Stud.IP Uni Oldenburg
Universität Oldenburg
29.11.2022 18:25:44
phy612 - Advanced Physics I (Vollständige Modulbeschreibung)
Originalfassung Englisch PDF Download
Modulbezeichnung Advanced Physics I
Modulkürzel phy612
Kreditpunkte 6.0 KP
Workload 180 h
Einrichtungsverzeichnis Institut für Physik
Verwendbarkeit des Moduls
  • Master Engineering Physics (Master) > Pflichtmodule
Zuständige Personen
Struve, Bert (Modulverantwortung)
Poppe, Björn (Modulverantwortung)

Fouriertechniken in der Physik
The students know the definition of the Fourier-Transformation (FT) and learn about explicit examples. They know the properties and theorems of the FT, are able to apply these and describe physical processes both in time and frequency domain. They gain deep insights about physical processes analyzing the frequency domain and are able to utilize Fourier techniques solving physical problems, e.g. finding solutions of the time dependent Schrödinger equation. In addition, they learn about examples of the current english physical literature.

Starting from basics, the module yields advanced knowledge of the physics of lasers, of optical radiation with matter, optoelectronic principles and components as, e.g. laser beams, different laser types, light emitters, detectors, modulators. The students acquire skills in working with lasers and optoelectronic components.
Fluiddynamics I
Base equations: Navier-Stokes equations, continuity equation, Bernoulli’s law;
Vortex and energy equations
laminar flow and analysis of stability
exact solutions and applications

Fluiddynamics II
Reynolds' turbulence
Closure problems and approaches
models of turbulence, principles of CFD,
Cascade models – stochastic models

Fouriertechniken in der Physik
Motivation: Applications of the FT in physics. Examples for Fourier paires, properties of the FT: symmetries, important theorems, shifting, differentiation, convolution theorem, uncertainty relation. Examples concerning the convolution theorem: frequency comb, Hilbert transformation, autocorrelation function. Methods of the time/frequency analysis and Wigner distribution. FT in higher dimensions: tomography. Discrete FT, sampling theorem. Applications in quantum mechanics.

Fundamentals of lasers (optical gain, optical resonator, laser beams), laser types, laser safety;
electronic bandstructures in matter, semiconductor junctions, radiation laws, light emitting diodes, photodetectors, solar cells.
  • Fluiddynamik
D. J. Tritton: Physical fluid dynamics. Clarendon Press, Oxford, 2003
G. K. Batchelor: An introduction to fluid dynamics. Cambridge University Press, Cambridge, 2002
U. Frisch: Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge, 2001
J. Mathieu, J. Scott: An introduction to turbulent flow. Cam- bridge University Press, Cambridge, 2000
P.A. Davidson: turbulence Oxford 2004

  • Fouriertechniken in der Physik
R. Bracewell: „The Fourier Transform and its Applications“, McGraw-Hill, 3. Auflage (1999)
T. Butz: „Fouriertransformation für Fußgänger“, Vieweg+Teubner, 7. Auflage (2011)
D. W. Kammler: „A First Course in Fourier Analysis”, Cam- bridge University Press (2008)
M. Wollenhaupt, A. Assion and T. Baumert: “Springer Handbook of Lasers and Optics”, Springer, Chapter 12, 2. Auflage (2012)
L. Cohen: „Time Frequency Analysis“, Prentice Hall (1995)
Weitere spezielle Literatur wird in der Vorlesung bekannt gegeben.

  • Photonics
C. Breck Hitz, J. J. Ewing, J. Hecht, Introduction to Laser Technology, 2012, Wiley Press
F. Träger (ed.), Handbook of Laser and Optics, 2nd. ed. 2012, Springer Verlag, Berlin
Saleh, Teich: Fundamentals of Photonics, John Wiley & Sons
Ebeling: Integrierte Optoelektronik, Springer Verlag
Original literature according indication during course
Unterrichtsprachen Deutsch, Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul jährlich
Aufnahmekapazität Modul unbegrenzt
Modullevel / module level
Modulart / typ of module
Lehr-/Lernform / Teaching/Learning method Lecture and exercise
Vorkenntnisse / Previous knowledge
Prüfung Prüfungszeiten Prüfungsform
1 exam or 1 presentation or 1 oral examination or 1 chore
Lehrveranstaltungsform Seminar
Workload Präsenzzeit 0 h