pre141 - System Integration of Renewable Energy (Veranstaltungsübersicht)

pre141 - System Integration of Renewable Energy (Veranstaltungsübersicht)

Institut für Physik 12 KP
Modulteile Semesterveranstaltungen Sommersemester 2018 Prüfungsleistung
Vorlesung
  • Kein Zugang 2.01.511 - Smart Grid Management Lehrende anzeigen
    • Prof. Dr. Sebastian Lehnhoff
    • Dr. Davood Babazadeh
    • Jörg Bremer

    Montag: 08:00 - 10:00, wöchentlich (ab 09.04.2018), Vorlesung, Ort: A05 1-160
    Freitag: 14:00 - 16:00, wöchentlich (ab 18.05.2018), Ü, Ort: A04 2-221
    Termine am Mittwoch, 18.07.2018 09:00 - 14:00, Donnerstag, 19.07.2018 11:00 - 15:00, Freitag, 20.07.2018 12:00 - 14:00, Freitag, 27.07.2018 13:00 - 15:00, Ort: ((OFFIS, O50))

    Beachten Sie bitte die Informationen der Veranstaltung im Stud.IP

  • Kein Zugang 5.06.302 - Photovoltaic Systems Lehrende anzeigen
    • Hans-Gerhard Holtorf, PhD
    • Robin Knecht
    • Prof. Dr. Jürgen Parisi

    Donnerstag: 14:00 - 16:00, wöchentlich (ab 05.04.2018)
    Termine am Samstag, 23.06.2018 10:00 - 13:30

  • Kein Zugang 5.06.306 - Future Power Supply (Lecture) Lehrende anzeigen
    • Prof. Dr. Carsten Agert
    • Babak Ravanbach

    Montag: 14:00 - 16:00, wöchentlich (ab 09.04.2018)

Seminar
Hinweise zum Modul
Hinweise
Helpful previous knowledge:
  • For the course “Smart grid management” is basic knowledge in Python Programming advisable.
  • Basic knowledge on chemical processes (Chemistry-Primer: 1CP) and energy storage (course “Energy storage”) are also advantageous.
  • Knowledge in Semiconductor Physics is desired (Semiconductor Physics Primer: 1CP)
Prüfungsleistung Modul
2 Examinations
Report (presentation: 50 min, paper: 5 pages) or Exercises (8 exercises): Future Power Supply, 50% weight.
Oral Exam (ca. 30 minutes) or Exercises (8 exercises): Smart Grid Management, 50% weight
Kompetenzziele
After successful completion of the module students should be able to:
  • explain the management, modelling and power balancing within future electricity grid configurations with high shares of fluctuating and distributed generation and the requirements for successful application to real power balancing regarding capacity utilization, robustness, and flexibility.
  • appraise the main components (incl. chemical storage options) involved in future AC-grid concepts, to soundly assess the reciprocal constrains between them to propose solutions for improving its performance.
  • explain necessary IT- and process control technology components, methods and processes to control and operate electrical energy systems.
  • estimate and evaluate the requirements and challenges of ICT and computer science which are caused by the development and integration of unforeseeable fluctuations of decentralised plants.
  • explain necessary conversion procedures and to judge the ecologic and economic balance
  • categorise different grid-designs, including mini- and micro-grids
  • compare different electricity markets existing currently (Futures Market, Day-Ahead-Market, Intraday-Market, Balancing Power Market, Self-Consumption) based on the motivation, role, advantages and limiting factors and to critically judge and assess the suitability of these concepts for promoting the implementation of higher shares of fluctuating distributed power generation within the electricity grid.
  • explain the technical principles and resulting limiting factors for different components required for power control within “Smart City”, “Smart Grid”, “Smart Home” concepts, estimate the influence of distributed control concepts and algorithms for decentralised plants and consumers in the so called Smart Grid energy systems and analyse their safety, reliability, real time capability and flexibility