useful previous knowledge: Business Intelligence I, Business Intelligence II
Kapazität/Teilnehmerzahl
30
Prüfungszeiten
During the semester break, after the end of the lecture period
Module examination
Portfolio
Skills to be acquired in this module
After successful completion of the course, students should be able to answer specific, entrepreneurial questions with the help of data-driven methods. The handling of data should be mastered unerringly in the programming languages Python and/or R. Furthermore, competences in the field of algorithmics and data storytelling should be developed.
The module teaches basic skills in the field of data science and the application of various methods and algorithms. The cooperation with a practice partner ensures that the students work on a problem that is as real and practical as possible. By working independently on the problem and the final presentation of the results, further soft skills of the students will be trained. Professional competence
The students:
learn how to handle structured and unstructured data sources.
acquire practical knowledge about different methods of data science.
learn basic procedures in the implementation of data science projects.
follow and refine the implementation of the practical learning by means of a partly given model scenario, but also by self-initiatives.
Methodological competence
The students:
are able to explore and analyze data sets
recognize connections in large data sets
form a hypothesis for the solution of a business problem.
Social competence
The students:
work in groups, identify work packages and take on responsibility for the jobs assigned to them.
discuss and introduce the results on a functional level.
Self-competence
The students:
reflect their approach on the basis of self-defined goals.
collect and analyze required information.
prepare the collected information in a target group-oriented manner