mat955 - Mathematics of Computer Science (Linear Algebra) (Complete module description)

mat955 - Mathematics of Computer Science (Linear Algebra) (Complete module description)

Original version English PDF Download
Module label Mathematics of Computer Science (Linear Algebra)
Modulkürzel mat955
Credit points 6.0 KP
Workload 180 h
Institute directory Department of Mathematics
Verwendbarkeit des Moduls
  • Bachelor's Programme Business Informatics (Bachelor) > Aufbaucurriculum-Wahlbereich Mathematik
  • Bachelor's Programme Computing Science (Bachelor) > Aufbaumodule
Zuständige Personen
  • Frühbis-Krüger, Anne (module responsibility)
  • Heß, Florian (module responsibility)
  • Stein, Andreas (module responsibility)
  • Stein, Sandra (module responsibility)
Prerequisites
Skills to be acquired in this module
• Getting to know and to understand the axiomatic structure of mathematics and the importance of mathematical reasoning
• Mastering basic mathematical proof techniques and their logical structure
• Recognizing the relevance of premises in mathematical theorems: Localization of premises within proofs and possible consequences if premises are not met
• Learning the significant ideas and methods of linear algebra
• Mastering the fundamental concepts of algebra, such as groups, rings, fields
• Mastering the fundamental concepts and significant methods of linear algebra, such as systems of linear equations, Gaussian algorithm, vector spaces, dimension, linear maps, matrices, determinants
• Mastering of further notions and methods of linear algebra, e.g. eigenvectors, eigenvalues, diagonalization
Module contents
Significant techniques and structures, systems of linear equations, vector spaces, dimension, linear maps, determinants, eigenvalues, diagonalization
Literaturempfehlungen
S. Bosch: Lineare Algebra, Springer 2008 (4. Aufl.)
G. Fischer: Lineare Algebra, Vieweg 2010 (17. Aufl.)
B. Huppert, W. Willems: Lineare Algebra, Teubner 2010 (2. Aufl.)
M. Koecher: Lineare Algebra und analytische Geometrie, Springer 2003 (4. Aufl.)
H.-J. Kowalsky, G. Michler: Lineare Algebra, de Gruyter 2003 (12. Aufl.)
F. Lorenz: Lineare Algebra Spektrum 2008 (4. Aufl.)
Links
S. Bosch: Lineare Algebra, Springer 2014
G. Fischer: Lineare Algebra, Springer 2014
G. Fischer: Lernbuch Lineare Algebra und Analytische Geometrie, Springer 2017
B. Huppert, W. Willems: Lineare Algebra, Springer 2010
M. Koecher: Lineare Algebra und analytische Geometrie, Springer 2003
H.-J. Kowalsky, G. Michler: Lineare Algebra, de Gruyter 2003
F. Lorenz: Lineare Algebra, Spektrum 2008
Language of instruction German
Duration (semesters) 1 Semester
Module frequency annual
Module capacity unlimited
Form of instruction Comment SWS Frequency Workload of compulsory attendance
Lecture 2 28
Exercises 2 28
Präsenzzeit Modul insgesamt 56 h
Examination Prüfungszeiten Type of examination
Final exam of module
written exam or oral exam.

Bonus points can be earned.