Stud.IP Uni Oldenburg
Universität Oldenburg
29.11.2021 15:31:21
pre410 - Renewable Energy Technologies I (Vollständige Modulbeschreibung)
Originalfassung Englisch PDF Download
Modulbezeichnung Renewable Energy Technologies I
Modulkürzel pre410
Kreditpunkte 12.0 KP
Workload 360 h
Einrichtungsverzeichnis Institut für Physik
Verwendbarkeit des Moduls
  • Master European Master in Renewable Energy (Master) > Mastermodule
Zuständige Personen
Hölling, Michael (Prüfungsberechtigt)
Holtorf, Hans-Gerhard (Prüfungsberechtigt)
Torio, Herena (Prüfungsberechtigt)
Wark, Michael (Prüfungsberechtigt)
Pehlken, Alexandra (Prüfungsberechtigt)
Steinberger-Wilckens, Robert (Prüfungsberechtigt)
Knipper, Martin (Prüfungsberechtigt)
Torio, Herena (Modulverantwortung)
Agert, Carsten (Modulverantwortung)

After successful completion of the module students should be able to:

  • critically evaluate and compare three major Renewable Energy conversion processes and technologies: photovoltaics, wind energy and one out of the following three: solar thermal energy, biomass energy or hydro power.
  • critically appraise various electrochemical storage processes and the respective storage techniques
  • analyse various system components and their interconnections within a complex Renewable Energy supply system.
  • evaluate the Renewable Energy supply systems’ operational size and efficiency.
  • critically evaluate non-technical impact and side effects when implementing renewable energy supply systems

This module will give an overview over a selection of the major renewable energy technologies and some possibilities of their storage. The focus lies on the scientific principles and the technical description of the components. Main aspects of the integration of components to form energy supply systems are also regarded.

Photovoltaics (Lecture ‑ 90 h workload)

Physics of PV:

  • Basic and most important properties of solar radiation related to photovoltaic
  • PV cells basics: Fundamental physical processes in photovoltaic materials
  • Characterisation and basic modelling of solar cells
Component Description:
  • PV generator
  • Charge controller
  • Inverter
  • Balance of system components
System Description
  • Grid Connected System
  • Stand Alone System   

Basics of Wind Energy (Lecture ‑ 90 h workload)

  • Wind characterization and anemometers
  • Aerodynamic aspects of wind energy conversion
  • Wind turbine performance
  • Design of wind turbines
  • Dimensional analysis and pi-theorem

Fuel Cells & Energy Storage (Lecture ‑ 90 h workload)

  • Fundamentals of electrochemistry and thermodynamics, energy and environmental balances
  • Basics of hydrogen production - starting materials, processes, efficiencies, environmental impacts
  • Basics of fuel cells function, materials, construction, systems, applications
  • Fundamental setup of most common battery types
  • Fundamental chemical reactions in these batteries
  • Operational characteristics, weir processes and service lives of these batteries.

Solar Thermal Energy  (Seminar & Exercises ‑ 90 h workload)

  • Assessment of solar thermal ambient parameters: regional global, diffuse, reflected solar radiation on horizontal and on tilted plane, ambient temperature
  • Solar thermal collectors
  • Solar thermal heat exchangers
  • Solar thermal storages
  • Solar thermal systems and their operation
  • Characterization of solar thermal systems

Biomass Energy (Lecture ‑ 90 h workload)

  • Energy mix overview; gas, heat, electricity, Pros & Cons of biomass
  • Chemical composition of biomass: sugar, cellulose, starch, fats. Oils, proteins, lignin
  • Natural photosynthesis in plants: chemical storage of solar energy; general mechanisms
  • Chemistry & Biology (microorganism) of Biogas Technology
  • Conversion processes of biomass: classification, main pathways
  • Introduction to catalysis used in biomass conversion
  • Chemical fuels (chemical energy storage) from biomass, routes to platform chemicals and separation processes
  • Technology concepts for bioenergy usage
  • Introduction into economical and legal constraints

Hydro & Marine Power (Seminar  & Exercises ‑ 90 h workload)

  • Theoretical background ‑ general hydraulic terms, Bernoulli Equation, Major Empirical Formulae and their backgrounds
  • Water Resource ‑ catchment area, seasonal precipitation, flow duration curve, dam, & run off river
  • Powerhouse ‑ penstock, water hammer, cavitation, tailrace
  • Turbines ‑ main types of turbines, their characteristics & their components
  • Ocean Power Overview

Suggested reading:

Solar Energy PV

  • Green, Martin A., 1981: Solar cells : operating principles, technology and system applications, Prentice Hall.
  • Green, M.A., 2007: Third Generation Photovoltaics, Advanced Solar Energy Conversion, Springer Series in Photonics
  • Markvart, Tom and Castaner, Luis, 2003: Practical Handbook of Photovoltaics, Fundamentals and Applications, Elsevier Science
  • Nelson, Jenny, 2003: The Physics of Solar Cells (Properties of Semiconductor Materials), Imperial College Press.
  • Stuart R. Wenham, Martin A. Green, Muriel E. Watt& Richard Corkish (Edit.), 2007: Applied Photovoltaics, Earthscan Publications Ltd.;
  • Twidell, John & Weir, Toni, 2005: Renewable Energy Resources Taylor & Francis.

