pre061 - Renewable Energy Complementary Topics (Veranstaltungsübersicht)

pre061 - Renewable Energy Complementary Topics (Veranstaltungsübersicht)

Institut für Physik 6 KP
Modulteile Semesterveranstaltungen Sommersemester 2018 Prüfungsleistung
Vorlesung
  • Kein Zugang 5.04.4063 - Introduction to Photovoltaics Lehrende anzeigen
    • Dr. Levent Gütay

    Mittwoch: 08:00 - 12:00, wöchentlich (ab 04.04.2018), V+Ü

    Auf Basis thermodynamischer und halbleiter/ festkörperphysikalischer Grundlagen sollen die Studierenden ein fundiertes Verständnis der photovoltaischen Energiewandlung sowie der elementaren Verlustprozesse in photovoltaischen Bauelementen erlangen und dabei ihre bisher erlangten Studienkenntnisse in den o.g. Disziplinen sicher anwenden. Aus diesem Wissen sollen die Studierenden wesentliche Randbedingungen zur Konzeption einer Solarzelle mit hohem Wirkungsgrad ableiten und qualitativ das Betriebsverhalten (Beleuchtungs- und Temperatureffekte) unter realen Bedingungen voraussagen können. Die Teilnehmer sollten darüber hinaus in der Lage sein, Anforderungen an die verwendeten Halbleitermaterialien (z.B. Dotierung, Tiefengradierung bestimmter Materialeigenschaften) und die internen Grenzflächen der Solarzelle physikalisch zu begründen. Neben grundlagenorientierten und materialwissenschaftlichen Kenntnissen zur Photovoltaik erwerben die Studierenden technisch geprägte Inhalte zum Funktionsprinzip und zur Konzeption von Photovoltaikmodulen sowie zur Systemtechnik photovoltaischer Anlagen. Inhalte: Festkörper- / halbleiterphysikalische Grundlagen, das solare Spektrum, Leistungsdichte, Absorption und Emission von Licht in Halbleitern, Generation und Rekombination, Gleichgewicht und Nichtgleichgewicht, Ladungstransport, Quasi-Fermi-Niveaus, Elektrostatik des pn-Übergangs, Majoritäten- und Minoritätenströme im pn-Übergang im Gleichgewicht und unter Beleuchtung, Sammeleffizienz, geometrische Auslegung des pn-Übergangs, Strom-Spannungs-Charakteristik, Halbleiter-Heterokontakte, pin-Strukturen, Strategien zur Optimierung der Solarzelleneffizienz, Technologieüberblick in der Photovoltaik

  • Kein Zugang 5.04.4064 - Advanced Solar Energy Meteorology Lehrende anzeigen
    • Dr. Detlev Heinemann

    Dienstag: 14:00 - 16:00, wöchentlich (ab 03.04.2018)

  • Kein Zugang 5.04.4071 - Fluid Dynamics II / Fluiddynamik II Lehrende anzeigen
    • Prof. Dr. Joachim Peinke

    Mittwoch: 12:00 - 14:00, wöchentlich (ab 04.04.2018)

    Das zentrale Thema dieser Vorlesung sind turbulente Strömungen. Es werden Aspekte der numerischen Modellierung als auch der statistischen Charakterisierung behandelt (Reynolds-Gleichung, Schließungsproblem und Schließungsansätze, Turbulenzmodelle: Kaskadenmodelle - Stochastische Modelle) Lehrsprache: "This course will be held in English. If no international students should participate, the course language can also be switched to German."

