Kernmodule

inf900 - Group Project

<table>
<thead>
<tr>
<th>Module label</th>
<th>Group Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf900</td>
</tr>
<tr>
<td>Credit points</td>
<td>24.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>720 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Kernmodule
- Master's Programme Computing Science (Master) > Kernmodule
- Master's Programme Embedded Systems and Microrobotics (Master) > Kernmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
The students get familiar with different software development aspects in a team. Apart from software engineering knowledge and skills they develop key competences like project management, teamwork, problem solving competence and conflict management.

Additionally, students develop special knowledge, skills and competences from the project group topic.

Professional competence
The students:

- characterise and apply computer science basics (algorithms, data structures, programming, basics of practical, technical and theoretical computer science)
- define and describe essential mathematical, logical and physical basics of computer science
- define and illustrate the core disciplines of computer science (theoretical, practical and technical computer science)

Methodological competence
The students:

- examine problems, use formal methods to phrase and analyze them appropriately
- evaluate problems by the use of technical and scientific literature
- reflect on a scientific topic and write a scientific seminar paper under guidance and present their findings

Social competence
The students:

- integrate criticism into their own actions
- respect team decisions
- communicate with users and experts convincingly

Self-competence
The students:

- take on project management tasks
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently
- recognise their abilities and extend them purposefully
- reflect their self-perception and actions with regard to professional, methodological and social aspects
- develop and reflect self-developed hypotheses to theories independently
- work in their field independently

Module contents
Cooperative development of a large-scale computer science project. This project generally includes the (further) development of a hard or software system.

Literaturempfehlungen
According to the assigned task

Links
https://www.uni-oldenburg.de/informatik/studium-lehre/infos-zum-studium/projektgruppen-im-masterstudium/

Languages of instruction
German, English

Duration (semesters)
2 Semester
<table>
<thead>
<tr>
<th>Module frequency</th>
<th>semi-annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td>Dieses Modul ist im Rahmen der Projekte FiF und FoL konzipiert worden</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>PG</td>
</tr>
</tbody>
</table>
| **Vorkenntnisse / Previous knowledge** | - Programmierkurs
- Softwaretechnik
- Soft Skills |
| **Examination** | Prüfungszeiten |
| **Final exam of module** | Im Stud.IP nach Bekanntgabe der einzelnen Gruppen und Themen
Active involvement, presentation, final report, project assessment |
| **Form of teaching** | Project group |
| **SWS** | 8 |
| **Frequency** | Sose und WiSe |
| **Workload Präsenzzeit** | 112 h |
Angewandte Informatik

inf131 - Advanced Topics in Human Computer Interaction

Module label
Advanced Topics in Human Computer Interaction

Modulkürzel
inf131

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Computing Science (Master) > Praktische Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction

Zuständige Personen
Boll-Westermann, Susanne (Module responsibility)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
Course prerequisite: Mensch-Maschine-Interaktion (Human Computer Interaction)

Skills to be acquired in this module
This course aims to provide a sample of some of the most recent and significant advances in this exciting area. Topics may include: situational awareness, designing for attention, ambient/peripheral interaction, computer support cooperative work and social computing (CSCW), ubiquitous and context-aware computing, haptic and gestural interaction, audio interaction, gaze-based interaction, biometric interfaces, and embedded, physical and tangible computing, mobile and wearable interfaces.
This course explicitly not focused on the methods used in HCI practice (i.e., user-centered design cycle), but rather focuses on (recent) research.

