mar734 - Solar Resource and its Application (Complete module description)

mar734 - Solar Resource and its Application (Complete module description)

Original version English PDF Download
Module label Solar Resource and its Application
Modulkürzel mar734
Credit points 6.0 KP
Workload 180 h
(
Kontaktzeit: 56 h, Selbststudium: 124 h
)
Institute directory Institute for Chemistry and Biology of the Marine Environment
Verwendbarkeit des Moduls
  • Master's Programme Environmental Modelling (Master) > Mastermodule
Zuständige Personen
  • Heinemann, Detlev (module responsibility)
  • Knecht, Robin (Module counselling)
Prerequisites
none
Skills to be acquired in this module

Photovoltaic Systems:

-         Explain the concepts of physical processes governing the surface solar irradiance available for solar energy applications

-         Categorize and feature different PV systems (PV on-grid, PV off-grid, PV pumping, PV-hybrid)

-         Explain concepts behind PV system design

-         Explain the operation principles of PV systems
 

Selected Topics on Energy Meteorology:

-         Planning and giving an oral presentation of a scientific topic out of Energy Meteorology

-         Developing presentation & communication skills

-         Task based learning by focusing on a selected topic

 

Advanced Solar Energy Meteorology:

-      Providing a solid understanding of physical processes governing the surface solar irradiance available for solar energy applications

-      Developing skills in solar radiation modeling, i.e., expertise in application, adaptation and development of models

-      Solid knowledge in state-of-the-art-methods in satellite-based irradiance estimation and solar power forecasting

Detailed understanding of the influence of meteoro-logical/climatological aspects on the performance of solar energy systems
Module contents

Photovoltaic Systems

This course extends the topics on the design of photovoltaic systems introduced in module. Students will obtain an overview of a range of on-grid PV applications (e.g. home based rooftop systems, industrial roof-top systems and PV power plants) as well as off-grid applications (e.g. Solar Home System, Micro Grid System, Hybrid System, Photovoltaic Pumping System) and system integration aspects.

The course covers system design methods for on- and off-grid PV systems and provides students with both theoretical principles and practical experiences.
 

Selected Topics in Energy Meteorology

Das Seminar behandelt jeweils semesterweise Themenblöcke aus dem Bereich der meteorologischen Randbedingungen der Wind- und Solarenergie. Solarenergierelevante Beispiele sind: Modelle der Solarstrahlung am Erdboden, Bestimmung der Solarenergieressourcen, Satellitenbasierte Bestimmung der Solarstrahlung, Vorhersageverfahren für die Leistung von Solarenergiesystemen, Messverfahren.

 

Advanced Solar Energy Meteorology

-      Physics of radiative processes in the atmosphere

-      Physical modeling of atmospheric radiative transfer (incl. computing tools)

-      Solar irradiance modeling for solar energy applications

-      Solar spectral irradiance: Theory & relevance for solar energy systems

-      Satellite-based estimation of solar irradiance

-      Solar irradiance & solar power forecasting

Solar radiation measurements: Basics & setup of a high-quality measurement system

Literaturempfehlungen

Photovoltaic Systems:

S. Hegedus and A. Luque: Handbook of Photovoltaic Science and Engineering, 2nd Ed..Wiley & Sons, 2011.

C. Honsberg and S. Bowden: PVCDROM, http://www.pveducation.org/pvcdrom/instructions, Access date 2.10.2014

Deutsche Gesellschaft für Solarenergie: Planning and Installing Photovoltaic Systems: A Guide for Installers, Architects and Engineers, 3rd Ed. Earthscan, London, 2013.

H. Haeberlin: Photovoltaics: System Design and Practice, John Wiley & Sons, Chichester, 2012.

Advanced Solar Energy Meteorology:

M. Iqbal: An Introduction to Solar Radiation. Academic Press, Toronto, 1983.

K.-N. Liou: An Introduction to Atmospheric Radiation, 2nd Ed. Academic Press, Orlando, 2002.

Thomas, G. E. and K. Stamnes: Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press, 1996.

A. Marshak and A. Davis (Eds.): 3D Radiative Transfer in Cloudy Atmospheres. Springer Berlin Heidelberg New York, 2005.

J.A. Duffie and W.A.Beckman: Solar Engineering of Thermal Processes, 4th Ed. Wiley & Sons, 2013.

 

Further literature will be presented during the classes.

Links
Languages of instruction German, English
Duration (semesters) 2 Semester
Module frequency
Module capacity unlimited
Lehrveranstaltungsform Comment SWS Frequency Workload of compulsory attendance
Lecture
1 Vorlesung und 1 Seminar oder 2 Vorlesungen
2 SoSe oder WiSe 28
Seminar 2 SoSe oder WiSe 28
Präsenzzeit Modul insgesamt 56 h
Examination Prüfungszeiten Type of examination
Final exam of module
Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung oder Portfolio nach Maßgabe der Dozentin oder des Dozenten
KL