pre061 - Renewable Energy Complementary Topics (Veranstaltungsübersicht)

pre061 - Renewable Energy Complementary Topics (Veranstaltungsübersicht)

Institut für Physik 6 KP
Modulteile Semesterveranstaltungen Sommersemester 2021 Prüfungsleistung
Vorlesung
  • Kein Zugang 2.01.511 - Smart Grid Management Lehrende anzeigen
    • Jörg Bremer
    • Prof. Dr. Sebastian Lehnhoff

    Dienstag: 18:00 - 20:00, wöchentlich (ab 27.04.2021)
    Donnerstag: 16:00 - 18:00, wöchentlich (ab 22.04.2021)
    Termine am Freitag, 23.07.2021 09:00 - 12:00, Dienstag, 27.07.2021 13:00 - 16:00, Donnerstag, 29.07.2021 11:00 - 14:00, Montag, 02.08.2 ...(mehr)

    Beachten Sie bitte die Informationen der Veranstaltung im Stud.IP

  • Kein Zugang 5.04.4063 - Introduction to Photovoltaics Lehrende anzeigen
    • Dr. Levent Gütay
    • Ashwin Hariharan

    Dienstag: 08:00 - 12:00, wöchentlich (ab 13.04.2021), V+Ü
    Termine am Freitag, 13.08.2021, Freitag, 20.08.2021 09:15 - 11:15, Montag, 23.08.2021 10:30 - 12:30, Freitag, 27.08.2021 09:15 - 11:15, ...(mehr)

    Auf Basis thermodynamischer und halbleiter/ festkörperphysikalischer Grundlagen sollen die Studierenden ein fundiertes Verständnis der photovoltaischen Energiewandlung sowie der elementaren Verlustprozesse in photovoltaischen Bauelementen erlangen und dabei ihre bisher erlangten Studienkenntnisse in den o.g. Disziplinen sicher anwenden. Aus diesem Wissen sollen die Studierenden wesentliche Randbedingungen zur Konzeption einer Solarzelle mit hohem Wirkungsgrad ableiten und qualitativ das Betriebsverhalten (Beleuchtungs- und Temperatureffekte) unter realen Bedingungen voraussagen können. Die Teilnehmer sollten darüber hinaus in der Lage sein, Anforderungen an die verwendeten Halbleitermaterialien (z.B. Dotierung, Tiefengradierung bestimmter Materialeigenschaften) und die internen Grenzflächen der Solarzelle physikalisch zu begründen. Neben grundlagenorientierten und materialwissenschaftlichen Kenntnissen zur Photovoltaik erwerben die Studierenden technisch geprägte Inhalte zum Funktionsprinzip und zur Konzeption von Photovoltaikmodulen sowie zur Systemtechnik photovoltaischer Anlagen. Inhalte: Festkörper- / halbleiterphysikalische Grundlagen, das solare Spektrum, Leistungsdichte, Absorption und Emission von Licht in Halbleitern, Generation und Rekombination, Gleichgewicht und Nichtgleichgewicht, Ladungstransport, Quasi-Fermi-Niveaus, Elektrostatik des pn-Übergangs, Majoritäten- und Minoritätenströme im pn-Übergang im Gleichgewicht und unter Beleuchtung, Sammeleffizienz, geometrische Auslegung des pn-Übergangs, Strom-Spannungs-Charakteristik, Halbleiter-Heterokontakte, pin-Strukturen, Strategien zur Optimierung der Solarzelleneffizienz, Technologieüberblick in der Photovoltaik

  • Kein Zugang 5.04.4072 - Computational Fluid Dynamics I Lehrende anzeigen
    • Prof. Dr. Laura Lukassen

    Dienstag: 12:00 - 14:00, wöchentlich (ab 13.04.2021)

    Deeper understanding of the fundamental equations of fluid dynamics. Overview of numerical methods for the solution of the fundamental equations of fluid dynamics. Confrontation with complex problems in fluiddynamics. To become acquainted with different, widely used CFD models that are used to study complex problems in fluid dynamics. Ability to apply these CFD models to certain defined problems and to critically evaluate the results of numerical models. Content: CFD I: The Navier-Stokes equations, introduction to numerical methods, finite- differences, finite-volume methods, linear equation systems, turbulent flows, incompressible flows, compressible flows, efficiency and accuracy

