Stud.IP Uni Oldenburg
University of Oldenburg
07.10.2022 15:10:37
phy612 - Advanced Physics I (Complete module description)
Original version English PDF Download
Module label Advanced Physics I
Modulkürzel phy612
Credit points 6.0 KP
Workload 180 h
Institute directory Institute of Physics
Verwendbarkeit des Moduls
  • Master's Programme Engineering Physics (Master) > Pflichtmodule
Zuständige Personen
Struve, Bert (Module responsibility)
Poppe, Björn (Module responsibility)
Skills to be acquired in this module

Fouriertechniken in der Physik
The students know the definition of the Fourier-Transformation (FT) and learn about explicit examples. They know the properties and theorems of the FT, are able to apply these and describe physical processes both in time and frequency domain. They gain deep insights about physical processes analyzing the frequency domain and are able to utilize Fourier techniques solving physical problems, e.g. finding solutions of the time dependent Schrödinger equation. In addition, they learn about examples of the current english physical literature.

Starting from basics, the module yields advanced knowledge of the physics of lasers, of optical radiation with matter, optoelectronic principles and components as, e.g. laser beams, different laser types, light emitters, detectors, modulators. The students acquire skills in working with lasers and optoelectronic components.
Module contents
Fluiddynamics I
Base equations: Navier-Stokes equations, continuity equation, Bernoulli’s law;
Vortex and energy equations
laminar flow and analysis of stability
exact solutions and applications

Fluiddynamics II
Reynolds' turbulence
Closure problems and approaches
models of turbulence, principles of CFD,
Cascade models – stochastic models

Fouriertechniken in der Physik
Motivation: Applications of the FT in physics. Examples for Fourier paires, properties of the FT: symmetries, important theorems, shifting, differentiation, convolution theorem, uncertainty relation. Examples concerning the convolution theorem: frequency comb, Hilbert transformation, autocorrelation function. Methods of the time/frequency analysis and Wigner distribution. FT in higher dimensions: tomography. Discrete FT, sampling theorem. Applications in quantum mechanics.

Fundamentals of lasers (optical gain, optical resonator, laser beams), laser types, laser safety;
electronic bandstructures in matter, semiconductor junctions, radiation laws, light emitting diodes, photodetectors, solar cells.
D. J. Tritton: Physical fluid dynamics. Clarendon Press, Oxford, 2003
G. K. Batchelor: An introduction to fluid dynamics. Cam- bridge University Press, Cambridge, 2002
U. Frisch: Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, 2001
J. Mathieu, J. Scott: An introduction to turbulent flow. Cam- bridge University Press, Cambridge, 2000
P.A. Davidson: turbulence Oxford 2004

Fouriertechniken in der Physik (WS, 5.04.4651)
R. Bracewell: „The Fourier Transform and its Applications“, McGraw-Hill, 3. Auflage (1999)
T. Butz: „Fouriertransformation für Fußgänger“, Vieweg+Teubner, 7. Auflage (2011)
D. W. Kammler: „A First Course in Fourier Analysis”, Cam- bridge University Press (2008)
M. Wollenhaupt, A. Assion and T. Baumert: “Springer Handbook of Lasers and Optics”, Springer, Chapter 12, 2. Auflage (2012)
L. Cohen: „Time Frequency Analysis“, Prentice Hall (1995)
Weitere spezielle Literatur wird in der Vorlesung bekannt gegeben.

C. Breck Hitz, J. J. Ewing, J. Hecht, Introduction to Laser Technology, 2012, Wiley Press
F. Träger (ed.), Handbook of Laser and Optics, 2nd. ed. 2012, Springer Verlag, Berlin
Saleh, Teich: Fundamentals of Photonics, John Wiley & Sons
Ebeling: Integrierte Optoelektronik, Springer Verlag
Original literature according indication during course
Languages of instruction German, English
Duration (semesters) 1 Semester
Module frequency jährlich
Module capacity unlimited
Modullevel / module level
Modulart / typ of module
Lehr-/Lernform / Teaching/Learning method Lecture and exercise
Vorkenntnisse / Previous knowledge
Examination Prüfungszeiten Type of examination
Final exam of module
1 exam or 1 presentation or 1 oral examination or 1 chore
Form of instruction Seminar
Workload Präsenzzeit 0 h