Module label | Probabilistic Modelling I |
Modulkürzel | inf533 |
Credit points | 3.0 KP |
Workload | 90 h |
Institute directory | Department of Computing Science |
Verwendbarkeit des Moduls |
|
Zuständige Personen |
Fatikow, Sergej (Module responsibility)
Marx Gomez, Jorge (Module responsibility)
Lehrenden, Die im Modul (Prüfungsberechtigt)
|
Prerequisites | |
Skills to be acquired in this module | Probabilistic Bayesian models are generated with special tools (e.g. BUGS, JAGS, STAN) or domain specific programming languages (, WebPPL, PyMC3, …etc.). If they mimic cognitive processes of humans (e.g. pilots, drivers) or animals they could be used as cooperative assistance systems in technical or financial systems like cars,robots, or recommenders. Professional competence The students:
Methodological competence The students:
Social competence The students:
Self-competence The students:
|
Module contents | Theories, methods, and examples of Bayesian models with practical applications |
Literaturempfehlungen | Recent eBooks, eTutorials |
Links | |
Languages of instruction | German, English |
Duration (semesters) | 1 Semester |
Module frequency | jährlich |
Module capacity | unlimited |
Reference text | Associated with the module:
|
Modullevel / module level | AS (Akzentsetzung / Accentuation) |
Modulart / typ of module | je nach Studiengang Pflicht oder Wahlpflicht |
Lehr-/Lernform / Teaching/Learning method | S |
Vorkenntnisse / Previous knowledge | Programmierkenntnisse |
Examination | Prüfungszeiten | Type of examination |
---|---|---|
Final exam of module | Will be announced in the lecture |
Presentation, reflective summary |
Form of instruction | Seminar |
SWS | 2 |
Frequency | WiSe |
Workload Präsenzzeit | 28 h |