  • Kein Zugang 5.04.4074 - Computational Fluid Dynamics II Lehrende anzeigen
    • Dr. Bernhard Stoevesandt

    Dienstag: 12:00 - 16:00, wöchentlich (ab 01.06.2021)

    Deeper understanding of the fundamental equations of fluid dynamics. Overview of numerical methods for the solution of the fundamental equations of fluid dynamics. Confrontation with complex problems in fluiddynamics. To become acquainted with different, widely used CFD models that are used to study complex problems in fluid dynamics. Ability to apply these CFD models to certain defined problems and to critically evaluate the results of numerical models. Content: CFD II: RANS, URANS, LES, DNS, filtering / averaging of Navier- Stokes equations, Introduction to different CFD models, Application of these CFD models to defined problems from rotor aerodynamics and the atmospheric boundary layer. Lehrsprache: "This course will be held in English. If no international students should participate, the course language can also be switched to German."

  • Kein Zugang 5.04.4234 - Wind Physics Measurement Project Lehrende anzeigen
    • Prof. Dr. Martin Kühn
    • Dr. Detlev Heinemann
    • Matthias Wächter
    • Prof. Dr. Joachim Peinke
    • Dipl.-Ing. (TU) Andreas Hermann Schmidt

    Montag: 12:15 - 13:45, wöchentlich (ab 14.04.2021)

    Case study like problems based on real wind data will be solved on at least four important aspects in wind physics. The course will comprise lectures and assignments as well as self-contained work in groups of 3 persons. The content consist of the following four main topics, following the chronological order of the work process: Data handling: - measurements - measurement technology - handling of wind data - assessment of measurement artefacts in wind data - preparation of wind data for further processing Energy Meteorology: - geographical distribution of winds - wind regimes on different time and length scales - vertical wind profile - distribution of wind speed - differences between onshore and offshore conditions. Measure – Correlate – Predict (MCP): - averaging of wind data - bin-wise averaging of wind data - long term correlation and long term correction of wind data - sources of long term wind data. LIDAR (Light detection and ranging): - analyses and conversion of data from LIDAR measurements

  • Kein Zugang 5.04.4235 - Design of Wind Energy Systems Lehrende anzeigen
    • Prof. Dr. Martin Kühn

    Dienstag: 16:00 - 18:00, wöchentlich (ab 13.04.2021)
    Donnerstag: 12:00 - 14:00, wöchentlich (ab 15.04.2021)

    The students attending the course will have the possibility to expand and sharpen of their knowledge about wind turbine design from the basic courses. The lectures include topics covering the whole spectrum from early design phase to the operation of a wind turbine. Students will learn in exercises how to calculate and evaluate design aspects of wind energy converters. At the end of the lecture, they should be able to: + estimate the site specific energy yield, + calculate the aerodynamics of wind turbines using the blade element momentum theory, + model wind fields to obtain specific design situations for wind turbines, + estimate the influence of dynamics of a wind turbine, especially in the context of fatigue loads, + transfer their knowledge to more complex topics such as simulation and measurements of dynamic loads, + calculate the economic aspects of wind turbines. Introduction to industrial wind turbine design, + rotor aerodynamics and Blade Element Momentum (BEM) theory, + dynamic loading and system dynamics, + wind field modelling for fatigue and extreme event loading, + design loads and design aspects of onshore wind turbines, + simulation and measurements of dynamic loads, + design of offshore wind turbines, + power quality and grid integration on wind turbines.