  • Kein Zugang 5.04.4072 - Computational Fluid Dynamics I Lehrende anzeigen
    • Prof. Dr. Laura Lukassen

    Dienstag: 12:00 - 16:00, wöchentlich (ab 03.04.2018)

    Deeper understanding of the fundamental equations of fluid dynamics. Overview of numerical methods for the solution of the fundamental equations of fluid dynamics. Confrontation with complex problems in fluiddynamics. To become acquainted with different, widely used CFD models that are used to study complex problems in fluid dynamics. Ability to apply these CFD models to certain defined problems and to critically evaluate the results of numerical models. Content: CFD I: The Navier-Stokes equations, filtering / averaging of Navier- Stokes equations, introduction to numerical methods, finite- differences, finite-volume methods, linear equation systems, NS-solvers, RANS, URANS, LES, DNS, turbulent flows, incompressible flows, compressible flows, efficiency and accuracy.

  • Kein Zugang 5.04.4074 - Computational Fluid Dynamics II Lehrende anzeigen
    • Dr. Bernhard Stoevesandt

    Dienstag: 12:00 - 16:00, wöchentlich (ab 22.05.2018), Ort: W33 0-003, W32 1-101

    Deeper understanding of the fundamental equations of fluid dynamics. Overview of numerical methods for the solution of the fundamental equations of fluid dynamics. Confrontation with complex problems in fluiddynamics. To become acquainted with different, widely used CFD models that are used to study complex problems in fluid dynamics. Ability to apply these CFD models to certain defined problems and to critically evaluate the results of numerical models. Content: CFD II: Introduction to different CFD models, such as OpenFOAM and PALM. Application of these CFD models to defined problems from rotor aerodynamics and the atmospheric boundary layer. Lehrsprache: "This course will be held in English. If no international students should participate, the course language can also be switched to German."

  • Kein Zugang 5.04.4234 - Wind Physics Measurement Project Lehrende anzeigen
    • Prof. Dr. Martin Kühn
    • Dr. Detlev Heinemann
    • Matthias Wächter
    • Prof. Dr. Joachim Peinke

    Montag: 12:00 - 14:00, wöchentlich (ab 09.04.2018)

    Case study like problems based on real wind data will be solved on at least four important aspects in wind physics. The course will comprise lectures and assignments as well as self-contained work in groups of 3 persons. The content consist of the following four main topics, following the chronological order of the work process: Data handling: - measurements - measurement technology - handling of wind data - assessment of measurement artefacts in wind data - preparation of wind data for further processing Energy Meteorology: - geographical distribution of winds - wind regimes on different time and length scales - vertical wind profile - distribution of wind speed - differences between onshore and offshore conditions. Measure – Correlate – Predict (MCP): - averaging of wind data - bin-wise averaging of wind data - long term correlation and long term correction of wind data - sources of long term wind data. LIDAR (Light detection and ranging): - analyses and conversion of data from LIDAR measurements

  • Kein Zugang 5.06.205 - Wind Energy Applications - from Wind Resource to Wind Farm Applications Lehrende anzeigen
    • Dr. Hans-Peter Waldl

    Mittwoch: 08:00 - 10:00, wöchentlich (ab 04.04.2018), Ort: W03 2-240
    Termine am Freitag, 06.07.2018 14:00 - 18:00, Ort: W33 0-003

    The students acquire an advanced knowledge in the field of wind energy applications. Special emphasis is on connecting physical and technical skills with the know-how in the fields of logistics, management, environment, finances, and economy. Practice-oriented examples enable the students to assess and classify real wind energy projects. Special situations such as offshore wind farms and wind farms in non-European foreign countries are included to give the students an insight into the crucial aspects of wind energy also relating to non-trivial realizations as well as to operating wind farm projects. Contents: Assessment of the resource wind energy: Weibull distribution, measurement of wind speeds to determine the energy yield, fundamentals of the WAsP method, partial models of WAsP, MCP method for long-term correction of measured wind data in correlation with long-term reference data, conditions for stable, neutral and instable atmospheric conditions, wind yield assessments from wind distribution and power curve, fundamentals of determining the annual wind yield potentials of individual single-turbine units. Tracking effects and wind farms: Recovery of the original wind field in tracking flow of wind turbines, fundamentals of the Risø model, distance spacing and efficiency calculation of wind turbines in wind farms, fundamentals of offshore wind turbines, positive and negative effects of wind farms. Operating wind farms: Influences on the energy yield of the power efficiency of wind farms, three-column model of sustainability: “magic triangle”, profit optimization for increased energy production

