Stud.IP Uni Oldenburg
University of Oldenburg
26.09.2020 14:04:06
pre031 - Renewable Energy Technologies I (Course overview)
Institute of Physics 12 KP
Authorized examiners
  • Carsten Agert
  • Michael Hölling
  • Hans-Gerhard Holtorf
  • Robin Knecht
  • Herena Torio
  • Michael Wark
  • Alexandra Pehlken
  • Robert Steinberger-Wilckens
module components Semester courses Wintersemester 2020/2021 Examination
  • Unlimited access 5.06.M121 - Photovoltaics headache
    • Robin Knecht

    Wednesday: 08:00 - 10:00, weekly (from 21/10/20)

  • Unlimited access 5.06.M123 - Solar Thermal headache
    • Dr. Herena Torio

    Friday: 12:00 - 14:00, weekly (from 23/10/20)

    Students gain knowledge on: - Assessment of solar thermal ambient parameters: regional global, diffuse, reflected solar radiation on horizontal and on tilted plane, ambient temperature - Solar thermal collectors - Solar thermal heat exchangers - Solar thermal storages - Solar thermal systems and their operation - Characterization of solar thermal system - Asessment methods for solar system behaviour

  • Unlimited access 5.06.M125 - Basics of Wind Energy headache
    • Dr. Michael Hölling

    Monday: 10:00 - 12:00, weekly (from 14/12/20)
    Thursday: 10:00 - 12:00, weekly (from 17/12/20)
    Friday: 10:00 - 12:00, weekly (from 18/12/20)

  • Unlimited access 5.06.M127 - Energy Storage headache
    • Hans-Gerhard Holtorf, PhD
    • Prof. Dr. Robert Steinberger-Wilckens

    Dates on Friday. 20.11.20, Monday. 23.11.20, Thursday. 26.11.20 - Friday. 27.11.20, Monday. 30.11.20, Thursday. 03.12.20 10:00 - 12:00
    The lecture course, held by Prof. R. Steinberger, introduces Hydrogen as Energy carrier and fuel cells as efficient, emmission-free energy converters.

  • Unlimited access 5.06.M311 - Hydro- & Marine Power headache
    • Hans-Gerhard Holtorf, PhD

    Dates on Monday. 19.10.20, Thursday. 22.10.20 - Friday. 23.10.20, Monday. 26.10.20, Thursday. 29.10.20 - Friday. 30.10.20, Monday. 02.11 ...(more)
    Lecture Goal and Competencies: The lecture Hydro Power I seeks to familiarize students with technological, socioeconomic and ecological aspects. Students get acquainted with basics of the technical components of Hydro Power (HP) and Ocean Power (OP) systems: their setup, their operation, their specific challenges and their linkages with one another. At the end of this unit students may size a HP for given local geographic and hydrological conditions on a basic level. They can describe the entire setup as well as individual components. They are aware of basic challenges beyond the technical problems of HP and OP systems. Students are in the position to list advantages and disadvantages of HP and OP in comparison with other renewable energy technology. Detailed Content*: • 2h Theoretical background – general hydraulic terms, Bernoulli Equation, Major Empirical Formulae and their backgrounds. • 2h Water Resource – catchment area, seasonal precipitation, flow duration curve, dam, & run off river. • 2h Powerhouse – penstock, water hammer, cavitation, tailrace. • 4h Turbines – main types of turbines, their characteristics & their components. • 3h Ocean Power Overview * indicated times are face-to-face times.

  • Unlimited access 5.06.M313 - Biomass Energy headache
    • Prof. Dr. Michael Wark, Dipl.-Chem.
    • Dr.-Ing. Alexandra Pehlken

    Friday: 08:00 - 10:00, weekly (from 23/10/20)

    The students will understand the principles and potential uses for biomass as well as the shortcomings of biomass as a renewable energy. The students will develop an understanding of the growth and degradation of every type of biomass, as well as the basics of a balanced ecosystem and the sustainable use of biomass. Students gain basic understanding on biomass processing technologies. In cooperation with the Energy Systems & Society Module, one shall gain an understanding of the connection between man and the function of a healthy ecosystem and its preservation. Competence: The students gain competencies with critical discourse of competitive uses of biomass between human consumption, animal feed, raw material and fuel. The students are taught the issues concerning biomass transportation as well as the economic and ecological criteria involving its planning and use. They develop criteria, in order to address the complex relation between the future and a sustainable energy supply. The students gain competence to better the living conditions of rural inhabitants in developing countries through improved applications of biomass for daily energy needs. Content: Basic Understanding of: • Nature or photosynthesis: chemical storage of solar energy; Efficiency of Plants • Composition of biomass: sugar, starch, fat, oils, protein, lignin • Knowledge of typical crop yield and energy content of various plants • Typical energy crops in different climates • Form and distribution of biomass uses in different geographic and climatic regions • Traditional and modern energetic uses of biomass as well as the efficiency and technology • Degradation process of biomass: Microorganisms, classification and metabolism (main degradation) Sustainable Biomass Use • Soil fertility, decrease and destruction of natural fertility • Soil ecology • Growth and diversity of biomass • Roll of the microorganism in the metabolic cycle Technology The guiding theme are the principles of traditional and modern energetic use of biomass, the constraints and efficiencies for food preparation, transport, and thermal and electrical energy production • Biomass cookers, Improved Cook Stoves • Wood gasification • Biogas equipment • Biodiesel production • Ethanol production from sugarcane • Methanol production

Notes for the module
Module examination
2 Prüfungsleistungen: Klausur  (3h, Gewicht 75%) sowie Referat (15 min. Präsentation, 15 Seiten Bericht, Gewicht 25%).
Skills to be acquired in this module

After successful completion of the module students should be able to:

-        critically evaluate and compare three major Renewable Energy conversion processes and technologies: photovoltaics, wind energy and one out of three of solar thermal energy, biomass energy or hydro power.

-        critically appraise various electrochemical storage processes and the respective storage techniques

-        analyse various system components and their interconnections within a complex Renewable Energy supply system.

-        evaluate the Renewable Energy supply systems’ operational size and efficiency.
-        critically evaluate non-technical impact and side effects when implementing renewable energy supply systems