mat955 - Mathematics of Computer Science (Linear Algebra) (Complete module description)

# mat955 - Mathematics of Computer Science (Linear Algebra) (Complete module description)

 Module label Mathematics of Computer Science (Linear Algebra) Modulkürzel mat955 Credit points 6.0 KP Workload 180 h Institute directory Department of Mathematics Verwendbarkeit des Moduls Bachelor's Programme Business Informatics (Bachelor) > Aufbaucurriculum-Wahlbereich Mathematik Bachelor's Programme Computing Science (Bachelor) > Aufbaumodule Zuständige Personen Frühbis-Krüger, Anne (module responsibility) Heß, Florian (module responsibility) Stein, Andreas (module responsibility) Stein, Sandra (module responsibility) Prerequisites Skills to be acquired in this module • Getting to know and to understand the axiomatic structure of mathematics and the importance of mathematical reasoning• Mastering basic mathematical proof techniques and their logical structure• Recognizing the relevance of premises in mathematical theorems: Localization of premises within proofs and possible consequences if premises are not met• Learning the significant ideas and methods of linear algebra• Mastering the fundamental concepts of algebra, such as groups, rings, fields• Mastering the fundamental concepts and significant methods of linear algebra, such as systems of linear equations, Gaussian algorithm, vector spaces, dimension, linear maps, matrices, determinants• Mastering of further notions and methods of linear algebra, e.g. eigenvectors, eigenvalues, diagonalization Module contents Significant techniques and structures, systems of linear equations, vector spaces, dimension, linear maps, determinants, eigenvalues, diagonalization Literaturempfehlungen S. Bosch: Lineare Algebra, Springer 2008 (4. Aufl.)G. Fischer: Lineare Algebra, Vieweg 2010 (17. Aufl.)B. Huppert, W. Willems: Lineare Algebra, Teubner 2010 (2. Aufl.)M. Koecher: Lineare Algebra und analytische Geometrie, Springer 2003 (4. Aufl.) H.-J. Kowalsky, G. Michler: Lineare Algebra, de Gruyter 2003 (12. Aufl.)F. Lorenz: Lineare Algebra Spektrum 2008 (4. Aufl.) Links S. Bosch: Lineare Algebra, Springer 2014 G. Fischer: Lineare Algebra, Springer 2014 G. Fischer: Lernbuch Lineare Algebra und Analytische Geometrie, Springer 2017 B. Huppert, W. Willems: Lineare Algebra, Springer 2010 M. Koecher: Lineare Algebra und analytische Geometrie, Springer 2003 H.-J. Kowalsky, G. Michler: Lineare Algebra, de Gruyter 2003 F. Lorenz: Lineare Algebra, Spektrum 2008 Language of instruction German Duration (semesters) 1 Semester Module frequency annual Module capacity unlimited Type of module je nach Studiengang Pflicht oder Wahlpflicht Module level AC (Aufbaucurriculum / Composition) Teaching/Learning method Vorlesung + Übung
Form of instruction Comment SWS Frequency Workload of compulsory attendance
Lecture 2 28
Exercises 2 28
Präsenzzeit Modul insgesamt 56 h
Examination Prüfungszeiten Type of examination
Final exam of module
written exam or oral exam.

Bonus points can be earned.