  • Kein Zugang 5.06.302 - Photovoltaic Systems Lehrende anzeigen
    • Hans-Gerhard Holtorf, PhD
    • Robin Knecht
    • Prof. Dr. Jürgen Parisi

    Donnerstag: 14:00 - 16:00, wöchentlich (ab 05.04.2018)
    Termine am Samstag, 23.06.2018 10:00 - 13:30

  • Kein Zugang 5.06.306 - Future Power Supply (Lecture) Lehrende anzeigen
    • Prof. Dr. Carsten Agert
    • Babak Ravanbach

    Montag: 14:00 - 16:00, wöchentlich (ab 09.04.2018)

  • Kein Zugang 5.06.605 - Social sciences methods and project financing Lehrende anzeigen
    • Michael Golba

    Mittwoch: 12:00 - 14:00, wöchentlich (ab 11.04.2018)

Seminar und Übung
  • Kein Zugang 13.01.010 - Deutschkurs 5 (Stufe B1.1) Lehrende anzeigen
    • Dr. Monika Hryniewicka

    Mittwoch: 16:00 - 20:00, wöchentlich (ab 04.04.2018), Ort: V02 0-003
    Freitag: 14:00 - 16:00, wöchentlich (ab 06.04.2018), Ort: A06 0-004
    Termine am Freitag, 06.07.2018 16:00 - 18:00, Ort: A06 0-004

  • Kein Zugang 13.01.011 - Deutschkurs 6 A (Stufe B1.2) Lehrende anzeigen
    • Matthias Jürgens
    • Ina Knieselies

    Mittwoch: 16:00 - 20:00, wöchentlich (ab 04.04.2018), Ort: A01 0-005
    Freitag: 14:00 - 16:00, wöchentlich (ab 06.04.2018), Ort: A06 0-009, A14 1-114
    Termine am Freitag, 18.05.2018, Freitag, 01.06.2018 14:00 - 17:00, Ort: A06 0-009

  • Kein Zugang 13.01.012 - Deutschkurs 6 B (Stufe B1.2) Lehrende anzeigen
    • Inessa Vogel

    Mittwoch: 16:00 - 20:00, wöchentlich (ab 04.04.2018)
    Freitag: 14:00 - 16:00, wöchentlich (ab 06.04.2018)

  • Kein Zugang 13.01.014 - Deutschkurs 7 (Stufe B2.1) Lehrende anzeigen
    • Dr. Maria Egbert

    Mittwoch: 16:00 - 20:00, wöchentlich (ab 04.04.2018)
    Freitag: 14:00 - 16:00, wöchentlich (ab 06.04.2018)

  • Kein Zugang 13.01.015 - Deutschkurs 8 (Stufe B2.2) Lehrende anzeigen
    • Burçin Amet, (sie/ihr)

    Mittwoch: 16:00 - 20:00, wöchentlich (ab 04.04.2018)
    Freitag: 14:00 - 16:00, wöchentlich (ab 06.04.2018)

  • Kein Zugang 2.12.042 - Ecological Economics Lehrende anzeigen
    • Prof. Dr. Bernd Siebenhüner
    • Dr. Stefanie Sievers-Glotzbach

    Freitag: 10:00 - 12:00, wöchentlich (ab 06.04.2018), Ort: A05 1-159
    Termine am Freitag, 29.06.2018 08:00 - 10:00, Ort: A05 0-055

    Ecological Economics is concerned with integrating the study and management of "nature's household" (ecology) and "humankind's household" (economics). This integration is central to many of humanity’s current problems and to governing economic activity in a way that promotes human well-being, sustainability, and justice. The aim of the module “Ecological Economics” is to introduce students to core concepts and policy implications from the field of Ecological Economics. The module is structured into three parts. First, students will be introduced to the topic by two lectures on the specific vision and paradigms of Ecological Economics as distinguished from environmental & resource economics and on the history of Ecological Economics. Second, the students work out and discuss the core analytical concepts (ecological footprint, ecosystem services, social-ecological resilience, substitutability of natural capital, time) as well as the core normative concepts (justice, human behaviour) in Ecological Economics. Third, the students will discuss and reflect certain policy implications following from Ecological Economics – specifically the economics of degrowth and the measurement of welfare. The basis for discussion will be classical and current scientific papers.