Professional competences:
The students:
- Demonstrate a systematic understanding of knowledge and critical awareness of a selection of the recent research advances in the area of HCI
- Evaluate and critique recent developments in the field of HCI on scientific and technological grounds
- Develop ability to conceptualize, design, implement, and evaluate user-centered systems and techniques.
- Plan and implement exploratory projects directed at envisioning and prototyping novel interactive artifact

Methodological competences:
The students:
- Analyze, review and critique research papers
- Carry out original research from start to finish
- Summarize and present research findings
- Work in a team to produce and evaluate prototypes of novel interactive artifact

Social competences:
The students:
- Work collaboratively in groups to analyze and review research papers
- Summarize and present research findings to rest of class
- Discuss how HCI concepts and methods can be applied in analysis, design, and evaluation of interactive technologies.
- Discuss social and ethical implications of interactive technologies

Self-competences:
The students:
- Be comfortable tackling original research questions
- Aptitude in conceptualizing and running both qualitative and quantitative HCI experiments
- Ability to summarize, analyze, and critique published (peer-review) research papers

Module contents
HCI is a fast-growing field, where scientific research in this area crosses multiple disciplines. The body of theoretical and empirical knowledge that can inform the design of effective systems is rapidly developing, which underscores the importance of current research in the field.
This course aims to provide a sample of some of the most recent and significant advances in this exciting area. Topics may include: situational awareness, designing for attention, ambient/peripheral interaction, computer support cooperative work and social computing (CSCW), ubiquitous and context-aware computing, haptic and gestural interaction, audio interaction, gaze-based interaction, biometric interfaces, and embedded, physical and tangible computing, mobile and wearable interfaces.

Structure of the Module:

The course will consist of lectures and lab sessions. Lab sessions will cover assignments (writing paper reviews, presentations, and peer assessment). In addition to assignments and a final exam, a small part of the course includes a mini group-based HCI project.

Lectures: 2 hours per week
Lab: 2 hours per week

This lecture will be held in English. All assignment submissions and exams will be in English.

The primary audience for this class are Master students of Computer Science following the Human Computer Interaction track.

Suggested reading:

Links

Language of instruction
English

Duration (semesters) 1 Semester

Module frequency semi-annual

Module capacity 24

Module level / module level AS (Akzentsetzung / Accentuation)

Modulart / typ of module Pflicht o. Wahlpflicht / compulsory or optional

Vorkenntnisse / Previous knowledge Interaktive Systeme

Examination

Prüfungszeiten Project and oral exams

Final exam of module At the end of the lecture period

Grading:

Your grade will be calculated as follows:

<table>
<thead>
<tr>
<th>Scored Items</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td>40</td>
</tr>
<tr>
<td>Assignments A01-03</td>
<td>30</td>
</tr>
<tr>
<td>Mini HCI research</td>
<td>20</td>
</tr>
</tbody>
</table>

Missing the exam
If you cannot attend the exam with valid reasons (medical reason, exam schedule conflicts), you need to inform us before the exam, and submit a scanned copy of the evidence (medical certificate, course registration, boarding passes) within 5 days after the exam.

• If the reason for missing the exam is valid, you will do your first try of the exam for the parts that you missed on the same date as the second chance exam.
• If the reason is not valid, you will not get any score from that exam. If your overall score passed the course, you will not have a chance to take the exam again.

Grading:
Your grade will be calculated as follows:
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical training</td>
<td></td>
<td>2</td>
<td>Sose oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf303 - Fuzzy Control and Artificial Neural Networks in Robotics and Automation

Module label | Fuzzy Control and Artificial Neural Networks in Robotics and Automation
Modulkürzel | inf303
Credit points | 6.0 KP
Workload | 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master's Programme Engineering Physics (Master) > Schwerpunkt: Renewable Energies

Zuständige Personen
Fatikow, Sergej (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
Skills to be acquired in this module
Experts in different branches try to approach their application-specific control and information processing problems by using fuzzy logic and artificial neural networks (ANN). The experiences gathered up to now prove robotics and automation technology to be predestined fields of application of both these approaches. The major topics of the course are control problems in robotics and automation technology, principles of fuzzy logic and ANN and their practical applications, comparison of conventional and advanced control methods, combination of fuzzy logic and ANN in control systems. The course gives a comprehensive treatment of these advanced approaches for interested students.