Basics of Wind Energy

  • T. Burton et. al.: Wind Energy Handbook. John Wiley, New York, 2nd ed., 2011
  • R. Gasch, J. Twele: Wind Power Plants. Springer, 2nd ed., 2011

Fuel Cells & Energy Storage

  • Larminie/Dicks: Fuel Cells Systems Explained, 2000, (Wiley, 2000, ISBN 0-471-49026-1)
  • EG&G Services, Parsons Inc.: Fuel Cell Handbook, (DE-AM26-99FT40575, 7th Edition, 2005;
  • G. Hoogers (Ed.): Fuel Cell Technology Handbook, (CRC Press, Boca Raton/London, 2003, ISBN 0-8493-0877-1)
  • C.-J. Winter/J. Nitsch: Hydrogen as an Energy Carrier (Springer-Verlag, Heidelberg/N.Y., 1985, ISBN 0-387-18896-7/3-540-18896-7)
  • O’Hayre/Cha/Colella/Prinz: Fuel Cell Fundamentals, (Wiley, 2009, 2nd ed., IBSN 978-0-470-25843-9)
  • C.H. Hamann, A. Hammett, W. Vielstich, Electrochemistry, 2nd Ed. Wiley, Weinheim 2007
  • D. Pletcher, A First Course in Electrode Processes. The Electrochemical Consultancy, 1991.
  • A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications. 2. Ed., Wiley, 2001.
  • M. Winter, R.J. Brodd; What are Batteries, Fuel Cells and Supercapacitors? in Chem. Rev. 2004, Vol. 104, pp. 4245-4269
  • A.J. Bard, G. Inzelt, F. Scholz (Eds.) Electrochemical Dictionary. 2. Aufl. Springer, Berlin 2012 (Available as an eBook, very good explanation in English)
  • Fischer, W. (1996). Stationary lead-acid batteries - an introductory handbook. Brilon, Germany: Hoppecke.

Biomass Energy

  • R. Schlögl (Ed.), Chemical Energy Storage, De Gruyter, 2013, ISBN: 978-3-11-026407-4, Chapter 2, Pages 59-133.
  • D.L. Klass. Biomass for renewable energy, fuels, and chemicals, Chapter 4 Virgin Biomass Production, p. 91ff
  • Food and Agriculture Organization of the UN (FAO) 
  • IEA Energy Technology Essentials - Biomass for Power Generation and CHP.
  • R.A. Houghton, Forest Hall, and Scott J. Goetz. Importance of biomass in the global carbon cycle J. Geophys. Res., 114, 2009
  • Schlögl, Robert (2013). Chemical energy storage (Elektronische Ressource] ed.). Berlin [u.a.]: De Gruyter.
  • Twidell & Weir. Renewable Energy Resources, Chapter 10,
  • Wheildon‘s 2013,
  • Waste-to-Energy Research and Technology Council (WtERT), 2009,

Solar Thermal

  • DGS, (2010) Planning and installing solar thermal systems, a guide for installers, architects and engineers, 2nd ed.
  • Duffie JA, Beckman WA (2013) Solar engineering of thermal processes: Wiley.
  • Kasper, B., & Antony, F. (2004). Solarthermische Anlagen.

Hydro Power

  • Charlier R.H., (2009) Ocean Energy: Tide and Tidal Power.
  • Chtrakar P (2005) Micro-hydropower design aids manual: Small Hydropower Promotion Project, Mini Grid Support Programme. 107p.
  • Croockewit J (2004) Handbook for developing micro hydro in British Columbia: BChydro. 69 p.
  • Giesecke J, Heimerl S, Mosonyi E (2014) Wasserkraftanlagen: Springer Vieweg. XXVI, 940 p.
  • Inversin AR (1986) Micro-hydropower sourcebook: NRECA International Foundation.
  • Meder K (2011) Environment Assessment and Watershed Action Planning related to GIZ ECO MHP Projects: Field Manual. GIZ. 24 p.
  • Pelikan B (2004) Guide on how to develop a small hydropower plant. European Small Hydropower Association ESHA. 151 p.
  • Penche C (1988) Layman's handbook on how to develop a small hydro site; Commission E, editor.
  • Rodriguez L, Sánchez T (2011) Designing and building mini and micro hydropower schemes - a practical guide; Action P, editor: Practical Action Publishing Ltd. xxii, 359 p.
Unterrichtssprache Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul
Aufnahmekapazität Modul unbegrenzt
Modullevel / module level MM (Mastermodul / Master module)
Modulart / typ of module Pflicht / Mandatory
Lehr-/Lernform / Teaching/Learning method
Vorkenntnisse / Previous knowledge Helpful previous knowledge:
Chemistry, Black Body Radiation, Semiconductor Physics, Fluid Dynamics
Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz
2 SoSe und WiSe 28
4 SoSe und WiSe 56
Präsenzzeit Modul insgesamt 84 h
Prüfung Prüfungszeiten Prüfungsform
Depending on the lecture at the end of the lecture period or within the lecture period (for block offered lectures)
4 Examinations (weight 25% each): Written Exam or Presentation of a Paper