Module label | Numerical Methods |
Modulkürzel | phy501 |
Credit points | 6.0 KP |
Workload | 180 h
( 180h (attendance: 56h; self-study: 124h) )
|
Institute directory | Institute of Physics |
Verwendbarkeit des Moduls |
|
Zuständige Personen |
Anemüller, Jörn (Prüfungsberechtigt)
Brand, Thomas (Prüfungsberechtigt)
Dietz, Mathias (Prüfungsberechtigt)
Hartmann, Alexander (Prüfungsberechtigt)
Hohmann, Volker (Prüfungsberechtigt)
Lücke, Jörg (Prüfungsberechtigt)
Meyer, Bernd (Prüfungsberechtigt)
Petrovic, Cornelia (Prüfungsberechtigt)
Hohmann, Volker (Module responsibility)
|
Prerequisites | Course Mathematical Methods II passed with a grade of at least 4.0. |
Skills to be acquired in this module | Students acquire theoretical knowledge of basic numerical methods and practical skills to apply these methods to physical problems within all areas of experimental, theoretical and applied physics. |
Module contents | Basic concepts of numerical Mathematics are introduced and applied to Physics problems. Topics include: Finite number representation and numerical errors, linear and nonlinear systems of equations, numerical differentiation and integration, function minimization and model fitting, discrete Fourier analysis, ordinary and partial differential equations. The learned numerical methods will be partly implemented (programmed) and applied to basic problems from mechanics, electrodynamics, etc. in the exercises. The problems are chosen so that analytical solutions are available in most cases. In this way, the quality of the numerical methods can be assessed by comparing numerical and analytical solutions. Programming will be done in C or, preferably, in Matlab, which is a powerful package for numerical computing. Matlab offers easy, portable programming, comfortable visualization tools and already implements most of the numerical methods introduced in this course. These built-in functions can be compared to own implementations or used in the exercises in some cases when own implementations are too costly. The tutorials provide basic programming support. |
Literaturempfehlungen | 1. V. Hohmann: Numerical Methods for Physicists, Universität Oldenburg (lecture script; will be provided with the course material) 2. W. H. Press et al.: Numerical Recipes in C - The Art of Scientific Computing. Cambridge University Press, Cambridge, [BIS]http://www.bis.uni-oldenburg.de/katalogsuche/freitext=press+numerical+recipes+art 3. A. L. Garcia: Numerical Methods for Physics. Prentice Hall, Englewood Cliffs (NJ), [BIS]http://www.bis.uni-oldenburg.de/katalogsuche/freitext=garcia+numerical+methods 4. J. H. Mathews: Numerical Methods for Mathematics, Science and Engineering. Prentice Hall, Englewood Cliffs (NJ), [BIS]http://www.bis.uni-oldenburg.de/katalogsuche/freitext=mathews+numerical+methods+science 5. B.W. Kernighan und D. Ritchie: The C Programming Language. Prentice Hall International, Englewood Cliffs (NJ) (in case Matlab is not used for the course) |
Links | |
Language of instruction | English |
Duration (semesters) | 1 Semester |
Module frequency | Annual, summer semester |
Module capacity | unlimited |
Modullevel / module level | AC (Aufbaucurriculum / Composition) |
Modulart / typ of module | Pflicht / Mandatory |
Lehr-/Lernform / Teaching/Learning method | Lecture: 2 hrs/week, Tutorial: 2 hrs/week |
Vorkenntnisse / Previous knowledge | Basic computer knowledge; Basic programming skills, in particular Matlab; Knowledge in undergraduate Physics; Courses Mathematical Methods I-III. |
Form of instruction | Comment | SWS | Frequency | Workload of compulsory attendance |
---|---|---|---|---|
Lecture | 2 | SoSe und WiSe | 28 | |
Exercises | 2 | SoSe und WiSe | 28 | |
Präsenzzeit Modul insgesamt | 56 h |
Examination | Prüfungszeiten | Type of examination |
---|---|---|
Final exam of module | Ü |