pb268 - Specialisation I (Course overview)

pb268 - Specialisation I (Course overview)

Institute of Physics 6 KP
Module components Semester courses Sommersemester 2017 Examination
Lecture
  • No access 5.04.301 - Photovoltaics Show lecturers
    • Nicolay Radychev

    Tuesday: 14:00 - 16:00, weekly (from 04/04/17), Location: W03 2-240
    Dates on Monday, 26.06.2017 14:00 - 16:00, Tuesday, 08.08.2017 14:00 - 16:30, Location: W04 1-172, W03 1-156

    The course covers the basic physics of solar cells as well as their commercial application. The photovoltaic energy conversion as well as the loss mechanisms in solar cells will be discussed on the basis of thermodynamics, semiconductor and solid-state physics. The students will learn to assess different kinds of PV technologies as well as the potential of photovoltaics for world’s energy supply. Contents: solar spectrum, energy and power density, principles of solid state and semiconductor physics, absorption and emission of light in semiconductors, generation and recombination in equilibrium and nonequilibrium, charge transport, quasi-Fermi levels, electrostatics of the pn-junction, majority and minority carrier, characterization, current-voltage characteristic, strategies to optimize the solar cell efficiency, technology overview, crystalline silicon solar cells, amorphous silicon, CdTe, CIGS, concentrator cells, modules

  • No access 5.04.317 - Biomedizinische Physik und Neurophysik Show lecturers
    • Prof. Dr. Björn Poppe
    • PD Dr. Stefan Uppenkamp, Dipl.-Phys.
    • Prof. Dr. Dr. Birger Kollmeier
    • Thomas Brand

    Monday: 12:00 - 14:00, weekly (from 03/04/17), Location: W02 1-148
    Friday: 08:00 - 10:00, weekly (from 07/04/17), Location: W02 1-148, W01 0-015
    Dates on Wednesday, 05.07.2017 14:00 - 16:00, Thursday, 13.07.2017 16:00 - 18:00, Location: W03 1-161, W02 1-148

    Students are expected to gain an overview of bio-medical physics. They shall understand the activities of physicists in medicine and be able to analyse current research topics of medical physics. Content: Medical bases: Anatomy and physiology of humans, sense and neuro physiology, Psychophysics, pathophysiology of select organ systems, pathology of select diseases, physics in the biomedicine: Methods of biophysics and neuro physics, Roentgen diagnostics, radiotherapy, nuclear medicine, tomography, the medical acoustics/ultrasonic, medical optics and laser applications, Audiology

  • No access 5.04.331 - Einführung in die Photonik Show lecturers
    • Prof. Dr. Christoph Lienau
    • Priv.-Doz. Dr. Petra Groß, Ph.D.

    Monday: 12:00 - 14:00, weekly (from 03/04/17)
    Friday: 12:00 - 14:00, weekly (from 07/04/17)

    Vermittlung von vertieften Kenntnissen im Bereich der Photonik und Vorbereitung auf eine Bachelor-Arbeit in diesem Gebiet. Erwerb von Fertigkeiten zur selbständigen Vertiefung von Wissen im Bereich Photonik sowie zur Konzeption fortgeschrittener Experimente zur Klärung physikalischer Fragestellungen. Erwerb von Kompetenzen zur wissenschaftlichen Analyse komplexer Sachverhalte und zur selbstständigen Einordnung neuer Forschungsergebnisse sowie zur gesellschaftspolitischen Einordnung der Konsequenzen von physikalischer Forschung. Inhalt: - Licht und Materie (Grundlagen der Elektrodynamik, Maxwell Gleichungen, Materie Gleichungen) - Fourier Representationen (Summen & Integrale, Lineare Systeme, Faltung) - Optische Medien (Dispersion, Absorption, Pulspropagation, Dispersive Beiträge) - Ebene Wellen an Grenzflächen (Fresnelgleichungen, Reflexion, Brechung, Evaneszente Wellen) - Spiegel und Strahlteiler (Matrixformalismus, Strahlteiler, Resonatoren, Interferometer) - Geometrische Optik (paraxiale Strahlenoptik, ABCD Matrizen, Resonatortypen, Abbildungssysteme) - Wellenoptik (paraxiale Wellenoptik, Gauß’sche Strahlen, Skalare Beugungstheorie, Fresnel- und Fraunhofer Beugung) Kohärenz (Korrelationsfunktion, Kohärenzinterferometrie) - Photonenoptik (Eigenschaften einzelner Photonen, Statistik von Photonenflüssen) - Polarisationsoptik (Polarisationszustände, Jones und Stokes Formalismus, anisotrope Materialien) - Fourier Optik (Holographie, Bildverarbeitung im reziproken Raum, Tomography) - Photonische Kristalle (Schichtmedien, 2- und 3-dimensionale Kristalle, Blochmoden, Dispersion) - Wellenleiteroptik (Moden, Dispersionsrelation, Feldverteilungen) - Faseroptik (Stufen und Gradientenindexfasern, Dispersion und Dämpfung)

