phy644 - Wind Energy Physics, Data & Analysis (Complete module description)
Module label | Wind Energy Physics, Data & Analysis |
Module code | phy644 |
Credit points | 6.0 KP |
Workload | 180 h
( attendance: 2*28 hrs, self-study: 124 hrs )
|
Institute directory | Institute of Physics |
Applicability of the module |
|
Responsible persons |
|
Prerequisites | The module starts in the winter term: Wind Energy Physics has to be taken before participating in Wind Physics Measurement Project |
Skills to be acquired in this module | After successful completion of the module students should be able to: - Evaluate wind energy related measurements,
|
Module contents | The winter term lecture teaches the basic knowledge in wind energy physics. Physical properties of fluids, wind characterization and anemometers, aerodynamic aspects of wind energy conver sion, dimensional analysis, (pitheorem), and wind turbine performance, design of wind turbines, electrical systems. The sequentially following WPhyMPr adresses problems based on real wind data, which will be solved on at least four important aspects in wind physics. The course will comprise lectures and assignments as well as self-contained work in groups of 3 persons. The content consist of the following four main topics, following the chronological order of the work process: Data handling (measurements, measurement technology, handling of wind data, assessment of measurement artefacts in wind data, preparation of wind data for further processing); Energy Meteorology (geographical distribution of winds, wind regimes on different time and length scales, vertical wind profile, distribution of wind speed, differences between onshore and offshore conditions); Measure - Correlate - Predict (MCP) (averaging of wind data, bin-wise averaging of wind data, long term correlation and long term correction of wind data, sources of long term wind data); LIDAR (analyses and conversion of data from LIDAR measurements |
Recommended reading | R. Gasch , J. Twele : Wind Power Plants Fundamentals, Design, Construction and Operation, 2nd Ed., Springer Verlag, 2012, ISBN: 978 3 642 22937 4 S. Emeis : Wind Energy Meteorology: Atmospheric Physics for Wind Power Generation, Springer, 2012 Evaluation of site specific wind conditions; MEASNET Guideline; Version 1; November 2009; free available in the internet: http://www.measnet.com/wpcontent/ uploads/2012/04/Measnet_SiteAssessment_V10.pdf IEC 61400 12 1:2005 Power performance measurements of electricity producing wind turbines; guideline |
Links | |
Language of instruction | English |
Duration (semesters) | 1 Semester |
Module frequency | Sommer- und Wintersemester |
Module capacity | unlimited |
Reference text | The module starts in the winter term: Wind Energy Phyics has to be taken before participating in Wind Physics Measurement Project |
Type of module | Wahlpflicht / Elective |
Module level | MM (Mastermodul / Master module) |
Teaching/Learning method | Seminar: 2 SWS, Seminar: 2 SWS |
Examination | Prüfungszeiten | Type of examination |
---|---|---|
Final exam of module | 1 Exam |
Type of course | Lecture |
SWS | 4 |
Frequency | SuSe or WiSe |
Workload attendance time | 56 h |