phy355 - Physikalische Wahlstudien (Veranstaltungsübersicht)

phy355 - Physikalische Wahlstudien (Veranstaltungsübersicht)

Institut für Physik 15 KP
Modulteile Semesterveranstaltungen Wintersemester 2018/2019 Prüfungsleistung
Vorlesung
  • Kein Zugang 5.04.4051 - Laserphysik Lehrende anzeigen
    • Prof. Dr. Martin Silies
    • Prof. Dr. Christoph Lienau

    Montag: 10:00 - 12:00, wöchentlich (ab 15.10.2018)
    Termine am Montag, 11.02.2019 10:00 - 12:00

    Die Studierenden erwerben Kenntnisse auf dem Gebiet der Lasertechnik sowie der nichtlinearen Optik. Nach Erlernung der Grundlagen des Laserprozesses werden verschiedene Lasertypen und Resonatoren vorgestellt. Die Studierenden bekommen Einblicke in aktuelle Forschungsthemen der Licht-Materie-Wechselwirkung und der nichtlinearen Optik. Sie erwerben dabei Kompetenzen sowohl in der theoretischen Beschreibung und Simulation von Laserprozessen als auch im praktischen Umgang mit Lasern. Inhalte: Eigenschaften von Licht, Resonatoren, Wellenleiter, Wech-selwirkung Licht / Materie – klassisch / quantenmechanisch, Lasertheorie, Ratengleichungen, Laser-Typen, Nichtlineare Optik, Erzeugung ultrakurzer Lichtimpulse, Anwendungen von Lasern

  • Kein Zugang 5.04.4052 - Kohärente Optik Lehrende anzeigen
    • Dr. Gerd Gülker, Dipl.-Phys.

    Mittwoch: 10:00 - 12:00, wöchentlich (ab 17.10.2018), Ort: W33 0-003, W33 0-001 (alpha)
    Termine am Mittwoch, 06.02.2019 10:00 - 12:00, Ort: W33 0-003

    Den Studierenden werden vertiefte Kenntnisse im Bereich der Optik mit dem Schwerpunkt der kohärenten Optik vermittelt. Sie werden mit aktuellen Forschungsergebnissen auf diesem Gebiet vertraut gemacht und erwerben dabei Fertigkeiten zum selbständigen Umgang mit entsprechender Fachliteratur. Sie erlangen Kompetenzen zur wissenschaftlichen Analyse komplexer physikalischer Sachverhalte sowie zur selbständigen Einordnung neuer Forschungsergebnisse einschließlich ihrer gesellschaftspolitischen Bedeutung. Inhalte: Wellenoptik, Wellenausbreitung, räumliche und zeitliche Kohärenz, Interferenz und Interferometrie, Beugung, Fourieroptik, optische Korrelation, astronomische Anwendungen, Speckle und Speckle-Messtechnik, Holografie, holografische Interferometrie, holografische Filterung, holografisch optische Elemente, digitale Holografie.

  • Kein Zugang 5.04.4070 - Fluid Dynamics I / Fluiddynamik I Lehrende anzeigen
    • Prof. Dr. Laura Lukassen

    Dienstag: 12:00 - 14:00, wöchentlich (ab 16.10.2018), 00, Ort: W33 0-003, W04 1-171, W03 2-240

    Fluiddynamik I: Grundgleichungen: Navier-Stokes-Gleichung, Kontinuitätsgleichung, Bernoulli-Gleichung; Wirbel- und Energiegleichungen; Laminare Flüsse und Stabilitätsanalyse; exakte Lösungen, Anwendungen Lehrsprache: "This course will be held in English. If no international students should participate, the course language can also be switched to German."

  • Kein Zugang 5.04.4207 - Processing and analysis of biomedical data Lehrende anzeigen
    • Thomas Brand
    • Dr. Stefan Uppenkamp, Dipl.-Phys.
    • Prof. Dr. Volker Hohmann, Dipl.-Phys.
    • Dr. Stephan Ewert, Dipl.-Phys.