  • Kein Zugang 5.04.4236 - Aeroelastic Simulation of Wind Turbines for EWEM Lehrende anzeigen
    • Prof. Dr. Martin Kühn

    Dienstag: 16:00 - 18:00, wöchentlich (ab 13.04.2021)

    A student who has met the objectives of the course will be able to: o understand the basic concept of an aero-servo-elastic computer code to determine the unsteady aerodynamic loads, o derive and validate the required parameters to model the aero-hydro-elastic response of a wind turbine, o identify and interpret the required empirical parameters to correct the blade element momentum (BEM) method with respect to dynamic inflow, unsteady airfoil aerodynamics (dynamic stall), yawed flow, dynamic wake modeling, o explain the effects of the different models on the resulting time series and validate the code, o interpret design standards for on- and offshore wind turbines, select the required load cases according to site-specific environmental data, o identify the dimensioning load cases and calculate design loads for different main components of a wind turbine. Contents: The course focuses on the practical implications and hands-on experience of the aero-hydro-servo-elastic modelling and simulation of wind turbines. The subjects are similar but the treatment is complementary to the parallel course ‘Design of Wind Energy Systems’, which deals with the underlying theo-retical background: o advanced wind field modelling for fatigue and extreme event loading, o modelling of wind farm flow and wake effects, o rotor aerodynamics (e.g. stationary or dynamic effects, comparison of Blade Element Momentum theory and more advanced methods like free vortex methods or CFD), o structural dynamics and dynamic modelling of wind tur-bine structures (modelling by ordinary or partial differential equations, stochastics, multi body system modelling), o advanced control of wind turbines, o design standards, design loads and design aspects of offshore and onshore wind turbines. The students analyse in pairs a model of an entire wind turbine with the aid of a typical wind turbine design tool like GH Bladed, Flex5 or Aerodyn/FAST.

  • Kein Zugang 5.06.M207 - Photovoltaic Systems Lehrende anzeigen
    • Hans-Gerhard Holtorf, PhD
    • Dr. Martin Knipper

    Donnerstag: 12:15 - 15:45, wöchentlich (ab 29.04.2021), Please check regularly the updates

  • Kein Zugang 5.06.M209 - Photovoltaic Systems Lehrende anzeigen
    • Hans-Gerhard Holtorf, PhD
    • Dr. Martin Knipper

    Donnerstag: 12:15 - 15:45, wöchentlich (ab 03.06.2021), The seminar part related to Photovoltaic Systems

  • Kein Zugang 5.06.M211 - Solar Energy Meteorology Applications Lehrende anzeigen
    • Elke Lorenz

    Mittwoch: 16:15 - 17:45, wöchentlich (ab 21.04.2021)

    Lecturer from Fraunhofer Institute for Solar Energy Systems (ISE) The lecture addresses applications of solar energy meteorology. As a basis, most important physical laws for solar energy meteorology as well as models for solar resource assessment and forecasting are introduced. A special emphasis will be on evaluation concepts and applications. The students will learn about: • requirements for solar resource data from different applications • models and measurement devices for solar resource assessment and forecasting • benefits and drawbacks of different models • methods to assess the quality of solar resource data The lectures are combined with short exercises. In the last - seminar type - part of the course the students are asked to get a better understanding of lessons learnt by studying and presenting publications related to solar energy meteorology.

  • Kein Zugang 5.06.M213 - Wind Energy Applications - from Wind Resource to Wind Farm Applications Lehrende anzeigen
    • Dr. Hans-Peter Waldl

    Freitag: 08:15 - 09:45, wöchentlich (ab 16.04.2021)

    The students acquire an advanced knowledge in the field of wind energy applications. Special emphasis is on connecting physical and technical skills with the know-how in the fields of logistics, management, environment, finances, and economy. Practice-oriented examples enable the students to assess and classify real wind energy projects. Special situations such as offshore wind farms and wind farms in non-European foreign countries are included to give the students an insight into the crucial aspects of wind energy also relating to non-trivial realizations as well as to operating wind farm projects. Contents: Assessment of the resource wind energy: Weibull distribution, measurement of wind speeds to determine the energy yield, fundamentals of the WAsP method, partial models of WAsP, MCP method for long-term correction of measured wind data in correlation with long-term reference data, conditions for stable, neutral and instable atmospheric conditions, wind yield assessments from wind distribution and power curve, fundamentals of determining the annual wind yield potentials of individual single-turbine units. Tracking effects and wind farms: Recovery of the original wind field in tracking flow of wind turbines, fundamentals of the Risø model, distance spacing and efficiency calculation of wind turbines in wind farms, fundamentals of offshore wind turbines, positive and negative effects of wind farms. Operating wind farms: Influences on the energy yield of the power efficiency of wind farms, three-column model of sustainability: “magic triangle”, profit optimization for increased energy production

