Stud.IP Uni Oldenburg
University of Oldenburg
18.10.2021 18:57:38
mar730 - Energy Systems (Course overview)
Institute for Chemistry and Biology of the Marine Environment 12 KP
Module components Semester courses Sommersemester 2017 Examination
Lecture
Seminar
  • No access 5.04.4063 - Advanced Wind Energy Meteorology Show lecturers
    • Dr. Detlev Heinemann

    Tuesday: 16:00 - 18:00, weekly (from 04/04/17), Vorlesung

  • No access 5.04.4064 - Advanced Solar Energy Meteorology Show lecturers
    • Dr. Elke Lorenz

    Dates on Friday. 05.05.17 14:00 - 18:00, Saturday. 06.05.17 09:00 - 18:00, Friday. 02.06.17, Friday. 16.06.17 14:00 - 18:00, Saturday. 17.06.17 09:00 - 18:00
    In the first – lecture type - part of this block course the most important physical laws and effects for solar energy meteorology as well as models for solar resource assessment and forecasting will be introduced. A special emphasis will be on evaluation concepts and applications. In the second - seminar type - part of the course the students are asked to get a better understanding of lessons learnt by studying and presenting publications related to solar energy meteorology. The students will learn about: - requirements for solar resource data from different applications - most important physical laws and effects related to solar resource assessment and forecasting - models and measurement devices for solar resource assessment and forecasting - benefits and drawbacks of different models - methods to assess the quality of solar resource data Contents: Applications and requirements for solar resource data, basics of solar radiation, solar radiation models, satellite based irradiance retrieval, solar irradiance measurement devices, models for solar irradiance and power forecasting: numerical weather predictions, models based on cloud motion, statistical models, concepts of evaluation, model comparison.

  • No access 5.04.4072 - Computational Fluid Dynamics I Show lecturers
    • Wilke Trei
    • Dr. Bernhard Stoevesandt

    Thursday: 08:00 - 10:00, weekly (from 06/04/17), Location: W33 0-003, W30 0-033/34

    Deeper understanding of the fundamental equations of fluid dynamics. Overview of numerical methods for the solution of the fundamental equations of fluid dynamics. Confrontation with complex problems in fluiddynamics. To become acquainted with different, widely used CFD models that are used to study complex problems in fluid dynamics. Ability to apply these CFD models to certain defined problems and to critically evaluate the results of numerical models. Content: CFD I: The Navier-Stokes equations, filtering / averaging of Navier- Stokes equations, introduction to numerical methods, finite- differences, finite-volume methods, linear equation systems, NS-solvers, RANS, URANS, LES, DNS, turbulent flows, incompressible flows, compressible flows, efficiency and accuracy.

  • No access 5.04.4073Ü - Übungen zu Computational Fluid Dynamics I Show lecturers
    • Zeinab Gharibi
    • Shumian Zhao

    Monday: 13:00 - 14:00, weekly (from 10/04/17)

  • No access 5.04.4074 - Computational Fluid Dynamics II Show lecturers
    • Dr. Bernhard Stoevesandt
    • Wilke Trei

    Thursday: 10:00 - 12:00, weekly (from 06/04/17), Location: W33 0-003, W30 0-033/34

    Deeper understanding of the fundamental equations of fluid dynamics. Overview of numerical methods for the solution of the fundamental equations of fluid dynamics. Confrontation with complex problems in fluiddynamics. To become acquainted with different, widely used CFD models that are used to study complex problems in fluid dynamics. Ability to apply these CFD models to certain defined problems and to critically evaluate the results of numerical models. Content: CFD II: Introduction to different CFD models, such as OpenFOAM and PALM. Application of these CFD models to defined problems from rotor aerodynamics and the atmospheric boundary layer.

  • No access 5.04.4075Ü - Übungen zu Computational Fluid Dynamics II Show lecturers
    • Zeinab Gharibi
    • Shumian Zhao

    Monday: 12:00 - 13:00, weekly (from 10/04/17)

  • No access 5.04.4237 - Energiemeteorologie Show lecturers
    • Dr. Lüder von Bremen, Dipl-Met.
    • Dr. Detlev Heinemann
    • Dr. Gerald Steinfeld, Dipl.-Met.

