Stud.IP Uni Oldenburg
University of Oldenburg
22.11.2019 05:27:22
mat960 - Mathematics of Computer Science (Analysis) (Complete module description)
Original version English Download as PDF
Module label Mathematics of Computer Science (Analysis)
Module code mat960
Credit points 6.0 KP
Workload 180 h
Faculty/Institute Department of Mathematics
Used in course of study
  • Bachelor's Programme Business Informatics (Bachelor) >
  • Bachelor's Programme Computing Science (Bachelor) >
Contact person
Module responsibility
Entry requirements
Skills to be acquired in this module
The students learn and apply basic notions and techniques of mathematical analysis.

Professional competence
The students:
· use rigorous mathematical proofs
· compute limit values and analyse the convergence behaviour of iterative methods
· apply differential and integral calculus to compute extreme values, to analyse the behaviour of functions and to develop numerical solution methods

Methodological competence
The students:
· analyse formal relations
· structure and justify solution methods

Social competence
The students:
· develop solutions to given problems in groups
· accept constructive criticism

Personal competence
The students:
· reflect their solution strategies
· deepen their understanding of the presented mathematical concepts with exercises and adopt the solution methods
Module contents
· Convergence of sequences, series and iterative methods
· Continuity, differential and integral calculus of functions of one variable
· Characterization and computation of extreme values
· Separable and linear ordinary differential equations
Reader's advisory
Peter Hartmann: Mathematik für Informatiker - ein praxisbezogenes Lehrbuch
Dirk Hachenberger: Mathematik für Informatiker
Otto Forster: Analysis I
Harro Heuser: Lehrbuch der Analysis, Teil 1
Konrad Königsberger: Analysis
Links
Language of instruction German
Duration (semesters) 1 Semester
Module frequency every year
Module capacity unlimited
Modullevel AC (Aufbaucurriculum / Composition)
Modulart je nach Studiengang Pflicht oder Wahlpflicht
Lern-/Lehrform / Type of program
Vorkenntnisse / Previous knowledge
Course type Comment SWS Frequency Workload attendance
Lecture 3.00 SuSe 42 h
Exercises 1.00 SuSe 14 h
Total time of attendance for the module 56 h
Examination Time of examination Type of examination
Final exam of module
At the end of the lecture period written exam
Final exam of module