Seminar und Übung
  • Kein Zugang 2.01.511 - Smart Grid Management Lehrende anzeigen
    • Jörg Bremer
    • Prof. Dr. Sebastian Lehnhoff

    Dienstag: 18:00 - 20:00, wöchentlich (ab 27.04.2021)
    Donnerstag: 16:00 - 18:00, wöchentlich (ab 22.04.2021)
    Termine am Freitag, 23.07.2021 09:00 - 12:00, Dienstag, 27.07.2021 13:00 - 16:00, Donnerstag, 29.07.2021 11:00 - 14:00, Montag, 02.08.2 ...(mehr)

    Beachten Sie bitte die Informationen der Veranstaltung im Stud.IP

  • Kein Zugang 2.12.042 - Ecological Economics Lehrende anzeigen
    • Prof. Dr. Bernd Siebenhüner
    • Dr. Stefanie Sievers-Glotzbach

    Termine am Freitag, 16.04.2021 10:00 - 14:00, Freitag, 23.04.2021, Freitag, 30.04.2021 10:00 - 12:00, Freitag, 28.05.2021, Freitag, 02.07.2021 10:00 - 14:00
    Ecological Economics is concerned with integrating the study and management of "nature's household" (ecology) and "humankind's household" (economics). This integration is central to many of humanity’s current problems and to governing economic activity in a way that promotes human well-being, sustainability, and justice. The aim of the module “Ecological Economics” is to introduce students to core concepts and policy implications from the field of Ecological Economics. The module is structured into three parts. First, students will be introduced to the topic by two lectures on the specific vision and paradigms of Ecological Economics as distinguished from environmental & resource economics and on the history of Ecological Economics. Second, the students work out and discuss the core analytical concepts (ecological footprint, ecosystem services, social-ecological resilience, substitutability of natural capital, time) as well as the core normative concepts (justice, human behaviour) in Ecological Economics. Third, the students will discuss and reflect certain policy implications following from Ecological Economics – specifically the economics of degrowth and the measurement of welfare. The basis for discussion will be classical and current scientific papers.

  • Kein Zugang 2.12.133 - International Environmental Governance Lehrende anzeigen
    • Prof. Dr. Bernd Siebenhüner

    Montag: 12:15 - 13:45, wöchentlich (ab 12.04.2021)

  • Kein Zugang 5.04.4063 - Introduction to Photovoltaics Lehrende anzeigen
    • Dr. Levent Gütay
    • Ashwin Hariharan

    Dienstag: 08:00 - 12:00, wöchentlich (ab 13.04.2021), V+Ü
    Termine am Freitag, 13.08.2021, Freitag, 20.08.2021 09:15 - 11:15, Montag, 23.08.2021 10:30 - 12:30, Freitag, 27.08.2021 09:15 - 11:15, ...(mehr)

    Auf Basis thermodynamischer und halbleiter/ festkörperphysikalischer Grundlagen sollen die Studierenden ein fundiertes Verständnis der photovoltaischen Energiewandlung sowie der elementaren Verlustprozesse in photovoltaischen Bauelementen erlangen und dabei ihre bisher erlangten Studienkenntnisse in den o.g. Disziplinen sicher anwenden. Aus diesem Wissen sollen die Studierenden wesentliche Randbedingungen zur Konzeption einer Solarzelle mit hohem Wirkungsgrad ableiten und qualitativ das Betriebsverhalten (Beleuchtungs- und Temperatureffekte) unter realen Bedingungen voraussagen können. Die Teilnehmer sollten darüber hinaus in der Lage sein, Anforderungen an die verwendeten Halbleitermaterialien (z.B. Dotierung, Tiefengradierung bestimmter Materialeigenschaften) und die internen Grenzflächen der Solarzelle physikalisch zu begründen. Neben grundlagenorientierten und materialwissenschaftlichen Kenntnissen zur Photovoltaik erwerben die Studierenden technisch geprägte Inhalte zum Funktionsprinzip und zur Konzeption von Photovoltaikmodulen sowie zur Systemtechnik photovoltaischer Anlagen. Inhalte: Festkörper- / halbleiterphysikalische Grundlagen, das solare Spektrum, Leistungsdichte, Absorption und Emission von Licht in Halbleitern, Generation und Rekombination, Gleichgewicht und Nichtgleichgewicht, Ladungstransport, Quasi-Fermi-Niveaus, Elektrostatik des pn-Übergangs, Majoritäten- und Minoritätenströme im pn-Übergang im Gleichgewicht und unter Beleuchtung, Sammeleffizienz, geometrische Auslegung des pn-Übergangs, Strom-Spannungs-Charakteristik, Halbleiter-Heterokontakte, pin-Strukturen, Strategien zur Optimierung der Solarzelleneffizienz, Technologieüberblick in der Photovoltaik