    Montag: 08:00 - 10:00, wöchentlich (ab 15.10.2018), Ort: W03 2-240
    Donnerstag: 08:00 - 10:00, wöchentlich (ab 18.10.2018), Ort: W01 0-008 (Rechnerraum)
    Termine am Dienstag, 12.02.2019 14:00 - 16:00, Ort: W02 1-148

    This course introduces basic concepts of statistics and signal processing and applies them to real-world examples of bio-medical data. In the second part of the course, recorded datasets are noise-reduced, analyzed, and discussed in views of which statistical tests and analysis methods are appropriate for the underlying data. The course forms a bridge between theory and application and offers the students the means and tools to set up and analyze their future datasets in a meaningful manner. content: Normal distributions and significance testing, Monte-Carlo bootstrap techniques, Linear regression, Correlation, Signal-to-noise estimation, Principal component analysis, Confi-dence intervals, Dipole source analysis, Analysis of variance Each technique is explained, tested and discussed in the exercises.

  • Kein Zugang 5.04.4213 - Machine Learning I - Probabilistic Unsupervised Learning Lehrende anzeigen
    • Prof. Dr. Jörg Lücke

    Dienstag: 16:00 - 18:00, wöchentlich (ab 16.10.2018), Ort: W32 1-112
    Mittwoch: 10:00 - 12:00, wöchentlich (ab 17.10.2018), Ort: W04 1-171

    The field of Machine Learning develops and provides methods for the analysis of data and signals. Typical application domains are computer hearing, computer vision, general pattern recognition and large-scale data analysis (recently often termed "Big Data"). Furthermore, Machine Learning methods serve as models for information processing and learning in humans and animals, and are often considered as part of artificial intelligence approaches. This course gives an introduction to unsupervised learning methods, i.e., methods that extract knowledge from data without the requirement of explicit knowledge about individual data points. We will introduce a common probabilistic framework for learning and a methodology to derive learning algorithms for different types of tasks. Examples that are derived are algorithms for clustering, classification, component extraction, feature learning, blind source separation and dimensionality reduction. Relations to neural network models and learning in biological systems will be discussed were appropriate. The course requires some programming skills, preferably in Matlab or Python. Further requirements are typical mathematical / analytical skills that are taught as part of Bachelor degrees in Physics, Mathematics, Statistics, Computer and Engineering Sciences. Course assignments will include analytical tasks and programming task which can be worked out in small groups. The presented approach to unsupervised learning relies on Bayes' theorem and is therefore sometimes referred to as a Bayesian approach. It has many interesting relations to physics (e.g., statistical physics), statistics and mathematics (analysis, probability theory, stochastic) but the course's content will be developed independently of detailed prior knowledge in these fields. Weblink: www.uni-oldenburg.de/ml

  • Kein Zugang 5.04.4214 - Advanced Models and Algorithms in Machine Learning Lehrende anzeigen
    • Prof. Dr. Jörg Lücke

    Montag: 08:00 - 10:00, wöchentlich (ab 15.10.2018)

    The students will learn about recent developments and state-of-the-art approaches in Machine Learning, and their applications to different data domains. By presenting scientific studies in the context of currently used models and their applications, they will learn to understand and communicate recent scientific results. The presentations will use computers and projectors. Programming examples and animations will be used to support the interactive component of the presentations. In scientific discussions of the presented and related work, the students will obtain knowledge about current limitations of Machine Learning approaches both on the theoretical side and on the side of their technical and practical realizations. Presentations of interdisciplinary research will enable the students to carry over their Machine Learning knowledge to address questions in other scientific domains. Contents: In this seminar recent developments of models and algorithms in Machine Learning will be studied. Advances of established modelling approaches and new approaches will be presented and discussed along with the applications of different current algorithms to application domains including: auditory and visual signal enhancements, source separation, auditory and visual object learning and recognition, auditory scene analysis and inpainting. Furthermore, Machine Learning approaches as models for neural data processing will be discussed and related to current questions in Computational Neuroscience.

