Stud.IP Uni Oldenburg
University of Oldenburg
02.02.2023 15:57:46
phy501 - Numerical Methods (Complete module description)
 Module label Numerical Methods Modulkürzel phy501 Credit points 6.0 KP Workload 180 h (180h (attendance: 56h; self-study: 124h)) Institute directory Institute of Physics Verwendbarkeit des Moduls Bachelor's Programme Engineering Physics (Bachelor) > Aufbaumodule Zuständige Personen Anemüller, Jörn (Prüfungsberechtigt) Brand, Thomas (Prüfungsberechtigt) Dietz, Mathias (Prüfungsberechtigt) Hartmann, Alexander (Prüfungsberechtigt) Hohmann, Volker (Prüfungsberechtigt) Lücke, Jörg (Prüfungsberechtigt) Meyer, Bernd (Prüfungsberechtigt) Petrovic, Cornelia (Prüfungsberechtigt) Hohmann, Volker (Module responsibility) Prerequisites Course Mathematical Methods II passed with a grade of at least 4.0. Skills to be acquired in this module Students acquire theoretical knowledge of basic numerical methods and practical skills to apply these methods to physical problems within all areas of experimental, theoretical and applied physics. Module contents Basic concepts of numerical Mathematics are introduced and applied to Physics problems. Topics include: Finite number representation and numerical errors, linear and nonlinear systems of equations, numerical differentiation and integration, function minimization and model fitting, discrete Fourier analysis, ordinary and partial differential equations. The learned numerical methods will be partly implemented (programmed) and applied to basic problems from mechanics, electrodynamics, etc. in the exercises. The problems are chosen so that analytical solutions are available in most cases. In this way, the quality of the numerical methods can be assessed by comparing numerical and analytical solutions. Programming will be done in C or, preferably, in Matlab, which is a powerful package for numerical computing. Matlab offers easy, portable programming, comfortable visualization tools and already implements most of the numerical methods introduced in this course. These built-in functions can be compared to own implementations or used in the exercises in some cases when own implementations are too costly. The tutorials provide basic programming support. Literaturempfehlungen 1. V. Hohmann: Numerical Methods for Physicists, Universität Oldenburg (lecture script; will be provided with the course material) 2. W. H. Press et al.: Numerical Recipes in C - The Art of Scientific Computing. Cambridge University Press, Cambridge, [BIS]http://www.bis.uni-oldenburg.de/katalogsuche/freitext=press+numerical+recipes+art 3. A. L. Garcia: Numerical Methods for Physics. Prentice Hall, Englewood Cliffs (NJ), [BIS]http://www.bis.uni-oldenburg.de/katalogsuche/freitext=garcia+numerical+methods 4. J. H. Mathews: Numerical Methods for Mathematics, Science and Engineering. Prentice Hall, Englewood Cliffs (NJ), [BIS]http://www.bis.uni-oldenburg.de/katalogsuche/freitext=mathews+numerical+methods+science 5. B.W. Kernighan und D. Ritchie: The C Programming Language. Prentice Hall International, Englewood Cliffs (NJ) (in case Matlab is not used for the course) Links Language of instruction English Duration (semesters) 1 Semester Module frequency Annual, summer semester Module capacity unlimited Modullevel / module level AC (Aufbaucurriculum / Composition) Modulart / typ of module Pflicht / Mandatory Lehr-/Lernform / Teaching/Learning method Lecture: 2 hrs/week, Tutorial: 2 hrs/week Vorkenntnisse / Previous knowledge Basic computer knowledge; Basic programming skills, in particular Matlab; Knowledge in undergraduate Physics; Courses Mathematical Methods I-III.
Form of instruction Comment SWS Frequency Workload of compulsory attendance
Lecture 2 SoSe und WiSe 28
Exercises 2 SoSe und WiSe 28
Präsenzzeit Modul insgesamt 56 h
Examination Prüfungszeiten Type of examination
Final exam of module
Ü