Modulbezeichnung | Computeralgebra |
Modulcode | mat765 |
Kreditpunkte | 6.0 KP |
Workload | 180 h |
Fachbereich/Institut | Institut für Mathematik |
Verwendet in Studiengängen |
|
Ansprechpartner/-in |
|
Teilnahmevoraussetzungen | |
Kompetenzziele | - Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik - Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik - Beherrschen wichtiger Verfahren und Algorithmen - Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software - Beherrschen der Analyse und Komplexität von Algorithmen - Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik - Abgrenzung zwischen dem spezifischen Teil einer Theorie und dem allgemeinen mathematischen Standard erkennen - Verständnis und Vertiefung weiterführender Konzepte der Computeralgebra, wie zum Beispiel Gröbnerbasen, Gitteralgorithmen sowie fortgeschrittene Algorithmen in Zahlentheorie und algebraischer Geometrie - Kenntnis fortgeschrittener algorithmischer Verfahren und ihrer Implementierung, sowohl in Computeralgebrasystemen wie zum Beispiel MAGMA und SAGE, als auch in Software-Paketen wie zum Beispiel NTL und FLINT - Kennenlernen von weiterführenden Themen in der aktuellen Forschung der modernen Computeralgebra und ihrer Anwendungen. |
Modulinhalte | Spezielle Themen der Computeralgebra wie effiziente Arithmetik mit Zahlen, Polynomen und Matrizen, Lösen von multivariaten polynomialen Gleichungssystemen, Gröbnerbasen, Gitteralgorithmen, Algorithmen in Zahlentheorie und algebraischer Geometrie, Anwendungen. |
Literaturempfehlungen | J. Gathen and J. Gerhard: Modern computer algebra, Cambridge University Press, 2003. D. Knuth: The Art of Computer Programming, Addison-Wesley 1998. G.-M. Greuel, G. Pfister: A Singular Introduction to Commutative Algebra, Springer 2008. W. Bosman and J. Cannon: Discovering Mathematics with Magma, Springer 2006. Computational Algebra Group: The Magma Handbook. |
Links | |
Unterrichtsprachen | Deutsch, Englisch |
Dauer in Semestern | 1 Semester |
Angebotsrhythmus Modul | unregelmäßig |
Aufnahmekapazität Modul | unbegrenzt |
Hinweise | Studienschwerpunkt: B |
Modullevel / module level | MM (Mastermodul / Master module) |
Modulart / typ of module | Wahlpflicht / Elective |
Lehr-/Lernform / Teaching/Learning method | |
Vorkenntnisse / Previous knowledge | Algorithmische Zahlentheorie und Computeralgebra, Kommutative Algebra. Inhalte der Algebra-Module im Fach-Bachelor werden vorausgesetzt. |
Lehrveranstaltungsform | Kommentar | SWS | Angebotsrhythmus | Workload Präsenzzeit |
---|---|---|---|---|
Vorlesung | 3.00 | -- | 42 h | |
Übung | 1.00 | -- | 14 h | |
Präsenzzeit Modul insgesamt | 56 h |
Prüfung | Prüfungszeiten | Prüfungsform |
---|---|---|
Gesamtmodul | nach Ende der Vorlesungszeit |
Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ) |