  • Kein Zugang 5.04.4221 - Grundkurs im Strahlenschutz mit Praktikum Lehrende anzeigen
    • Heiner von Boetticher
    • Prof. Dr. Björn Poppe

    Die Zeiten der Veranstaltung stehen nicht fest.
    Die Studierenden erlangen grundlegende Kenntnisse im Gebiet des Strahlenschutzes. Sie erwerben Fähigkeiten der Bewertung von zivilisatorischen und natürlichen Strahlenexpositionen und deren Vergleich mit Anwendungen in der Medizin. Sie erweitern ihre Kompetenzen im Bereich der Präsentationstechnik durch die Betreuung von kleinen Praktikumsversuchen zum Strahlenschutz. Inhalt: Strahlenphysik, Grundlagen der Dosimetrie, Strahlenschutzgrundsätze, Strahlenschutzverordnung, Natürliche und zivilisatorische Strahlenbelastung, Praktikum im Bereich der Strahlenschutzmesstechnik

  • Kein Zugang 5.04.4227 - Organische Halbleiter und organisch-anorganische Hybridsysteme Lehrende anzeigen
    • Priv.-Doz. Dr. Holger Borchert

    Mittwoch: 16:00 - 18:00, wöchentlich (ab 17.10.2018)

    Die Studierenden sollen im Rahmen dieser Veranstaltung einen Einblick in optoelektronische Bauteile auf Basis leitfähiger Polymere erhalten. Fachliche Kenntnisse sollen dabei bezüglich der physikalischen Grundlagen leitfähiger Polymere, deren Anwendungsmöglichkeiten in optoelektronischen Bauteilen und im Bereich relevanter Charakterisierungsmethoden erworben werden. Darüber hinaus fördert die Veranstaltung den Erwerb weiterer Kompetenzen, beispielsweise ein fächerübergreifendes Denken und die Fähigkeit, sich kritisch mit aktuellen Forschungsergebnissen auseinanderzusetzen. Inhalte: Einführung in Materialien mit konjugierten Pi-Systemen, Struktur und Herstellung von molekularen Kristallen und Dünnschichten, Gitterdynamik in molekularen Festkörpern, elektronische Anregungszustände, Frenkel-Exzitonen, Ladungstransport, organische Elektronik, Hybridsysteme aus konjugierten Polymeren und Halbleiter-Nanopartikeln

  • Kein Zugang 5.04.4525 - Phasenübergänge Lehrende anzeigen
    • Prof. Dr. Alexander Hartmann

    Montag: 10:00 - 12:00, wöchentlich (ab 15.10.2018)

    Phase transistions are ubiquitous in nature as well as in technical systems or social groups. Examples are the evaporation of water, the loss of magnetization upon heating a magnet, the destabilization of an electrical network comprising regenerative energy sources or the sudded spread of diseases. Within this seminar, fundamentals of phrase transitions are presented, methods to analyse them are explained and examples for phase transitions in nature and model systems are investigated. Key words: introdugiton to phase transitions, order parameters, critical exponents, universality, renormalization, finite-size scaling, computer simulations, precolation, negative-weight percolation, Ising model, spin glasses, random field system, optimization problems, networks, spread of diseases, dynamical phase transitions, glasses angestrebte Lernergebnisse: Bei der Lehrform „Seminar“ stehen die (unterstützte) selbständige Erarbeitung eines kleinen abgeschlossenen For- schungsgebiets sowie die Präsentation mittels Beamer-unter- stütztem Vortrag im Vordergrund. So werden Techniken erlernt (und geprüft), die der späteren Arbeits-/Forschungswelt wesentlich besser entsprechen als bei der Teilnahme an mündlichen oder schriftlichen Prüfungen, die im Arbeitsleben nicht existieren. Neben den inhaltlichen Fragen wird bei dem Seminar auch Wert gelegt auf gut entworfene Folien und verständliche und rhetorisch angemessene Präsentationen. Daher werden (nicht bewertete) Probevorträge angeboten, auf Wunsch (empfohlen!) auch mit Videoaufzeichnungen. Weiter: Kenntnisse im Bereich Phasenübergänge, Modelle der statistischen Physik, Computersimulationen Inhalte: Phasenübergänge sind allgegenwärtig in der Natur und sogar auch in technischen Systemen oder gesellschaftlichen Gruppen. Beispiele sind das Verdampfen von Wasser, der Verlust der Magnetisierung eines Magneten bei Erhitzung, Verlust der Stabilität eines elektrischen Netzwerks von regenerativen Energieerzeugern oder plötzliche Ausbreitung von Krankhei- ten. In diesem Seminar werden Grundlagen der Phasenübergänge dargestellt, Methoden zu Ihrer Analyse erklärt und Beispiele für Phasenübergänge in Natur und Modellsystemen untersucht. Themenstichpunkte: Einführung in Phasenübergänge, Ordnungsparameter, kritische Exponenten, Universalität, Renor- malisierung, finite-size scaling, Computersimulationen, Perkolation, negative-weight percolation, Ising Modell, Spingläser, Zufallsfeldsysteme, Optimierungsprobleme, Netzwerke, Krankheitsausbreitung, dynamische Phasenübergänge, Gläser.

