Stud.IP Uni Oldenburg
University of Oldenburg
13.07.2020 01:17:08
pre121 - Wind Energy Converters & Fluid Dynamics (Complete module description)
Original version English Download as PDF
Module label Wind Energy Converters & Fluid Dynamics
Module code pre121
Credit points 12.0 KP
Workload 360 h
Faculty/Institute Institute of Physics
Used in course of study
  • Master's Programme Postgraduate Programme Renewable Energy (Master) >
Contact person
Authorized examiners
Entry requirements
Skills to be acquired in this module

After successful completion of the module students should be able to:

-        Resolve fluid dynamic problems occurring in the field of wind energy converters

-        Measure characteristics of wind energy converters

-        Evaluate wind energy related measurements

-        Interpret such measurements gained in the field of wind energy applications
-        Critically evaluate measured data

Module contents

This module allows students to access wind energy from the hydrodynamic view angle of the wind resource.

Computational Fluid Dynamics (CFD) I  (Lecture ‑ 90 h workload)

-        Navier-Stokes equations

-        filtering / averaging of Navier- Stokes equations

-        introduction to numerical methods

-        finite- differences

-        finite-volume methods

-        linear equation systems

-        incompressible flows

-        compressible flows

-        C++

Computational Fluid Dynamics (CFD) II (Lecture ‑ 90 h workload)

-        Introduction to different CFD and Large Eddy Simulation (LES) models, such as OpenFOAM, PALM

-        Application of these CFD models to defined problems from rotor aerodynamics and the atmospheric boundary layer

-        Navier-Stokes solvers: RANS, URANS, LES, DNS

-        turbulent flows

-        efficiency and accuracy

Fluid Dynamics II (Lecture ‑ 90 h workload)

The unit is oriented towards research based topics:

-        Modeling turbulence ‑ CFD methods: Reynolds Equation, Eddy viscosity, Boundary layers flows, Large Eddy Simulation

-        Models of idealised turbulence and statistical methods: Hierarchies of moment equations, turbulence hypothesis, fine structure of turbulence, multi-fractal models, other.

-        Models of turbulence: cascade models and stochastic models and other hypothesis

Wind Physics Measurement Project (Project ‑ 90 h workload)

Case study like problems based on real world data will be solved on at least four important aspects in wind physics. The course will comprise lectures and assignments as well as self-contained work in groups of 3 persons.

The content consists of the following four main topics, following the chronological order of the work process:

-        Data handling:

-               measurement technology

-               handling of wind data

-               assessment of measurement artefacts in wind data

-               preparation of wind data for further processing

-        Energy Meteorology:

-               geographical distribution of winds

-               wind regimes on different time and length scales

-               vertical wind profile

-               distribution of wind speed

-               differences between onshore and offshore conditions.

-        Measure ‑ Correlate ‑ Predict (MCP):

-               averaging of wind data

-               long term correlation and long term correction of wind data

-               sources of long term wind data.

-        LIDAR (Light Detection and Ranging):

                    -               analyses and conversion of data from LIDAR measurements
Reader's advisory
Links
Languages of instruction German, English
Duration (semesters) 1 Semester
Module frequency
Module capacity unlimited
Modullevel BC (Basiscurriculum / Base curriculum)
Modullevel ---
Modulart Wahlpflicht / Elective
Modulart je nach Studiengang Pflicht oder Wahlpflicht
Lern-/Lehrform / Type of program
Vorkenntnisse / Previous knowledge
Course type Comment SWS Frequency Workload attendance
Lecture 4.00 SuSe and WiSe 56 h
Exercises 4.00 SuSe and WiSe 56 h
Total time of attendance for the module 112 h
Examination Time of examination Type of examination
Final exam of module