mat996 - Introduction to Numerical Analysis (Complete module description)

mat996 - Introduction to Numerical Analysis (Complete module description)

Original version English PDF download
Module label Introduction to Numerical Analysis
Module code mat996
Credit points 6.0 KP
Workload 180 h
Institute directory Department of Mathematics
Applicability of the module
  • Bachelor's Programme Business Informatics (Bachelor) > Aufbaucurriculum-Wahlbereich Mathematik
  • Bachelor's Programme Computing Science (Bachelor) > Wahlpflichtbereich Mathematik
  • Master's Programme Computing Science (Master) > Module aus anderen Studiengängen
Responsible persons
  • Chernov, Alexey (module responsibility)
  • Schöpfer, Frank (module responsibility)
Prerequisites
Analysis I, Lineare Algebra
Skills to be acquired in this module
The students learn and analyze the basic numerical methods. The students learn to implement the basic numerical methods in a computer program.


Professional competence
The students:
· learn basic numerical methods and algorithms
· analyze properties of the numerical methods using rigorous mathematical tools
· implement the basic numerical methods in a computer program
· interpret results of computer simulations

Methodological competence
The students:
· analyze algorithms with mathematical tools
· implement numerical algorithms for concrete problems

Social competence
The students:
· develop solutions to given problems in groups
· accept constructive criticism

Personal competence
The students:
· reflect their solution strategies
· deepen their understanding of the presented mathematical and algorithmical concepts with exercises and adopt the solution methods
Module contents
· Numerical methods for linear systems: LU-, Cholesky decompositions, iterative methods
· Numerical methods for nonlinear equations: fix-point iterations, Netwon's Method
· Polynomials, spline and trigonometric interpolation
· Numerical integration: Newton-Cotes, Gauss quadrature rules, adaptive quadrature and extrapolation methods
· Stability and conditioning of algorithms and problems
Recommended reading
R. Plato: Numerische Mathematik kompakt, Vieweg + Teubner, 2010.
Stoer, Bulirsch: Numerische Mathematik 1 und 2, Springer, 2007, 2005.
P. Deuflhard, A. Hohmann: Numerische Mathematik 1, de Gruyter, 2008.
H.R. Schwarz, N. Köckler: Numerische Mathematik, Vieweg+Teubner, 2008.
M. Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, Vieweg+Teubner, 2008.
Links
Language of instruction German
Duration (semesters) 1 Semester
Module frequency every year
Module capacity unlimited
Reference text
Als 6 KP Modul werden Vorlesung und Übungen nur in den ersten 2/3 des Semesters besucht.
Type of module Wahlpflicht / Elective
Module level AC (Aufbaucurriculum / Composition)
Teaching/Learning method Vorlesung + Übung
Type of course Comment SWS Frequency Workload of compulsory attendance
Lecture 2.7 WiSe 37
Exercises 1.3 WiSe 19
Total module attendance time 56 h
Examination Prüfungszeiten Type of examination
Final exam of module
At the end of the lecture period written exam
Final exam of module