Professional competence
The students:
- recognise control problems in robotics and automation technology,
- name principles of fuzzy logic and ANN and their practical applications,
- compare conventional and advanced control methods,
- characterise the combination of fuzzy logic and ANN in control systems

Methodological competence
The students:
- will acquire knowledge of the tools, methods and applications in fuzzy logic and ANN
- deepen their knowledge for the practical use of the given methods
- can use common software tools for design and application of fuzzy logic and ANN

Social competence
The students:
- gain experience in interdisciplinary work
- are integrated into the recent research work

Objective of the module / skills:

Self-competence
The students:
- are able to transfer the gained knowledge for later use in their theses or studies for AMiR
- can Design (complex) fuzzy logic controller and ANN systems
- reflect their (control) solutions by using methods learned in this course

Module contents
- Control problems in robotics and automation technology
- Basic ideas of fuzzy logic and ANN
- Principles of fuzzy logic
- Fuzzy logic of rule-based systems
- ANN models
- ANN learning rules
- Multilayer perceptron networks and backpropagation
- Associative networks
- Self-organizing feature maps
- PID design principles
- Design of fuzzy control systems
- Fuzzy logic application examples
- Design of ANN control systems
- ANN application examples
- Fuzzy + Neuro: principles and applications

Literaturempfehlungen

Essential:
- Lecture notes (available at the secretariat, A1-3-303) in book form

Recommended:

Secondary Literature:
- Altrock, M. O. R.: Fuzzy Logic, R. Oldenbourg Verlag, 1993
- Kratzler, K.P.: Neuronale Netze, Carl Hanser, 1993
- Lawrence, J.: Neuronale Netze, Sysntema Verlag, München, 1992
- Patterson, D.W.: Künstliche neuronalne Netze, Prentice Hall, 1996
- Pham, D.T.: a200
- Schulte, U.: Einführung in Fuzzy-Logik, Franzis-Verlag, München, 1993
- Zakharian, S. Ladewig-Riebler, P. und Thuer, St.: Neuronale Netze für Ingenieure, Vieweg, Wiesbaden, 1998
- Zimmermann H.-J. (Hrsg.): Datentarayle, VDI-Verlag, 1995

Links

Languages of instruction
- English , German

Duration (semesters)
- 1 Semester

Module frequency
- once a year

Module capacity
- unlimited

Modullevel / module level
- AS (Akzentsetzung / Accentuation)

Modulart / typ of module
- Pflicht o. Wahlpflicht / compulsory or optional

Lehr-/Lernform / Teaching/Learning method
- V+Ü

Vorkenntnisse / Previous knowledge
- Regelungstechnik

Examination
- Prüfungszeiten
- Type of examination
 - Final exam of module
 - Hands-on-exercises and oral Exam

Form of teaching
- Comment
- SWS
- Frequency
- Workload of compulsory attendance

7 / 325
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf501 - Environmental Information Systems

Module label: Environmental Information Systems
Modulkürzel: inf501
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master Applied Economics and Data Science (Master) > Data Science
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodul der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Sustainability Economics and Management (Master) > Additional Modules

Zuständige Personen
Vogel-Sonnenschein, Ute (Module responsibility)
Lehrende, Die im Modul (Prüfungsberechtigt)
Vogel-Sonnenschein, Ute (Prüfungsberechtigt)

Prerequisites
Skills to be acquired in this module
The module gives an overview of the phases and important aspects of the environmental information processing. **Professional competence** The students:
- apply basic processing algorithms to classify and process data - compare, evaluate and design data structures to store spatial data efficiently - apply basic functions of a geo-information system - describe, evaluate and apply basic processes of data mining - describe, evaluate and apply basic geostatistics processes - evaluate and apply multicriteria decision making processes
Methodological competence The students:
- use geoinformation systems for environmental application - use data mining tools for data analysis
Social competence The students:
- solve tasks in teams of 2-3 students - present and discuss their solutions in class
Self-competence The students:
- reflect their own behaviour with regard to the methods of environmental informatics

