Seminar
|
-
5.04.4064 - Advanced Solar Energy Meteorology
Tuesday: 14:00 - 16:00, weekly (from 03/04/18)
-
5.04.4065 - Advanced Wind Energy Meteorology
Wednesday: 10:00 - 12:00, weekly (from 04/04/18)
-
5.04.4072 - Computational Fluid Dynamics I
Tuesday: 12:00 - 16:00, weekly (from 03/04/18)
Deeper understanding of the fundamental equations of fluid dynamics.
Overview of numerical methods for the solution of the fundamental equations of fluid dynamics.
Confrontation with complex problems in fluiddynamics.
To become acquainted with different, widely used CFD models that are used to study complex problems in fluid dynamics.
Ability to apply these CFD models to certain defined problems and to critically evaluate the results of numerical models.
Content:
CFD I: The Navier-Stokes equations, filtering / averaging of Navier- Stokes equations, introduction to numerical methods, finite- differences, finite-volume methods, linear equation systems, NS-solvers, RANS, URANS, LES, DNS, turbulent flows, incompressible flows, compressible flows, efficiency and accuracy.
-
5.04.4073Ü - Übungen zu Computational Fluid Dynamics I
Thursday: 14:00 - 16:00, weekly (from 05/04/18)
-
5.04.4074 - Computational Fluid Dynamics II
Tuesday: 12:00 - 16:00, weekly (from 22/05/18), Location: W33 0-003, W32 1-101
Deeper understanding of the fundamental equations of fluid dynamics.
Overview of numerical methods for the solution of the fundamental equations of fluid dynamics.
Confrontation with complex problems in fluiddynamics.
To become acquainted with different, widely used CFD models that are used to study complex problems in fluid dynamics.
Ability to apply these CFD models to certain defined problems and to critically evaluate the results of numerical models.
Content:
CFD II: Introduction to different CFD models, such as OpenFOAM and PALM. Application of these CFD models to defined problems from rotor aerodynamics and the atmospheric boundary layer.
Lehrsprache: "This course will be held in English. If no international students should participate, the course language can also be switched to German."
-
5.04.4075Ü - Übungen zu Computational Fluid Dynamics II
Thursday: 14:00 - 16:00, weekly (from 24/05/18)
-
5.04.4237 - Selected Topics in Energy Meteorology
- Dr. Lüder von Bremen, Dipl-Met.
- Dr. Detlev Heinemann
- Dr. Gerald Steinfeld, Dipl.-Met.
- Jens Tambke
Monday: 14:00 - 16:00, weekly (from 09/04/18)
Das Seminar vermittelt einen spannenden Einblick in einzelne Gebiete der Meteorologie und deren Anwendung in der Windenergie. In dem Seminar wird Literatur zu aktuellen Forschungsthemen der Windenergiemeteorologie verteilt und von den Teilnehmern im Rahmen eines Vortrages (ca. 30 min) vorgestellt. Die Literatur wird so ausgewählt, dass in einzelnen Vorträgen Grundlagen, Methodik und/oder die Anwendung im Vordergrund steht. Eine Literaturliste wird ca. eine Woche vor Start der Veranstaltung in Stud.IP eingestellt. Die Studierenden erwerben fortgeschrittene Kenntnisse auf dem Gebiet der Energiemeteorologie. Sie erlangen Fertigkeiten zum sicheren und selbstständigen Umgang mit modernen Konzepten und Methoden der Angewandten Physik. Sie erweitern ihre Kompetenzen hinsichtlich der Fähigkeiten zur erfolgreichen Bearbeitung anspruchsvoller Probleme der Angewandten Physik mit modernen experimentellen und numerischen Methoden, zur eigenständigen Erarbeitung von Zugängen zu aktuellen Entwicklungen der Angewandten Physik sowie zum Verständnis übergreifender Konzepte und Methoden der Angewandten Physik.