  • Kein Zugang 2.12.133 - International Environmental Governance Lehrende anzeigen
    • Prof. Dr. Bernd Siebenhüner

    Montag: 12:00 - 14:00, wöchentlich (ab 09.04.2018)

  • Kein Zugang 5.04.4063 - Introduction to Photovoltaics Lehrende anzeigen
    • Dr. Levent Gütay

    Mittwoch: 08:00 - 12:00, wöchentlich (ab 04.04.2018), V+Ü

    Auf Basis thermodynamischer und halbleiter/ festkörperphysikalischer Grundlagen sollen die Studierenden ein fundiertes Verständnis der photovoltaischen Energiewandlung sowie der elementaren Verlustprozesse in photovoltaischen Bauelementen erlangen und dabei ihre bisher erlangten Studienkenntnisse in den o.g. Disziplinen sicher anwenden. Aus diesem Wissen sollen die Studierenden wesentliche Randbedingungen zur Konzeption einer Solarzelle mit hohem Wirkungsgrad ableiten und qualitativ das Betriebsverhalten (Beleuchtungs- und Temperatureffekte) unter realen Bedingungen voraussagen können. Die Teilnehmer sollten darüber hinaus in der Lage sein, Anforderungen an die verwendeten Halbleitermaterialien (z.B. Dotierung, Tiefengradierung bestimmter Materialeigenschaften) und die internen Grenzflächen der Solarzelle physikalisch zu begründen. Neben grundlagenorientierten und materialwissenschaftlichen Kenntnissen zur Photovoltaik erwerben die Studierenden technisch geprägte Inhalte zum Funktionsprinzip und zur Konzeption von Photovoltaikmodulen sowie zur Systemtechnik photovoltaischer Anlagen. Inhalte: Festkörper- / halbleiterphysikalische Grundlagen, das solare Spektrum, Leistungsdichte, Absorption und Emission von Licht in Halbleitern, Generation und Rekombination, Gleichgewicht und Nichtgleichgewicht, Ladungstransport, Quasi-Fermi-Niveaus, Elektrostatik des pn-Übergangs, Majoritäten- und Minoritätenströme im pn-Übergang im Gleichgewicht und unter Beleuchtung, Sammeleffizienz, geometrische Auslegung des pn-Übergangs, Strom-Spannungs-Charakteristik, Halbleiter-Heterokontakte, pin-Strukturen, Strategien zur Optimierung der Solarzelleneffizienz, Technologieüberblick in der Photovoltaik

  • Kein Zugang 5.04.4064 - Advanced Solar Energy Meteorology Lehrende anzeigen
    • Dr. Detlev Heinemann

    Dienstag: 14:00 - 16:00, wöchentlich (ab 03.04.2018)

  • Kein Zugang 5.04.4065 - Advanced Wind Energy Meteorology Lehrende anzeigen
    • Dr. Detlev Heinemann

    Mittwoch: 10:00 - 12:00, wöchentlich (ab 04.04.2018)

  • Kein Zugang 5.04.4071Ü - Übung zu Fluid Dynamik II / Fluiddynamik II Lehrende anzeigen
    • Prof. Dr. Joachim Peinke

    Mittwoch: 08:00 - 10:00, wöchentlich (ab 11.04.2018)

  • Kein Zugang 5.04.4073Ü - Übungen zu Computational Fluid Dynamics I Lehrende anzeigen
    • Wilke Trei