Module contents
Content of the Module: Environmental information systems make information about the general environmental state available for public management and public facilities, enterprises or interested citizens. The collection, storage and evaluation of this information is interesting for computer science. Within the scope of the lecture we will examine the processing of environmental information step-by-step, this means:
- problems of data acquisition and data processing - data structures and database concepts for an efficient access to (usually) spatial data - introduction of data analysis (in particular from geostatistics and data mining) - introduction of multicriteria decision processes, as well as - the supply of data supported by metadata. The module "Umweltinformationssysteme" is accompanied by the module "Modellbildung in Simulation ökologischer Systeme". The subjects of "Modellbildung in Simulation ökologischer Systeme" represent the dynamic aspects of environmental systems (mainly of ecological systems). Nevertheless, the modules can be taken independently from each other.

Literaturempfehlungen

Links
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Reference text: Associated with the module: - inf500 Modellbildung und Sim. ökol. Systeme

Modullevel / module level
Modulart / typ of module
Lehr-/Lernform / Teaching/Learning method
Vorkenntnisse / Previous knowledge
- Datenbanken
- Grundlagen der Statistik/Stochastik
Examination
Prüfungszeiten
Type of examination
Final exam of module
Second and third week after the end of the lecture period - retake before the upcoming lecture period Practical exercises and oral examination or portfolio

Form of teaching
Comment
SWS
Frequency
Workload of compulsory attendance
Lecture
3
SoSe
42
Exercises
1
SoSe
14
Präsenzzeit Modul insgesamt
56 h
inf502 - Simulation

Module label
Simulation

Modulkürzel
inf502

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodul der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
- Hahn, Axel (Module responsibility)
- Sauer, Jürgen (Module responsibility)

Prerequisites

Skills to be acquired in this module
Simulation is a major tool for gaining knowledge about systems and their behavior. It can be used to gain system understanding and prediction future system status. The module covers mathematical basic as well a basic simulation technology. The module completes itself by addressing application examples. By seminar and practical work, the students get hands on experience of simulation technologies.

Professional competence
The students:
- get an overview on methods, tools and application areas of simulation. They know what simulation can do and what are its limitation. Covered application are mainly in transportation and production domain.

Methodological competence
The students:
- know simulation technologies and model building basics. They understand the handling of time and problems of discretization. After lecture students can solve problems with simulation. This includes modelling, use of simulation environment and evaluation of results. Cause of practical use, the independent handling of research questions and the use of simulation as research method will be learned.

Social competence
The students:
- gain team and social skills by self-organized development of simulation.

Self-competence
The students:
- can apply simulation technologies on scientific research questions.

Module contents
In lectures the students get background information and simulation basics. Then they apply their knowledge by developing an own simulation by using state of the art simulation environments

Literaturempfehlungen

Links

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
annually

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method

<table>
<thead>
<tr>
<th>Method</th>
<th>V+S+P</th>
</tr>
</thead>
</table>

Vorkenntnisse / Previous knowledge

Programmierkenntnisse vornehmlich in Java sind zwingend erforderlich

Examination

<table>
<thead>
<tr>
<th>Prüfungszeit</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anmeldung 2 Wochen nach Vorlesungsbeginn</td>
<td>M (Seminar / Projektbericht)</td>
</tr>
</tbody>
</table>

Form of teaching

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>1</td>
<td>SoSe</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
<td>SoSe</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Practical training</td>
<td>1</td>
<td>SoSe</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

<table>
<thead>
<tr>
<th>Präsenzzeit Modul insgesamt</th>
<th>56 h</th>
</tr>
</thead>
</table>
inf510 - Energy Information Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Energy Information Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf510</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master Applied Economics and Data Science (Master) > Specialization</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Engineering Physics (Master) > Schwerpunkt: Renewable Energies</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Lehnhoff, Sebastian (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

The students will learn different approaches to integrate distributed facilities, the regulatory framework, relevant standards and architecture concepts of energy management systems and will be able to apply this knowledge.