  • No access 5.04.341 - Einführung in die Kern- und Teilchenphysik Show lecturers
    • PD Dr. Hui Khee Looe
    • Prof. Dr. Björn Poppe

    Wednesday: 12:00 - 14:00, weekly (from 05/04/17)

    Die Studierenden erwerben Kenntnisse über die grundlegenden Prinzipien und messtechnischen Methoden der Kern- und Elementarteilchenphysik sowie der dazugehörigen theoretischen Modelle (Feldtheorien). Sie erlangen Fertigkeiten zur Analyse kern- und teilchenphysikalischer Probleme, zur Einordnung neuer Experimente und Publikationen sowie zur selbständigen Beurteilung neuerer Entwicklungen. Sie erwerben Kompetenzen zur fundierten Einordnung der neuen Entwicklungen im Bereich der Kern- und Elementarteilchenphysik sowie zur Vernetzung mit den Kenntnissen aus den bisherigen Vorlesungen zur Experimental- und theoretischen Physik. Außerdem erlangen sie Kompetenzen zur gesellschaftspolitischen Einordnung der Konsequenzen von physikalischer Forschung. Inhalte: Phänomenologie der Kerne und Kernmodelle, Kernstrahlung, Teilchendetektoren, Beschleunigungsprinzipien, Teilchenzoo, Standardmodell der Elementarteilchenphysik, Einführung in die Physik jenseits des Standardmodells (GUT und Superstringtheorien). Studierende, die einen tiefergehenden Einblick in die Materie erwerben möchten, wird zusätzlich der Besuch der Vorlesung "Einführung in die Astrophysik" empfohlen. Aufgrund der hohen Dynamik der Forschungsergebnisse in beiden Bereichen wird in der Vorlesung mehrfach ein Überblick über neuere Publikationen gegeben.

  • No access 5.04.648 - Wind Energy Utilisation Show lecturers
    • Prof. Dr. Martin Kühn
    • Dipl.-Ing. (TU) Andreas Hermann Schmidt

    Monday: 12:00 - 14:00, weekly (from 03/04/17), Location: W33 0-003
    Wednesday: 12:00 - 14:00, weekly (from 05/04/17), Location: W01 0-008 (Rechnerraum)

    This lecture with exercises is intended as introduction into physics and engineering of wind energy utilisation. Nevertheless also social, historical and political aspects are regarded. The lecture gives a deeper understanding of physical effects, methods, calculations and parameters into the field of wind energy utilisation, wind physics and wind energy science. Experiments and exhibits are used to deliver deeper insights into the subjects of the lectures. The tutorial part consists of calculation exercises and an introduction into the common and professional software WindPro ® (subject to modifications). Students who have attended »Wind Energy Utilisation« in the Bachelor phase should be able to directly enrol for advanced wind energy lectures in the Master phase (without attending 5.04.4061 – Wind Energy). Content: • The wind: generation, occurence, measurement, profiles etc.; • Energy and power in the wind; • Drag driven converters; • Principle of lift driven converters; • Dimensionless parameters and characteristic diagrams of wind turbines; • Optimum twist and horizontal plan of the rotor blade; • Rotor power losses; • Power control; • Generator concepts and grid interaction; • Loads; • Mechanical design and components of a wind turbine; • Calculation of energy yield; • Economics; • Wind farms, wakes and wind farm efficiency; • Environmental effects; • Unconventional converters; • Prepared discussion about social and political aspects; • Use of wind farm calculation software WindPro

  • No access 5.06.301 - Solar Energy Systems - Electric and Thermal II Show lecturers
    • Hans-Gerhard Holtorf, PhD
    • Prof. Dr. Jürgen Parisi

