pre112 - Photovoltaics Systems & Solar Energy Meteorology (Complete module description)

pre112 - Photovoltaics Systems & Solar Energy Meteorology (Complete module description)

Original version English PDF download
Module label Photovoltaics Systems & Solar Energy Meteorology
Module code pre112
Credit points 6.0 KP
Workload 180 h
Institute directory Institute of Physics
Applicability of the module
  • Sustainable Renewable Energy Technologies (Master) > Mastermodule
Responsible persons
  • Agert, Carsten (authorised to take exams)
  • Heinemann, Detlev (authorised to take exams)
  • Holtorf, Hans-Gerhard (authorised to take exams)
  • Stoevesandt, Bernhard (authorised to take exams)
Prerequisites
Skills to be acquired in this module

After successful completion of the module students should be able to:

-        explain the concepts of physical processes governing the surface solar irradiance available for solar energy applications

-        model the solar radiation and show their expertise in application, adaptation and development of models

-        discuss state-of-the-art-methods in satellite-based irradiance estimation and solar power forecasting

-        categorize and feature different PV systems (PV on-grid, PV off-grid, PV pumping, PV-hybrid)

-        explain concepts behind PV system design
-        explain the operation principles of PV systems

Module contents

This specialization module covers more in-depth topics concerning photovoltaics systems and solar energy meteorology. Based on their knowledge about the solar resource and photovoltaic behaviour students learn to design a photovoltaic system for various environmental conditions and predict its performance.

Solar Energy Meteorology (Lecture ‑ 90 h workload)

-      Physics of radiative processes in the atmosphere

-      Physical modelling of atmospheric radiative transfer (incl. computing tools)

-      Solar irradiance modelling for solar energy applications

-      Solar spectral irradiance: Theory & relevance for solar energy systems

-      Satellite-based estimation of solar irradiance

-      Solar irradiance (& solar power) forecasting

-      Solar radiation measurements: Basics & setup of high-quality measurement system

Photovoltaic Systems (Lecture ‑ 90 h workload)

-      Detailed description of involved balance of system components (e.g. inverter, charge controllers)

-      System Operation
-      Detailed System Design ‑ from meteorological input across component rating to energy service output

Recommended reading
Links
Languages of instruction German, English
Duration (semesters) 1 Semester
Module frequency
Module capacity unlimited
Type of module je nach Studiengang Pflicht oder Wahlpflicht
Module level ---
Type of course Comment SWS Frequency Workload of compulsory attendance
Lecture 2 SuSe and WiSe 28
Seminar 2 SuSe and WiSe 28
Total module attendance time 56 h
Examination Prüfungszeiten Type of examination
Final exam of module
G