Professional competence

The students:

- develop and evaluate IT-architectures for energy management systems
- model objects of this domain appropriately
- model energy information systems
- realise and differentiate advanced tasks of decentralised energy management systems

Methodological competence

The students:

- identify problems of energy management, analyse these problems systematically and provide solutions
- apply different simulation approaches of decentralised plants and consumers

Social competence

The students:

- discuss solutions for energy management systems in the group
- develop use cases in teams
- present self-developed solutions

Self-competence

The students:

- reflect their actions with regard to structuring and decomposing systems
- reflect their own use of power as a limited resource

Module contents

This module provides the computer science basics for energy management. It provides the requirements of energy supply information systems with the focus on technical components and the requirements of decentralised and renewable energy plants.

These are:

- Architectures for energy information systems, e.g. SOA, Seamless Integration Architecture (IEC TC 57), OPC-UA
- Norms and standards of energy industry data models (CIM, 61850)
- Systematisation of energy information system requirements based on ontologies
- Development, analysis and adaption of energy industry reference models and processes
- Methods and technologies to support energy industry processes
- Methods and algorithms to support decision processes of the decentralised energy plants control
- Smart Grid plant communication, particularly for load management
- Methods for modelling and simulation of power supply system dynamics

Literaturempfehlungen

- Crastan V.: “Elektrische Energieversorgung II”, Springer 2004
<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction: English</td>
</tr>
<tr>
<td>Duration (semesters): 1 Semester</td>
</tr>
<tr>
<td>Module frequency: jährlich</td>
</tr>
<tr>
<td>Module capacity: unlimited</td>
</tr>
<tr>
<td>Modullevel / module level: AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehr-/Lernform / Teaching/Learning method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
</tr>
<tr>
<td>Examination: Prüfungszeiten: Type of examination</td>
</tr>
<tr>
<td>Final exam of module: At the end of the semester: Student research project or presentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

| Präsentzeit Modul insgesamt | 56 h |

- Schwab, A.: "Elektroenergiesysteme, Springer 2009"
Skills to be acquired in this module

After successful completion of the course the students should be able to understand the existing structures and
technical basis of energy systems to produce, transfer and distribute electricity and their interaction and
dependency on each other. They should have developed an understanding for necessary IT- and process
technology components, methods and processes to control and operate electrical energy systems. The
students are able to estimate and evaluate the requirements and challenges of ICT and computer science
which are caused by the development and integration of unforeseeable fluctuations of decentralised plants.
The students will be able to estimate the influence of distributed control concepts and algorithms for
decentralised plants and consumers in the so called Smart Grid energy systems. Regarding the requirements
the students will be able to analyse the safety, reliability, realtime capability and flexibility of Smart Grid energy
systems.

Professional competence
The students:

- understand the existing structures and the technical basis of energy systems producing, transferring
 and distributing electricity and their interaction and dependency on each other.
- develop an understanding for necessary IT- and process control technology components, methods and
 processes to control and operate electrical energy systems.
- estimate and evaluate the requirements and challenges of ICT and computer science which are caused
 by the development and integration of unforeseeable fluctuations of decentralised plants.
- estimate the influence of distributed control concepts and algorithms for decentralised plants and
 consumers in the so called Smart Grid energy systems.

Methodological competence
The students:

- analyse the safety, reliability, realtime capability and flexibility of Smart Grid energy systems
- use advanced mathematical methods to calculate networks

Social competence
The students:

- create solutions in small teams
- discuss their solutions

Self-competence
The students:

- reflect their own use of electricity as a limited resource

Module contents
Content of the Module: In this course information technology, economical energy industry and technical basic
knowledge and methods are analysed by using concrete Smart Grid approaches.
The basic calculation methods for an intelligent grid management are introduced.

