Stud.IP Uni Oldenburg
Universität Oldenburg
18.02.2020 09:07:01
inf607 - Business Intelligence II (Vollständige Modulbeschreibung)
Originalfassung Englisch PDF Download
Modulbezeichnung Business Intelligence II
Modulcode inf607
Kreditpunkte 6.0 KP
Workload 180 h
Fachbereich/Institut Department für Informatik
Verwendet in Studiengängen
  • Master Informatik (Master) > Angewandte Informatik
  • Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik
Ansprechpartner/-in
Modulverantwortung
Prüfungsberechtigt
Teilnahmevoraussetzungen
Kompetenzziele
Das Modul vermittelt fortgeschrittene Kenntnisse und Aufgaben von Business Intelligence und Data Science in Unternehmen anhand von Big Data und Datanalytics. Die Studierenden erhalten einen Einblick in aktuelle Forschungsthemen und Entwicklungen bei der Beschaffung und Analyse von Daten.

Fachkompetenzen
Die Studierenden:
  • benennen und erkennen die Aufgaben von Data Analytics / Data Science im unternehmerischen Handeln
  • analysieren die Vor- und Nachteile der unterschiedlichen Ansätze und Methoden für die Analyse von Daten und werden in die Lage versetzt diese für einfache Fallbeispiele anzuwenden
  • erhalten theoretische Kenntnisse über die Datenbeschaffung und -modellierung sowie den dabei anzuwendenden Vorgehensweisen


Methodenkompetenzen
Die Studierenden:
  • bearbeiten Data Analytics-Aufgabenstellungen und erweitern hierbei Ihr Verständis zu den verschiedenen Ansätzen und Methoden
  • erlernen anhand der Durchführung der Methoden Vor- und Nachteile dieser und können diese Methoden anhand des erworbenen Wissen optimiert einsetzen


Sozialkompetenzen
Die Studierenden:
  • konstruieren Lösungen zu gegebenen Fallstudien in der Gruppe z.B. Erstellung eines Regressionsmodells anhang ein gegebene Dataset
  • diskutieren diese Lösungen auf fachlicher Ebene
  • präsentieren die Lösungen der Fallstudien im Rahmen der Übungen


Selbstkompetenzen
Die Studierenden:
-
Modulinhalte
Die Studierenden verfügen nach der Veranstaltung über vertiefende Kenntnisse im Bereich Business Intelligenceund Data Analytics. Die Studierenden erhalten einen Überblick in aktuelle Forschungsthemen im Bereich Business Intelligence und Data Analytics z.B. In Memory Computing Ansätze, Data Mining und Machine Learning, Big Data Verarbeitung mit verteilten Systemen (z.B. Apache Hadoop / Spark) anhand aktueller Anwendungen und Praxisvorträge. Die Studierenden verfügen über Wissen und erhalten praktische Kenntnisse über Buisness Intelligence und Data Science Projekte. Die vermittelten Kenntnisse und Fähigkeiten entsprechen den aktuellen Bedürfnissen des Arbeitsmarktes mit dem Fokus Business Intelligence und Data Science. Hierbei werden durch Nähe zur Praxis vertiefte Kenntnisse erworben, die als entscheidender Vorteil bei der späteren Arbeitsplatzsuche zu werten sind.
Literaturempfehlungen
  • Jürgen Cleve, Uwe Lämmel (2014): "Data mining" (Deutsch)
  • Max Bramer (2013): "Principles of data mining" (Englisch)
  • Ian Witten, Eibe Frank, Mark Hall (2011): "Data mining : practical machine learning tools and techniques" (Englisch)
  • Jure Leskovec, Anand Rajaraman, Jeffrey Ullman (2014): "Mining of massive datasets" (Englisch)
Links
www.wi-ol.de
Unterrichtsprachen Deutsch, Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul jährlich
Aufnahmekapazität Modul unbegrenzt
Modullevel AS (Akzentsetzung / Accentuation)
Modulart je nach Studiengang Pflicht oder Wahlpflicht
Lern-/Lehrform / Type of program SE nach Ankündigung zu Beginn der Veranstaltung (2 SWS V + 2 SWS Ü oder Blockseminar)
Vorkenntnisse / Previous knowledge
Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenzzeit
Vorlesung 2.00 SoSe 28 h
Seminar 2.00 SoSe 28 h
Präsenzzeit Modul insgesamt 56 h
Prüfung Prüfungszeiten Prüfungsform
Gesamtmodul
Am Ende der Veranstaltungszeit
Klausur oder mündliche Prüfung oder Hausarbeit oder Referat oder Portfolio oder fachpraktische Übungen und Klausur oder frachpraktische Übungen und mündliche Prüfung.