mat955 - Mathematics of Computer Science (Linear Algebra) (Complete module description)
Module label | Mathematics of Computer Science (Linear Algebra) |
Modulkürzel | mat955 |
Credit points | 6.0 KP |
Workload | 180 h |
Institute directory | Department of Mathematics |
Verwendbarkeit des Moduls |
|
Zuständige Personen |
|
Prerequisites | |
Skills to be acquired in this module | • Getting to know and to understand the axiomatic structure of mathematics and the importance of mathematical reasoning • Mastering basic mathematical proof techniques and their logical structure • Recognizing the relevance of premises in mathematical theorems: Localization of premises within proofs and possible consequences if premises are not met • Learning the significant ideas and methods of linear algebra • Mastering the fundamental concepts of algebra, such as groups, rings, fields • Mastering the fundamental concepts and significant methods of linear algebra, such as systems of linear equations, Gaussian algorithm, vector spaces, dimension, linear maps, matrices, determinants • Mastering of further notions and methods of linear algebra, e.g. eigenvectors, eigenvalues, diagonalization |
Module contents | Significant techniques and structures, systems of linear equations, vector spaces, dimension, linear maps, determinants, eigenvalues, diagonalization |
Literaturempfehlungen | S. Bosch: Lineare Algebra, Springer 2008 (4. Aufl.) G. Fischer: Lineare Algebra, Vieweg 2010 (17. Aufl.) B. Huppert, W. Willems: Lineare Algebra, Teubner 2010 (2. Aufl.) M. Koecher: Lineare Algebra und analytische Geometrie, Springer 2003 (4. Aufl.) H.-J. Kowalsky, G. Michler: Lineare Algebra, de Gruyter 2003 (12. Aufl.) F. Lorenz: Lineare Algebra Spektrum 2008 (4. Aufl.) |
Links | S. Bosch: Lineare Algebra, Springer 2014 G. Fischer: Lineare Algebra, Springer 2014 G. Fischer: Lernbuch Lineare Algebra und Analytische Geometrie, Springer 2017 B. Huppert, W. Willems: Lineare Algebra, Springer 2010 M. Koecher: Lineare Algebra und analytische Geometrie, Springer 2003 H.-J. Kowalsky, G. Michler: Lineare Algebra, de Gruyter 2003 F. Lorenz: Lineare Algebra, Spektrum 2008 |
Language of instruction | German |
Duration (semesters) | 1 Semester |
Module frequency | annual |
Module capacity | unlimited |
Form of instruction | Comment | SWS | Frequency | Workload of compulsory attendance |
---|---|---|---|---|
Lecture | 2 | 28 | ||
Exercises | 2 | 28 | ||
Präsenzzeit Modul insgesamt | 56 h |
Examination | Prüfungszeiten | Type of examination |
---|---|---|
Final exam of module | written exam or oral exam. Bonus points can be earned. |