  • Kein Zugang 5.04.4065 - Advanced Wind Energy Meteorology Lehrende anzeigen
    • Dr. Detlev Heinemann

    Mittwoch: 12:00 - 14:00, wöchentlich (ab 14.04.2021)

  • Kein Zugang 5.04.4072 Ü1 - Exercises to Computational Fluid Dynamics I Lehrende anzeigen
    • Gabriele Centurelli
    • Prof. Dr. Laura Lukassen
    • Arslan Adeel-Ur-Rehman

    Donnerstag: 16:00 - 18:00, wöchentlich (ab 22.04.2021)

  • Kein Zugang 5.04.4074 Ü1 - Exercises to Computational Fluid Dynamics II Lehrende anzeigen
    • Gabriele Centurelli
    • Dr. Bernhard Stoevesandt

    Donnerstag: 16:00 - 18:00, wöchentlich (ab 03.06.2021)

  • Kein Zugang 5.04.4234 - Wind Physics Measurement Project Lehrende anzeigen
    • Prof. Dr. Martin Kühn
    • Dr. Detlev Heinemann
    • Matthias Wächter
    • Prof. Dr. Joachim Peinke
    • Dipl.-Ing. (TU) Andreas Hermann Schmidt

    Montag: 12:15 - 13:45, wöchentlich (ab 14.04.2021)

    Case study like problems based on real wind data will be solved on at least four important aspects in wind physics. The course will comprise lectures and assignments as well as self-contained work in groups of 3 persons. The content consist of the following four main topics, following the chronological order of the work process: Data handling: - measurements - measurement technology - handling of wind data - assessment of measurement artefacts in wind data - preparation of wind data for further processing Energy Meteorology: - geographical distribution of winds - wind regimes on different time and length scales - vertical wind profile - distribution of wind speed - differences between onshore and offshore conditions. Measure – Correlate – Predict (MCP): - averaging of wind data - bin-wise averaging of wind data - long term correlation and long term correction of wind data - sources of long term wind data. LIDAR (Light detection and ranging): - analyses and conversion of data from LIDAR measurements

Hinweise zum Modul
Prüfungsleistung Modul
2 Prüfungsleistungen: Das Modul ist unbenotet, jedoch müssen 2 der möglichen Kurse mindestens als ‚bestanden‘ gewertet werden um das Modul zu bestehen. Mögliche Prüfungsformen sind: Klausur (1 h), mündliche Prüfung (20 min), Referat (10 Seiten Ausarbeitung + 10 Minuten Präsentation), Hausarbeit (max. 20 Seiten), fachpraktische Übung (max. 8), Seminararbeit (max. 20 Seiten), Portfolio, Präsentation (15 min.) In Seminaren wird Aktive Teilnahme (siehe Ergänzung zu „§ 9 Abs. (6) ) gefordert..
Kompetenzziele

After completing the module students will be able to:

-        describe basic knowledge in two of a wide field of disciplines (technical, scientific, social, political, transferrable, language) as required for the implementation of renewable energy

-        critically discuss basic principles of the implementation of renewable energy
-        justify their personal decision on educational fields for their career development