  • Kein Zugang 5.04.4584 - Paradoxa der Speziellen Relativitätstheorie Lehrende anzeigen
    • Prof. Dr. Andreas Engel

    Montag: 12:00 - 14:00, wöchentlich (ab 15.10.2018)

  • Kein Zugang 5.04.4586 - Advanced Topics Speech and Audio Processing Lehrende anzeigen
    • Prof. Dr. Simon Doclo

    Montag: 14:00 - 16:00, wöchentlich (ab 15.10.2018), Ort: W03 1-154
    Freitag: 14:00 - 16:00, wöchentlich (ab 19.10.2018), Ort: W02 1-128
    Termine am Montag, 12.11.2018, Montag, 19.11.2018, Montag, 26.11.2018, Montag, 03.12.2018, Montag, 10.12.2018, Montag, 17.12.2018 14:00 - 16:00, Ort: W01 0-008 (Rechnerraum)

    The students will gain in-depth knowledge on the subjects’ speech and audio processing. The practical part of the course mediates insight about important properties of the methods treated in a self-study approach, while the application and transfer of theoretical concepts to practical applications is gained by implementing algorithms on a computer. content: After reviewing the basic principles of speech processing and statistical signal processing (adaptive filtering, estimation theory), this course covers techniques and underlying algorithms that are essential in many modern-day speech communication and audio processing systems (e.g. mobile phones, hearing aids, headphones): acoustic echo and feedback cancellation, noise reduction, dereverberation, microphone and loudspeaker array processing, active noise control. During the exercises a typical hands-free speech communication or audio processing system is implemented (in Matlab).

  • Kein Zugang 5.04.4642 - Hochenergie-Strahlenphysik Lehrende anzeigen
    • PD Dr. Hui Khee Looe
    • Prof. Dr. Björn Poppe

    Mittwoch: 12:00 - 14:00, wöchentlich (ab 17.10.2018)

    Grundlegendes Verständnis der physikalischen Grundlagen der Hochenergie-Strahlenphysik (im Energiebereich ab ca. 106 eV). Die Studierenden sollen die universellen Ansätze der physikalischen Beschreibung der Erzeugung, Beschleunigung, Wechselwirkung und Detektion hochenergetischer Strahlung disziplinübergreifend kennen lernen. Inhalte: Grundlagen der Hochenergie-Strahlenphysik, Strahlenarten in Umwelt, Kosmos und Medizin, Kosmische Strahlung, Grundlagen der Astroteilchenphysik, irdische und kosmische Beschleuniger, Wechselwirkung von Strahlung mit Materie, Detektionsmechanismen und Dosimetrie, Technische Realisierungen zur Beschleunigung und Detektion.

  • Kein Zugang 5.04.4651 - Fouriertechniken in der Physik Lehrende anzeigen
    • Prof. Dr. Matthias Wollenhaupt, Dipl.-Phys.

    Dienstag: 10:00 - 12:00, wöchentlich (ab 16.10.2018)

    The students know the definition of the Fourier-Transformation (FT) and learn about explicit examples. They know the properties and theorems of the FT, are able to apply these and describe physical processes both in time and frequency domain. They gain deep insights about physical processes analyzing the frequency domain and are able to utilize Fourier techniques solving physical problems, e.g. finding solutions of the time dependent Schrödinger equation. In addition, they learn about examples of the current english physical literature. Content: Motivation: Applications of the FT in physics. Examples for Fourier paires, properties of the FT: symmetries, important theorems, shifting, differentiation, convolution theorem, uncertainty relation. Examples concerning the convolution theorem: frequency comb, Hilbert transformation, autocorrelation function. Methods of the time/frequency analysis and Wigner distribution. FT in higher dimensions: tomography. Discrete FT, sampling theorem. Applications in quantum mechanics

