Stud.IP Uni Oldenburg
Universität Oldenburg
22.05.2022 02:51:53
mat010 - Mathematisches Problemlösen und Beweisen (Vollständige Modulbeschreibung)
Originalfassung Englisch PDF Download
Modulbezeichnung Mathematisches Problemlösen und Beweisen
Modulkürzel mat010
Kreditpunkte 6.0 KP
Workload 180 h
Einrichtungsverzeichnis Institut für Mathematik
Verwendbarkeit des Moduls
  • Zwei-Fächer-Bachelor Mathematik (Bachelor) > Basismodule
Zuständige Personen
Christiansen, Marcus (Modulverantwortung)
Grieser, Daniel (Modulverantwortung)
Stein, Andreas (Modulverantwortung)
Vertman, Boris (Modulverantwortung)
Uecker, Hannes (Modulverantwortung)
Teilnahmevoraussetzungen
Kompetenzziele
- Beherrschen grundlegender mathematischer Beweistechniken und deren logischer Struktur
- Erkennen der Bedeutung von Voraussetzungen in mathematischen Sätzen: Lokalisierung der Voraussetzungen innerhalb der Beweise und mögliche Konsequenzen bei Wegfall von Voraussetzungen
- Exemplarisches Kennenlernen weiterer mathematischer Gebiete und damit Erweiterung des eigenen mathematischen Wissens
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Entwicklung von akademischem Selbstvertrauen
- Fähigkeit, mathematische Argumente und deren Schlussfolgerungen klar und präzise vorzutragen

- Beherrschen allgemeiner Problemlösestrategien, wie Vorwärts- und Rückwärtsarbeiten, und spezieller Problemlösestrategien, wie Schubfach-, Extremal- und Invarianzprinzip
- Befähigung zum Verwenden heuristischer Techniken
- Fähigkeit, Problemlösestrategien und Beweistechniken in speziellen Themenbereichen der Mathematik wie Kombinatorik, Graphentheorie und elementare Zahlentheorie anzuwenden
- Erkennen der Notwendigkeit mathematischer Beweise zu sicherem Erkenntnisgewinn
- Fähigkeit zur Modellierung nicht-mathematischer Sachverhalte mittels diskreter mathematischer Strukturen
- Erkennen und Erleben des kreativen Aspekts der Mathematik, damit Grundlegung des Verständnisses von Mathematik als Wissenschaft
Modulinhalte
Heuristiken und Problemlösestrategien zur Behandlung mathematischer Probleme; Üben von mathematischen Beweisen anhand zahlreicher Aufgaben unterschiedlicher Schwierigkeitsgrade aus verschiedenen Bereichen der Mathematik; Grundlagen ausgewählter Gebiete, z.B. Kombinatorik, Graphentheorie und Zahlentheorie
Literaturempfehlungen
D. Grieser: Mathematisches Problemlösen und Beweisen, Springer
G. Polya: Vom Lösen mathematischer Aufgaben — Einsicht und Entdeckung, Lernen und Lehre, Band I und II, Springer
G. Polya: Schule des Denkens: Vom Lösen mathematischer Probleme, francke Verlag
Links
Unterrichtssprache Deutsch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul jährlich
Aufnahmekapazität Modul unbegrenzt
Modullevel / module level BC (Basiscurriculum / Base curriculum)
Modulart / typ of module je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method
Vorkenntnisse / Previous knowledge
Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz
Vorlesung
2 WiSe 28
Übung
2 WiSe 28
Präsenzzeit Modul insgesamt 56 h
Prüfung Prüfungszeiten Prüfungsform
Gesamtmodul
In diesem Modul können Bonuspunkte erworben werden. Die Einzelheiten werden zu Beginn der Veranstaltung mit den Studierenden besprochen und festgelegt.

1 Klausur (max. 3 Std.) oder 1 mündliche Prüfung (max. 30 Min.) oder Fachpraktische Übung