    Monday: 08:30 - 12:00, weekly (from 03/04/17), Vorlesung

    Students gain knowledge on: • the characteristics of components of solar thermal and photovoltaic systems e.g. solar power conversion, charge controllers, storages, miscellaneous components (pumps, cabling, ...), their individual efficiency, their dynamic behaviour, their cut-in conditions. • the architecture and operation of different solar thermal and photovoltaic systems • the system characteristics • the energy balance of systems • the sensor system for controlling and monitoring of thermal and electric solar systems. Students gain skills on • describing properties of solar system components • monitoring and evaluating solar system components • describing solar systems in their operation, their efficiency, their performance parameters Student’s competence will be • to compare solar thermal systems to solar electric systems in terms of energy output, type of energy output, cut in radiation and dependencies on meteorological input. • to compare solar systems to other renewable energy systems in terms of energy output, type of energy output, cut in radiation and dependencies on meteorological input. On the basis of theoretical knowledge students will be enabled to establish measurement procedures to analyse characteristics of grid connected and stand-alone solar PV systems as well as solar thermal systems. They are skilled to apply standard physical and mathematical formulae to evaluate solar systems. At the end of Solar Energy I and Solar Energy II they will have gained understanding in energy transfer paths and energy loss principles for radiative energy. Students will have gained the competence to analyse and critical review data from solar systems – both electrical and thermal. Components: Description of solar system’s components in stationary and dynamic operation: • their functioning, • the different technologies, • the state of the art • their characteristics and working points - Photovoltaics (PV): PV-cells, generator, charge controller, inverter, storage (batteries) miscellaneous components (cabling, generator stand, electric protection) - Solarthermal: Collectors (flat plate, vacuum tube, concentrating systems), thermal storage, charge controller, miscellaneous components (circulation pumps, piping, heat insulation) Systems: Description of systems in stationary and dynamic operation • technical setup • interaction of components • energy output • loss mechanisms - Photovoltaic Systems: PV stand-alone systems, PV grid connected systems, photovoltaic pumping systems, hybrid systems - Solar Thermal Systems: Domestic hot water supply, heating supporting systems, concentrating solar thermal systems.

  • No access 5.06.507 - Energy Systems II Show lecturers
    • Dr. Detlev Heinemann

    Wednesday: 10:15 - 11:45, weekly (from 05/04/17), Location: W33 0-003, W01 1-117, (W00 Energielabor)
    Dates on Wednesday, 05.07.2017 10:15 - 11:45, Location: A10 1-121 (Hörsaal F)

    Part II: Technologies of the Global Energy System   - Power Plant Technology Basics: Thermodynamic cycles, efficiency, technologies, ...) - Conventional Power Generation: Steam power plants, gas turbines, nuclear - Advanced Power Generation: Combined cycle, co-generation, fuel cells, magneto-hydrodynamic power generation, stirling machine, heat pumps,.. - Electric Power Distribution: Utility grids, distributed generation, integration of RET, .. - Solar Thermal Power Plants: parabolic trough, central receiver) - Geothermal and Ocean Energy

  • No access 5.06.607 - Biomass Energy II Show lecturers
    • Dr. Alexandra Pehlken
    • Prof. Dr. Michael Wark, Dipl.-Chem.

    Wednesday: 08:30 - 10:00, weekly (from 05/04/17), Vorlesung
    Dates on Wednesday, 21.06.2017 08:00 - 10:00

    Based on Biomass Energy I (Winter term lecture course) potential, application, problems and perspectives for Biomass based energy supply (sub)systems are reviewed. A written exam is held at the end of the lecture period. Details - see http://http://www.uni-oldenburg.de/en/ppre/

Seminar
  • No access 5.04.650 - Hyperloop I Show lecturers
    • Prof. Dr. Walter Neu, Dipl.-Phys.
    • Thomas Schüning

    Tuesday: 10:00 - 12:00, weekly (from 04/04/17)
    Dates on Thursday, 28.09.2017 10:00 - 12:00

  • No access 5.04.692 - Laser Safety Instruction Show lecturers
    • Bert Struve

    Dates on Thursday, 06.04.2017 14:00 - 15:00
    The laser safety instruction is offered once a year for Bachelor and Master Students who are going to work with lasers in the lab at HS Emden/leer. Seminar is enbedded in the Basic Lab II, introduction session Room: Gemeindehaus Paapsand, Hochschule Emden/Leer.de

Notes on the module
Module examination
Max. 3 hrs written exam or 30 min oral exam. Here , you will find information about the consideration of bonus points for module marks.
Skills to be acquired in this module
Knowledge of the current state of research in the field of specialization and acquisition of specialist knowledge