiSe 28
Exercises
2 SoSe oder WiSe 28
Total time of attendance for the module 56 h
Examination Time of examination Type of examination
Final exam of module
KL