Stud.IP Uni Oldenburg
Universität Oldenburg
04.03.2024 08:18:25
inf536 - Computational Intelligence II (Vollständige Modulbeschreibung)
Originalfassung Englisch PDF Download
Modulbezeichnung Computational Intelligence II
Modulkürzel inf536
Kreditpunkte 6.0 KP
Workload 180 h
Einrichtungsverzeichnis Department für Informatik
Verwendbarkeit des Moduls
  • Master Applied Economics and Data Science (Master) > Data Science
  • Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
  • Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
  • Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
  • Master Informatik (Master) > Angewandte Informatik
  • Master Umweltmodellierung (Master) > Mastermodule
  • Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik
Zuständige Personen
  • Kramer, Oliver (Modulverantwortung)
  • Lehrenden, Die im Modul (Prüfungsberechtigt)
Teilnahmevoraussetzungen
nützliche Vorkenntniss: Lineare Algebra, Stochastik
Kompetenzziele
In der Vorlesung „Convolutional Neural Networks“ lernen die Grundlagen von Convolutional Neural Networks, vom methodischen Verständnis bis zur Implementierung.
Fachkompetenzen
Die Studierenden:
  • erlernen die Fachkompetenz im Bereich Deep Learning, die wesentliche Qualifikationen als KI-Experte und Data Scienctist darstellen

Methodenkompetenzen
Die Studierenden:
  • lernen die genannten Methoden sowie die Implementierung in Python, NymPy und Keras

Sozialkompetenzen
Die Studierenden:
  • werden dazu angehalten, in Gruppen die gelehrten Inhalte zu diskutieren und gemeinsam die Programmieraufgaben in den Übungen zu Implementieren

Selbstkompetenzen
Die Studierenden:
  • werden zur eigenständigen Recherche zu weiterführenden Methoden angeleitet, da sich der Lehrbereich dynamisch ändert
Modulinhalte

Die Studierenden lernen die Grundlagen maschinellen Lernens und insbesondere die Themen vollvernetzte Schichten, Cross-Entropy, Backpropagation, SGD, Momentum, Adam, Batch Normalisierung, Regularisierung, Convolution, Pooling, ResNet, DenseNet und Convolutional SOMs

Literaturempfehlungen
  • Deep Learning von Aaron C. Courville, Ian Goodfellow und Yoshua Bengio
 
Links
Unterrichtssprache Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul jedes Sommersemester
Aufnahmekapazität Modul unbegrenzt
Lehr-/Lernform 1VL + 1Ü
Vorkenntnisse nützliche Vorkenntniss: Lineare Algebra, Stochastik
Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz
Vorlesung 2 SoSe 28
Übung 2 SoSe 28
Präsenzzeit Modul insgesamt 56 h
Prüfung Prüfungszeiten Prüfungsform
Gesamtmodul
Vorlesungsfreie Zeit im Anschluss des Semesters
Klausur, e-Klausur