  • Kein Zugang 5.04.4849 - Fortgeschrittenenpraktikum Physik / Teil Blockpraktikum Psychophysik, Neurosensorik und auditorische Signalverarbeitung Lehrende anzeigen
    • Prof. Dr. Steven van de Par
    • Dr. Stefan Uppenkamp, Dipl.-Phys.
    • Prof. Dr. Dr. Birger Kollmeier
    • Dr. Stephan Ewert, Dipl.-Phys.
    • Prof. Dr. Mathias Dietz

    Die Zeiten der Veranstaltung stehen nicht fest.
    Master Physik: Bitte Hinweise [hier]http://www.uni-oldenburg.de/physik/studium-lehre/physik-praktika/fortgeschrittenen-praktikum-fpr/fpr-master-phase-fpr-m/organisation-und-umfang/ beachten. Voraussetzung für die Teilnahme ist eine Anmeldung zu Beginn des dem Praktikum vorangehenden Semesters (Formular [hier]http://www.uni-oldenburg.de/physik/studium-lehre/physik-praktika/fortgeschrittenen-praktikum-fpr/fpr-master-phase-fpr-m/anmeldung-zum-fpr-m-im-sose/ ). Die Verteilung der Plätze findet am 1. Termin des Seminars zum FPR-M statt. Die erfolgreiche Teilnahme entspricht einem Versuch im Fortgeschrittenenpraktikum des Master-Studiengangs (drei Versuchstage). Der zusätzliche Aufwand in Höhe von 3 KP wird im Vertiefungsmodul I/II angerechnet. Master Engineering Physics: This course can be taken as a 3KP-course for the specialisation Biomedical Physics and Acoustics. This course is part of the Curriculum of the PhD programs "Auditory Science" and “Neurosensory Science and Systems".

  • Kein Zugang 5.04.6570 - Applied Photonics II - Fundamentals of Optics Lehrende anzeigen
    • Ulrich Teubner

    Freitag: 09:00 - 13:00, wöchentlich (ab 19.10.2018)

    First meeting 9-13, Emden, T141 The students acquire broad theoretical and experimental knowledge of optics together with the necessary physical background. In the laboratory they acquire practical skills during application of their knowledge from lecture. The module prepares the students to work in the field of optical science and engineering in general, and yields the base for all further specialisations within the field of optics and laser technology. Content: Fundamental and advanced concepts of optics. Topics include: reflection and refraction, optical properties of matter, polarisation, dielectric function and complex index of refraction, evanescent waves, dispersion and absorption of light, Seidel’s abberations, Sellmeier’s equations, optical systems, wave optics, Fourier analysis, wave packets, chirp, interference, interferometry, spatial and temporal coherence, diffraction (Huygens, Fraunhofer, Fresnel), focussing and optical resolution, brilliance, Fourier optics, optics at short wavelengths (extreme UV and X-rays).

  • Kein Zugang 5.04.776 - The Space Environment Lehrende anzeigen
    • Prof. Dr. Björn Poppe
    • Dr. Gerhard Drolshagen

    Freitag: 12:00 - 14:00, wöchentlich (ab 19.10.2018)

  • Kein Zugang 5.04.812 - Ausgewählte Probleme der Hörtechnik und Audiologie Lehrende anzeigen
    • Thomas Brand
    • Dr. Manfred Mauermann, Dipl.-Phys.
    • Prof. Dr. Bernd Meyer

    Montag: 12:00 - 14:00, wöchentlich (ab 15.10.2018)

    Die Studierenden erwerben einen Überblick über die aktuellen Fragestellungen auf dem Gebiet der Hörtechnik und Audiologie sowie eine Orientierung über mögliche Themen der eigenen Masterarbeit. Sie erlangen Fertigkeiten bei der Literaturrecherche, Aufarbeitung und Darstellung fremder wissenschaftlicher Ergebnisse. Sie erweitern ihre Kompetenzen hinsichtlich der Bewertung und Diskussion wissenschaftlicher Ergebnisse. Inhalte: Aktuelle Fragestellungen und Forschungsthemen der Hörtechnik und Audiologie unter anderem aus den aus den Bereichen: Audiologie, Medizinische Akustik, Audio-Signalverarbeitung, Elektroakustik, Medizinische Physik, Signalverarbeitung und Kommunikation In der Vorlesung werden aktuelle wissenschaftliche Fragestellungen aus dem Gebiet der Hörtechnik und Audiologie vorgestellt und im Seminar die zugehörige aktuelle Literatur in Kleingruppen vertiefend bearbeitet. Die Studierenden sollen dabei sowohl einen allgemeinen Überblick über die aktuellen wissenschaftlichen Fragestellungen in der Hörtechnik und Audiologie gewinnen als auch einzelne dieser Fragestellungen vertiefen. Dies soll auch zur Orientierung über mögliche Themen der Masterarbeit dienen.