    Monday: 14:00 - 16:00, weekly (from 03/04/17)

    Das Seminar vermittelt einen spannenden Einblick in einzelne Gebiete der Meteorologie und deren Anwendung in der Windenergie. In dem Seminar wird Literatur zu aktuellen Forschungsthemen der Windenergiemeteorologie verteilt und von den Teilnehmern im Rahmen eines Vortrages (ca. 30 min) vorgestellt. Die Literatur wird so ausgewählt, dass in einzelnen Vorträgen Grundlagen, Methodik und/oder die Anwendung im Vordergrund steht. Eine Literaturliste wird ca. eine Woche vor Start der Veranstaltung in Stud.IP eingestellt. Die Studierenden erwerben fortgeschrittene Kenntnisse auf dem Gebiet der Energiemeteorologie. Sie erlangen Fertigkeiten zum sicheren und selbstständigen Umgang mit modernen Konzepten und Methoden der Angewandten Physik. Sie erweitern ihre Kompetenzen hinsichtlich der Fähigkeiten zur erfolgreichen Bearbeitung anspruchsvoller Probleme der Angewandten Physik mit modernen experimentellen und numerischen Methoden, zur eigenständigen Erarbeitung von Zugängen zu aktuellen Entwicklungen der Angewandten Physik sowie zum Verständnis übergreifender Konzepte und Methoden der Angewandten Physik. Inhalte: Strahlungsgesetze; Strahlungswechselwirkungsprozesse / Transport in der Atmosphäre; Satellitenfernerkundungsverfahren; Modellierung solarenergiespezifischer Strahlungsgrößen; Vorhersage der Solarstrahlung; Energetik der Atmosphäre; Bewegungsgleichungen, atmosphärische Grenzschicht, Windprofile, Stabilität, Turbulenz, mesoskalige Modellierung, Windenergiepotential, Windleistungsvorhersage.

  • No access 5.06.205 - Wind Energy II - Applications Show lecturers
    • Dr. Hans-Peter Waldl

    Friday: 08:00 - 09:30, weekly (from 05/05/17)
    Dates on Friday. 30.06.17, Friday. 07.07.17 16:00 - 18:00, Friday. 14.07.17 08:30 - 11:00

    The students acquire an advanced knowledge in the field of wind energy applications. Special emphasis is on connecting physical and technical skills with the know-how in the fields of logistics, management, environment, finances, and economy. Practice-oriented examples enable the students to assess and classify real wind energy projects. Special situations such as offshore wind farms and wind farms in non-European foreign countries are included to give the students an insight into the crucial aspects of wind energy also relating to non-trivial realizations as well as to operating wind farm projects. Contents: Assessment of the resource wind energy: Weibull distribution, measurement of wind speeds to determine the energy yield, fundamentals of the WAsP method, partial models of WAsP, MCP method for long-term correction of measured wind data in correlation with long-term reference data, conditions for stable, neutral and instable atmospheric conditions, wind yield assessments from wind distribution and power curve, fundamentals of determining the annual wind yield potentials of individual single-turbine units. Tracking effects and wind farms: Recovery of the original wind field in tracking flow of wind turbines, fundamentals of the Risø model, distance spacing and efficiency calculation of wind turbines in wind farms, fundamentals of offshore wind turbines, positive and negative effects of wind farms. Operating wind farms: Influences on the energy yield of the power efficiency of wind farms, three-column model of sustainability: “magic triangle”, profit optimization for increased energy production

Exercises
Notes for the module
Prerequisites
keine
Reference text
12 KP | VL; SE | 1. und 2. FS | Heinemann
Module examination
M
Skills to be acquired in this module
Die Studierenden besitzen die erforderlichen Fertigkeiten über Energiesysteme unterschiedlicher Art, um selbständig unterschiedlichen Probleme modellieren zu können.

Computational Fluid Dynamics I+ II (VL, S)
- provide basic knowledge in physical flow modeling and turbulence
- mathematical realizations, i.e., numerical methods
- overview of numerical techniques of practical relevance, capability of selecting a model for specific applications (strenghts and weaknesses of various model classes)
- practice with state-of-the-art models

Energiemeteorologie I (Solar)
- Providing a solid understanding of physical processes governing the surface solar irradiance available for solar energy applications
- Developing skills in solar radiation modeling, i.e., expertise in application, adaptation and development of models
- Solid knowledge in state-of-the-art-methods in satellite-based irradiance estimation and solar power forecasting
- Detailed understanding of the influence of meteorological/climatological aspects on the performance of solar energy systems

Energy Meteorology II (Wind)
- Detailed understanding of the influence of meteorological/climatological aspects on the performance of wind power systems
- Solid knowledge of physical processes governing atmospheric wind flows
- Understanding atmospheric boundary layer flow relevant for wind power conversion
- Knowledge in methods for wind resource assessment and foercasting

Windenergy I/Windenergy II
The students acquire an advanced knowledge in the field of wind energy applications. Special emphasis is on connecting physical and technical skills with the know-how in the fields of logistics, management, environment, finances, and economy. Practice-oriented examples enable the students to assess and classify real wind energy projects. Special situations such as offshore wind farms and wind farms in non-European foreign countries are included to give the students an insight into the crucial aspects of wind energy also relating to non-trivial realizations as well as to operating wind farm projects.

Solar Energy
Solar Energy conveys knowledge about Photovoltaic and Solar Thermal systems and components. The students learn to dimension and economically evaluate installations, on both a general and detailed level with the help of software. Furthermore, the students will gain insight into the physical and engineering processes for solar energy utilization.