Stud.IP Uni Oldenburg
University of Oldenburg
28.01.2023 00:53:07
mat990 - Mathematics for Economists (Complete module description)
 Module label Mathematics for Economists Modulkürzel mat990 Credit points 6.0 KP Workload 180 h Institute directory Department of Mathematics Verwendbarkeit des Moduls Bachelor's Programme Business Administration and Law (Bachelor) > Basiscurriculum Wirtschaftswissenschaften Bachelor's Programme Business Informatics (Bachelor) > Aufbaucurriculum-Wahlbereich Mathematik Bachelor's Programme Economics and Business Administration (Bachelor) > Basismodule Bachelor's Programme Sustainability Economics (Bachelor) > Grundlagen-/Basiscurriculum Dual-Subject Bachelor's Programme Economics and Business Administration (Bachelor) > Basismodule Zuständige Personen Lehrenden, Die im Modul (Prüfungsberechtigt) Modulverantwortlichen, Die (Prüfungsberechtigt) May, Angelika (Module responsibility) Krug, Peter (Module counselling) Prerequisites Skills to be acquired in this module Students internalize basic mathematical concepts and methods from analysis and matrix calculation and their applications in economics. Professional competenceThe students:are proficient in the mathematical fundamentals relevant to economicsmaster methods for solving equations and inequalitiesmaster differential calculus for one and two variables and can integrateare able to reliably determine local and global extreme points for functions of one and two variables.Methodological competenceThe students:analyse formal contextsunderstand the formal mathematical language structure problems from the economic sciences and justify their solutions.Social competenceThe students:construct solutions to given problems in groupsaccept criticism and see it as an aid.Self-competenceThe students:reflect their actions in establishing solutionsdeepen the presented mathematical concepts in exercises and add them to their actions. Module contents Basics in real Arithmetic, Rules for Matrix ArithmeticLinear equations, linear inequalities and systems of those, quadratic equations, financial mathematics (interest rates and present values, pension calculation)Calculus for functions of one variable: derivation rules for power functions, exp and ln, indefinite integral,applications of integral calculus (density function, ordinary differential equations), single-variable optimization (stationary points, extreme-value theorem, local and global extreme points),Approximation methods (linear approximation, Taylor series with Lagrange remainder)Functions of two variables (partial derivatives, total differential), Tools for comparative statics : (elasticity of substitution, homogeneous and homothetic functions), multivariable optimization tasks (local and global extremes, extremes under constraints) Literaturempfehlungen Kursbuch: Sydsaeter, K.; Hammond, P. & Böker, F. (2010): Mathematik für Wirtschaftswissenschaftler. München: Pearson.Begleitend: Karmann, A. (2008): Mathematik für Wirtschaftswissenschaftler (6. Aufl.). München: Oldenbourg.Unger, T. & Demps, S. (2010): Lineare Optimierung. Wiesbaden: Vieweg.Dempe, S. & Schreier, H. (2006): Operations Research. Wiesbaden: Vieweg. Links www.uni-oldenburg.de/wire Language of instruction German Duration (semesters) 1 Semester Module frequency annual Module capacity unlimited Modullevel / module level AM (Aufbaumodul / Composition) Modulart / typ of module Wahlpflicht / Elective Lehr-/Lernform / Teaching/Learning method Vorkenntnisse / Previous knowledge
Form of instruction Comment SWS Frequency Workload of compulsory attendance
Lecture 2 WiSe 28
Exercises 2 WiSe 28
Präsenzzeit Modul insgesamt 56 h
Examination Prüfungszeiten Type of examination
Final exam of module
zum Ende der Vorlesungszeit
written exam