inf530 - Künstliche Intelligenz (Vollständige Modulbeschreibung)

inf530 - Künstliche Intelligenz (Vollständige Modulbeschreibung)

Originalfassung Englisch PDF Download
Modulbezeichnung Künstliche Intelligenz
Modulkürzel inf530
Kreditpunkte 6.0 KP
Workload 180 h
Einrichtungsverzeichnis Department für Informatik
Verwendbarkeit des Moduls
  • Fach-Bachelor Informatik (Bachelor) > Akzentsetzungsbereich - Wahlbereich Informatik
  • Fach-Bachelor Wirtschaftsinformatik (Bachelor) > Akzentsetzungsbereich Praktische Informatik und Angewandte Informatik
  • Master of Education (Gymnasium) Informatik (Master of Education) > Wahlpflichtmodule (Angewandte Informatik)
  • Master of Education (Haupt- und Realschule) Informatik (Master of Education) > Mastermodule
  • Master of Education (Wirtschaftspädagogik) Informatik (Master of Education) > Akzentsetzungsbereich
Zuständige Personen
  • Sauer, Jürgen (Modulverantwortung)
  • Lehrenden, Die im Modul (Prüfungsberechtigt)
Teilnahmevoraussetzungen

Grundkenntnisse Informatik/Wirtschaftsinformatik

Kompetenzziele

Die Zuhörer sind vertraut mit den grundlegenden Methoden im Bereich der Künstlichen Intelligenz. Sie kennen das Konzept des Agenten und wie sich dieser zu den Objekten seiner Umwelt verhält, kennen Expertensysteme und wie sich diese in JAVA umsetzen lassen. Sie sind vertraut mit Such-Methoden und speicherbeschränktem Suchen, kennen die Grundlagen des maschinellen Lernens und haben ein solides Verständnis der Techniken zur Wissensrepräsentation. Sie sind in der Lage, all diese erlernten Methoden auf andere Bereiche und Problemstellungen zu übertragen und anzuwenden. Des Weiteren sind sie fähig, die unterschiedlichen Methoden kompetent zu vergleichen und bzgl. ihrer Eignung für spezielle Anwendungsbereiche zu evaluieren und sie ggf. anzugleichen oder zu modifizieren, um entsprechende Aufgaben innerhalb neuer Anwendungsbereiche zu lösen.
Fachkompetenzen
Die Studierenden:

  • benennen das Konzept des Agenten und sind sich darüber bewusst wie sich dieser zu Objekten seiner Umwelt verhält
  • erkennen Expertensysteme und setzen diese um
  • charakterisieren Such-Methoden
  • beschreiben Problemlösungstechniken der Künstlichen Intelligenz
  • benennen die Grundlagen des maschinellen Lernens
  • beschreiben Techniken der Wissensrepräsentation

Methodenkompetenzen
Die Studierenden:

  • erkennen die grundlegenden Methoden im Bereich der Künstlichen Intelligenz
  • übertragen die Methoden der Künstlichen Intelligenz auf andere Bereiche
  • evaluieren die Eignung verschiedener Methoden für spezielle Anwendungsbereiche
  • modifizieren die Methoden der Künstlichen Intelligenz für spezielle Anwendungsbereiche

Sozialkompetenzen
Die Studierenden:

  • arbeiten im Team
  • präsentieren Lösungen in Gruppen

Selbstkompetenzen
Die Studierenden:

  • reflektieren ihr Handeln und beziehen dabei die Methoden der Künstlichen Intelligenz ein
Modulinhalte
  • Agentensysteme
  • Searching
  • Problem Solving
  • Wissensmodellierung
  • Planung
Literaturempfehlungen
  • Russel, S. J.: Novig, Peter: Artificial Intelligence: A modern Approach, 3rd Ed.
  • Winston, P.H. (1994): Artificial Intelligence, 3rd Edition
Links
Unterrichtssprache Deutsch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul jährlich
Aufnahmekapazität Modul unbegrenzt
Lehr-/Lernform V+Ü
Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz
Vorlesung 2 SoSe 28
Übung 2 SoSe 28
Präsenzzeit Modul insgesamt 56 h
Prüfung Prüfungszeiten Prüfungsform
Gesamtmodul

Am Ende der Vorlesungszeit

Klausur oder mündliche Prüfung