    Donnerstag: 14:00 - 16:00, wöchentlich (ab 05.04.2018)

  • Kein Zugang 5.04.4074 - Computational Fluid Dynamics II Lehrende anzeigen
    • Dr. Bernhard Stoevesandt

    Dienstag: 12:00 - 16:00, wöchentlich (ab 22.05.2018), Ort: W33 0-003, W32 1-101

    Deeper understanding of the fundamental equations of fluid dynamics. Overview of numerical methods for the solution of the fundamental equations of fluid dynamics. Confrontation with complex problems in fluiddynamics. To become acquainted with different, widely used CFD models that are used to study complex problems in fluid dynamics. Ability to apply these CFD models to certain defined problems and to critically evaluate the results of numerical models. Content: CFD II: Introduction to different CFD models, such as OpenFOAM and PALM. Application of these CFD models to defined problems from rotor aerodynamics and the atmospheric boundary layer. Lehrsprache: "This course will be held in English. If no international students should participate, the course language can also be switched to German."

  • Kein Zugang 5.04.4234 - Wind Physics Measurement Project Lehrende anzeigen
    • Prof. Dr. Martin Kühn
    • Dr. Detlev Heinemann
    • Matthias Wächter
    • Prof. Dr. Joachim Peinke

    Montag: 12:00 - 14:00, wöchentlich (ab 09.04.2018)

    Case study like problems based on real wind data will be solved on at least four important aspects in wind physics. The course will comprise lectures and assignments as well as self-contained work in groups of 3 persons. The content consist of the following four main topics, following the chronological order of the work process: Data handling: - measurements - measurement technology - handling of wind data - assessment of measurement artefacts in wind data - preparation of wind data for further processing Energy Meteorology: - geographical distribution of winds - wind regimes on different time and length scales - vertical wind profile - distribution of wind speed - differences between onshore and offshore conditions. Measure – Correlate – Predict (MCP): - averaging of wind data - bin-wise averaging of wind data - long term correlation and long term correction of wind data - sources of long term wind data. LIDAR (Light detection and ranging): - analyses and conversion of data from LIDAR measurements

  • Kein Zugang 5.06.302 - Photovoltaic Systems Lehrende anzeigen
    • Hans-Gerhard Holtorf, PhD
    • Robin Knecht
    • Prof. Dr. Jürgen Parisi

    Donnerstag: 14:00 - 16:00, wöchentlich (ab 05.04.2018)
    Termine am Samstag, 23.06.2018 10:00 - 13:30

  • Kein Zugang 5.06.306b - Future Power Supply (Seminar) Lehrende anzeigen
    • Prof. Dr. Carsten Agert

    Dienstag: 16:00 - 18:00, wöchentlich (ab 03.04.2018)

  • Kein Zugang 5.06.605 - Social sciences methods and project financing Lehrende anzeigen
    • Michael Golba

    Mittwoch: 12:00 - 14:00, wöchentlich (ab 11.04.2018)

Hinweise zum Modul
Prüfungsleistung Modul
2 Prüfungsleistungen: Das Modul ist unbenotet, jedoch müssen 2 der möglichen Kurse mindestens als ‚bestanden‘ gewertet werden um das Modul zu bestehen. Mögliche Prüfungsformen sind: Klausur (1 h), mündliche Prüfung (20 min), Referat (10 Seiten Ausarbeitung + 10 Minuten Präsentation), Hausarbeit (max. 20 Seiten), fachpraktische Übung (max. 8), Seminararbeit (max. 20 Seiten), Portfolio, Präsentation (15 min.) In Seminaren wird Aktive Teilnahme (siehe Ergänzung zu „§ 9 Abs. (6) ) gefordert..
Kompetenzziele

After completing the module students will be able to:

-        describe basic knowledge in two of a wide field of disciplines (technical, scientific, social, political, transferrable, language) as required for the implementation of renewable energy

-        critically discuss basic principles of the implementation of renewable energy
-        justify their personal decision on educational fields for their career development