  • Kein Zugang 5.04.900 - Nano-Optik Lehrende anzeigen
    • Prof. Dr. Christoph Lienau

    Mittwoch: 16:00 - 18:00, wöchentlich (ab 17.10.2018)

Übung
Praktikum
Seminar
  • Kein Zugang 5.04.4226 - Aktuelle Probleme des Maschinellen Lernens und -Hörens Lehrende anzeigen
    • Priv.-Doz. Dr. Jörn Anemüller

    Donnerstag: 10:00 - 12:00, wöchentlich (ab 25.10.2018)

    Die Studierenden erhalten einen Überblick über den Stand der Forschung im Bereich des Maschinellen Lernens und Hörens. In ihrem eigenen Vortrag mit Ausarbeitung erarbeiten sie ein Thema aus der aktuellen Fachliteratur, bereiten dies durch eigene Rechnungen auf und stellen dies in einer Präsentation vor. Inhalte: Themen aus dem Bereich aktueller Forschung des maschinellen Hörens, etwa Audiosignalerkennung, Spracherkennung, Richtungsdetektion und räumliche Filterung, statistische Modellierung des auditorischen Systems basierend auf experimentellen Daten der Neurobiologie, Algorithmen des überwachten und unüberwachten Lernens.

  • Kein Zugang 5.04.439 - Sprachverstehen in der Audiologie Lehrende anzeigen
    • Thomas Brand
    • Prof. Dr. Bernd Meyer

    Mittwoch: 08:00 - 10:00, wöchentlich (ab 17.10.2018)

    Die Studierenden erwerben praktische und theoretische Kenntnisse über den aktuellen Stand der Forschung auf den Gebieten der Modellierung des Sprachverstehens bei Normal- und Schwerhörenden in ungünstigen Hörsituationen sowie der Entwicklung und Anwendung audiologischer und psycholinguistischer Untersuchungsmethoden. Sie erlangen Fertigkeiten zur Planung und zur selbstständigen Durchführung von wissenschaftlichen Studien zu dieser Thematik. Sie erweitern ihre Kompetenzen hinsichtlich der Darstellung und Diskussion eigener Ergebnisse auf Tagungen und in wissenschaftlichen Fachzeitschriften. Inhalte: Modellierung des Sprachverstehens bei Normal- und Schwerhörenden in komplexen akustischen Situationen, Einfluss linguistischer Parameter auf das Sprachverstehen, Psychoakustische Modelle, Automatische Spracherkennung, Entwicklung von (multilingualen) Sprachverständlichkeitstests, Zusammenhang audiologischer Messgrößen (Tonaudiogramm, BERA, TEOAE, Tympanometrie) mit dem Sprachverstehen, Berichte über Probleme und Fortschritte aktueller Forschungsarbeiten (Bachelor- und Masterarbeiten, Dissertationen)

Hinweise zum Modul
Prüfungsleistung Modul
unbenotete aktive Teilnahme
Kompetenzziele
Abhängig von gewählten Spezialisierung
  • vertiefen die Studierende ihre Kenntnisse in den Bereichen Theoretische Physik, Experimentalphysik,
Angwandte Physik, physikalische Messtechnik, Numerische Methoden und wahlweise im Bereich
Umweltphysik des ICBM oder in einem anderen Nebenfach,
  • erweitern die Studierenden ihre Fertigkeiten in den Bereichen Analyse und Modellierung physikalischer
Probleme, Konzeption und Durchführung physikalischer Experimente, selbstständige Vertiefung
erworbenen Wissens, Recherche und Erarbeiten von Fachliteratur und Präsentation physikalischer
Zusammenhänge,
  • erweben bzw. vertiefen die Studierenden Kompetenzen auf den Gebieten des selbstständigen wissen-
schaftlichen Arbeitens, der wissenschaftlichen Analyse physikalischer Sachverhalte sowie der
Anwendung und Vernetzung erlernter Erkenntnisse auf unterschiedlichen Gebieten.