Stud.IP Uni Oldenburg
Universität Oldenburg
27.01.2022 04:39:17
phy643 - Renewable Energy Technologies II for Engineering Physics (Vollständige Modulbeschreibung)
Originalfassung Englisch PDF Download
Modulbezeichnung Renewable Energy Technologies II for Engineering Physics
Modulkürzel phy643
Kreditpunkte 6.0 KP
Workload 180 h
Attendance: 56 hrs, Self study: 124 hrs
Einrichtungsverzeichnis Institut für Physik
Verwendbarkeit des Moduls
  • Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies
Zuständige Personen
Holtorf, Hans-Gerhard (Prüfungsberechtigt)
Knecht, Robin (Prüfungsberechtigt)
Pehlken, Alexandra (Prüfungsberechtigt)
Steinberger-Wilckens, Robert (Prüfungsberechtigt)
Torio, Herena (Prüfungsberechtigt)
Wark, Michael (Prüfungsberechtigt)
After successful completion of the module students should be able to: - critically evaluate and compare major Renewable Energy conversion processes and technologies in solar thermal energy and biomass energy, - analyze various system components and their interconnections within a complex Renewable Energy supply system, - evaluate the Renewable Energy supply systems' operational size and efficiency, - critically evaluate non-technical impact and side eects when implementing renewable energy supply systems.
Solar Thermal Energy (Seminar and Exercises - 90 h workload) - Assessment of solar thermal ambient parameters: regional global, diffuse, reflected solar radiation on horizontal and on tilted plane, ambient temperature, - Solar thermal collectors, - Solar thermal heat exchangers, - Solar thermal storages, - Solar thermal systems and their operation, - Characterization of solar thermal systems. Biomass Energy (Lecture - 90 h workload) - Energy mix overview; gas, heat, electricity, Pros and Cons of biomass, - Chemical composition of biomass: sugar, cellulose, starch, fats. Oils, proteins, lignin, - Natural photosynthesis in plants: chemical storage of solar energy; general mechanisms, - Chemistry and Biology (microorganism) of Biogas Technology, - Conversion processes of biomass: classification, main pathways, - Introduction to catalysis used in biomass conversion, - Chemical fuels (chemical energy storage) from biomass, routes to platform chemicals and separation processes, - Technology concepts for bioenergy usage, - Introduction into economical and legal constraints.
Biomass Energy - R. Schlögl (Ed.), Chemical Energy Storage, De Gruyter, 2013, ISBN: 978-3-11-026407-4, Chapter 2, Pages 59-133, - D.L. Klass. Biomass for renewable energy, fuels, and chemicals, Chapter 4 Virgin Biomass Production, p. 91ff, - Food and Agriculture Organization of the UN (FAO), - IEA Energy Technology Essentials - Biomass for Power Generation and CHP., - R.A. Houghton, Forest Hall, and Scott J. Goetz. Importance of biomass in the global carbon cycle J. Geophys.Res., 114, 2009, - Schlögl, Robert (2013). Chemical energy storage (Elektronische Ressource] ed.). Berlin [u.a.]: De Gruyter., - Twidell and Weir. Renewable Energy Resources, Chapter 10,,- Wheildon`s 2013, wp-content/uploads/2013/07/carbon-neutral.jpg, - Waste-to-Energy Research and Technology Council(WtERT), 2009, Menue=13&ShowDok=12#Hydrolysis,Solar Thermal - DGS, (2010) Planning and installing solar thermal systems, a guide for installers, architects and engineers, 2nd ed., - Duffie JA, Beckman WA (2013) Solar engineering of thermal processes: Wiley, - Kasper, B., and Antony, F. (2004). Solarthermische Anlagen
Unterrichtssprache Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul Wintersemester
Aufnahmekapazität Modul unbegrenzt
Modullevel / module level MM (Mastermodul / Master module)
Modulart / typ of module Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method Lecture: 2 hrs/week and Seminar: 2 hrs/week
Vorkenntnisse / Previous knowledge
Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz
2 SoSe oder WiSe 28
2 SoSe oder WiSe 28
2 SoSe oder WiSe 28
2 SoSe oder WiSe 28
Präsenzzeit Modul insgesamt 112 h
Prüfung Prüfungszeiten Prüfungsform