pb321 - Data Analytics in Times of Big Data (Complete module description)

pb321 - Data Analytics in Times of Big Data (Complete module description)

Original version English PDF download
Module label Data Analytics in Times of Big Data
Module code pb321
Credit points 6.0 KP
Workload 180 h
Institute directory Department of Computing Science
Applicability of the module
  • Bachelor's Programme Biology (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Bachelor's Programme Business Administration and Law (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Bachelor's Programme Business Informatics (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Bachelor's Programme Chemistry (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Bachelor's Programme Comparative and European Law (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Bachelor's Programme Computing Science (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Bachelor's Programme Economics and Business Administration (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Bachelor's Programme Education (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Bachelor's Programme Engineering Physics (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Bachelor's Programme Environmental Science (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Bachelor's Programme Intercultural Education and Counselling (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Bachelor's Programme Mathematics (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Bachelor's Programme Physics (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Bachelor's Programme Physics, Engineering and Medicine (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Bachelor's Programme Social Studies (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Bachelor's Programme Sustainability Economics (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Art and Media (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Biology (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Chemistry (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Computing Science (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Dutch Linguistics and Literary Studies (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Economic Education (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Economics and Business Administration (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Education (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Elementary Mathematics (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme English Studies (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Gender Studies (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme General Education (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme German Studies (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme History (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-subject bachelor's programme Low German (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Material Culture: Textiles (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Mathematics (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Music (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Philosophy / Values and Norms (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Physics (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Politics-Economics (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Protestant Theology and Religious Education (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Slavic Studies (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Social Studies (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Special Needs Education (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Sport Science (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Dual-Subject Bachelor's Programme Technology (Bachelor) > Säule "Überfachliche Professionalisierung"
  • Fach-Bachelor Pädagogisches Handeln in der Migrationsgesellschaft (Bachelor) > Säule "Überfachliche Professionalisierung"
Responsible persons
  • Bremer-Rapp, Barbara (module responsibility)
  • Solsbach, Andreas (module responsibility)
  • Marx Gómez, Jorge (authorised to take exams)
  • Lehrenden, Die im Modul (authorised to take exams)
Prerequisites

No participant requirement 

Skills to be acquired in this module

The aim of the module is to teach basic analytical methods based on big data scenarios. The students from the humanities and natural sciences (e. g. social or environmental sciences, physics and mathematics) should be able to transfer current approaches to solving problems, which are used in particular for the use of in-memory computing and data science, to subject-specific questions and to work out solutions independently in small groups. The students have first experiences with the tasks of a Data Scientist.

Professional competences
The students:

  • name and recognize the tasks of a Data Scientist.
  • gain insight into current methods in the context of data analytics tasks.
  • gain theoretical and practical knowledge in the process of data modeling and retrieval (extraction, transformation and data loading).
  • can deal with subject-specific questions independently in small groups by means of the methods learned in the module.

Methodological competences
The students:

  • carry out the tasks of a Data Scientist independently using mediated methods.
  • learn the advantages and disadvantages of the different methods on the basis of their implementation and can use these methods in an optimized way on the basis of the acquired knowledge

Social competences
The students:

  • carry out subject-specific questions in small groups.
  • organize the tasks in the small groups and present their questions and results


Self-competences
The students:

  • apply suitable methods of the Data Scientist and use them for technical questions.
  • recognize tasks and assume responsibility for them
Module contents

Due to the increasing volume of information and the constant development of information and communication technologies, companies and scientists are able to access information that conventional analysis systems can no longer process.

Therefore, it is imperative to develop an understanding of the methods and possibilities of a Data Scientist not only on the IT level, but also in the departments. Therefore, it is essential that the tasks and methods of a Data Scientist are imparted in practice.

The event is divided into two parts: (1) Introduction to the tasks/methods of a Data Scientist and necessary software systems and (2) practical implementation of the methods based on subject-specific questions in small groups and presentation of the results by the students.

Subject-specific questions can arise, for example, from research in the topics: Wind energy, pattern recognition in ecological growth structures, soil response and transport, social inequality, analysis of social networks, demography, analysis of complex social systems.

Recommended reading
  • Jensen, C., Pedersen, T. B., & Thomsen, C. (2010). Multidimensional databases and data warehousing. Morgan & Claypool Publishers.
  • Loshin, D. (2012). Business intelligence: the savvy manager's guide. Newnes.
  • Bramer, M. (2007). Principles of data mining. Springer.
  • Leskovec, J., Rajaraman, A., & Ullman, J. D. (2020). Mining of massive data sets. Cambridge university press
Links

http://www.wi-ol.de

Language of instruction German
Duration (semesters) 1 Semester
Module frequency
Module capacity 100
Teaching/Learning method V+S
Type of course Comment SWS Frequency Workload of compulsory attendance
Lecture 2 WiSe 28
Seminar 2 WiSe 28
Total module attendance time 56 h
Examination Prüfungszeiten Type of examination
Final exam of module

In der veranstaltungsfreien Zeit, in der Regel 4 Wochen nach Ende des Vorlesungszeitraums.

Referat (max. 30 Min.) mit schriftl. Ausarbeitung (max. 15 Seiten) oder Hausarbeit (max. 25 Seiten)