Inhalte:
Strahlungsgesetze; Strahlungswechselwirkungsprozesse / Transport in der Atmosphäre; Satellitenfernerkundungsverfahren; Modellierung solarenergiespezifischer Strahlungsgrößen; Vorhersage der Solarstrahlung; Energetik der Atmosphäre; Bewegungsgleichungen, atmosphärische Grenzschicht, Windprofile, Stabilität, Turbulenz, mesoskalige Modellierung, Windenergiepotential, Windleistungsvorhersage.
-
5.06.205 - Wind Energy Applications - from Wind Resource to Wind Farm Applications
Wednesday: 08:00 - 10:00, weekly (from 04/04/18), Location: W03 2-240 Dates on Friday, 06.07.2018 14:00 - 18:00, Location: W33 0-003
The students acquire an advanced knowledge in the field of wind energy applications. Special emphasis is on connecting physical and technical skills with the know-how in the fields of logistics, management, environment, finances, and economy. Practice-oriented examples enable the students to assess and classify real wind energy projects. Special situations such as offshore wind farms and wind farms in non-European foreign countries are included to give the students an insight into the crucial aspects of wind energy also relating to non-trivial realizations as well as to operating wind farm projects.
Contents:
Assessment of the resource wind energy:
Weibull distribution, measurement of wind speeds to determine the energy yield, fundamentals of the WAsP method, partial models of WAsP, MCP method for long-term correction of measured wind data in correlation with long-term reference data, conditions for stable, neutral and instable atmospheric conditions, wind yield assessments from wind distribution and power curve, fundamentals of determining the annual wind yield potentials of individual single-turbine units.
Tracking effects and wind farms:
Recovery of the original wind field in tracking flow of wind turbines, fundamentals of the Risø model, distance spacing and efficiency calculation of wind turbines in wind farms, fundamentals of offshore wind turbines, positive and negative effects of wind farms.
Operating wind farms:
Influences on the energy yield of the power efficiency of wind farms, three-column model of sustainability: “magic triangle”, profit optimization for increased energy production
|
|
Prerequisites |
keine |
Reference text |
12 KP | VL; SE | 1. und 2. FS | Heinemann |
Module examination |
M |
Skills to be acquired in this module |
Die Studierenden besitzen die erforderlichen Fertigkeiten über Energiesysteme unterschiedlicher Art, um selbständig unterschiedlichen Probleme modellieren zu können.
Computational Fluid Dynamics I+ II (VL, S) - provide basic knowledge in physical flow modeling and turbulence - mathematical realizations, i.e., numerical methods - overview of numerical techniques of practical relevance, capability of selecting a model for specific applications (strenghts and weaknesses of various model classes) - practice with state-of-the-art models
Energiemeteorologie I (Solar) - Providing a solid understanding of physical processes governing the surface solar irradiance available for solar energy applications - Developing skills in solar radiation modeling, i.e., expertise in application, adaptation and development of models - Solid knowledge in state-of-the-art-methods in satellite-based irradiance estimation and solar power forecasting - Detailed understanding of the influence of meteorological/climatological aspects on the performance of solar energy systems
Energy Meteorology II (Wind) - Detailed understanding of the influence of meteorological/climatological aspects on the performance of wind power systems - Solid knowledge of physical processes governing atmospheric wind flows - Understanding atmospheric boundary layer flow relevant for wind power conversion - Knowledge in methods for wind resource assessment and foercasting
Windenergy I/Windenergy II The students acquire an advanced knowledge in the field of wind energy applications. Special emphasis is on connecting physical and technical skills with the know-how in the fields of logistics, management, environment, finances, and economy. Practice-oriented examples enable the students to assess and classify real wind energy projects. Special situations such as offshore wind farms and wind farms in non-European foreign countries are included to give the students an insight into the crucial aspects of wind energy also relating to non-trivial realizations as well as to operating wind farm projects.
Solar Energy Solar Energy conveys knowledge about Photovoltaic and Solar Thermal systems and components. The students learn to dimension and economically evaluate installations, on both a general and detailed level with the help of software. Furthermore, the students will gain insight into the physical and engineering processes for solar energy utilization. |
|