This module deals with the technical and economical framework for a permissable electrical network as well as
mathematical modelling and calculation methods to analyse conditions of electrical energy networks (in
stationary conditions). These are:
The organisation of the EU energy market (regulatory framework, responsibility in liberalisation of electrical energy systems)

Establishment and operation of electrical energy supply networks (network topology, statutory duties of supply, supply quality/system services, malfunctions and protection systems)

Intelligent network management (Smart Grids), aggregation forms, machine learning approaches

<table>
<thead>
<tr>
<th>Literaturempfehlungen</th>
<th>Suggested reading:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crastan V.: "Elektrische Energieversorgung II", Springer 2004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>At the end of the semester</td>
<td>Oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form of teaching</td>
<td>Lecture</td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
inf513 - Energy Informatics Practical

Module label | Energy Informatics Practical
Modulkürzel | inf513
Credit points | 6.0 KP
Workload | 180 h

Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodul der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul

Zuständige Personen
Lehrender, Die im Modul (Prüfungsberechtigt)
Lehnhoff, Sebastian (Module responsibility)

Prerequisites
Programming with JAVA

Skills to be acquired in this module
Successfully completing this lecture will enable the students to mathematically model simple controllable electrical generators and consumers and to simulate them together with appropriate control algorithms within smart grid scenarios. To achieve this goal, students will start with deriving computational models from physical models and evaluate them. In order to manage the integration of control algorithms, students are taught the principles of cosimulation using the "mosaik" smart grid co-simulation framework as an example.

Students will be able to understand and apply distributed, agent-based control schemes to decentralized energy generators and/or consumers. As a result, students are able to analyze the requirements for successful application to real power balancing regarding capacity utilization, robustness, and flexibility.

In addition, students learn the foundations of planning and conducting simulation based experiments as well as the interpretation of the results. Special attention will be paid on establishing a balance between the results' precision and robustness and the necessary effort (design of experiments) in order to gain as much insight into interdependencies with as few experiments as possible.

Professional competence
The students:
- derive and evaluate computational models from physical models
- use the "mosaik" smart grid co-simulation framework
- analyze the requirements for successful applications to real power balancing regarding capacity utilization, robustness, and flexibility
- name the foundations of planning and conducting simulation based experiments as well as the interpretation of the results
- are aware of the balance between the results' precision and robustness and the necessary effort (design of experiments) in order to gain as much insight into interdependencies with as few experiments.

Methodological competence
The students:
- model simple controllable electrical generators and consumers
- simulate simple controllable electrical generators and consumers with appropriate control algorithms within smart grid scenarios
- apply distributed agent-based control schemes to decentralized energy generators and/or consumers
- evaluate simulation results
- search information and look into methods to implement models
- propose hypothesis and check their validity with design of experiments methods

Social competence
The students:
- apply the pair programming development technique
- discuss design decisions
- identify work packages and are responsible for it

Self-competence
The students:
- reflect on their own use of power as a limited resource
- accept and use criticism to develop their own behaviour

Module contents
In this practical course students:
- model controllable, modulating electrical energy generators and consumers,
- put their hands on mosaik (installation, description and configuration of scenarios, conduction of simulations),
- learn the principles of agent-based heuristics for optimization problems in future smart grid scenarios,
- learn about the challenges of implementing agent-based mechanisms (multi-criticality, convergency, quality) on the training,
- learn the foundations for choice and design of simulation based experiments.

Literaturempfehlungen

Suggested reading:

Smart Grids:

Multiagentensysteme:

Co-Simulation

Versuchsplanung:

- Klein, B.: "Versuchsplanung - DoE", Oldenbourg, 2011

Links

http://mosaik.offis.de

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

jährlich

Module capacity

unlimited

Reference text

Elective module in the master specialization area (energy computer science).

Associated with the modules:

- Energieinformationssysteme
- Smart Grid Management

Module level / module level

AS (Akzentsetzung / Accentuation)

Modulart / typ of module

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

- Programmierung mit Java
- Programmierung mit Python

Examination

Prüfungszeiten

Type of examination

Oral exam

Final exam of module

At the end of the semester

Form of teaching

Practical training

SWS

4

Frequency

SoSe

Workload Präsenzzzeit

56 h
inf520 - Management of Information Systems in Health Care

<table>
<thead>
<tr>
<th>Module label</th>
<th>Management of Information Systems in Health Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf520</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodul der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik

Zuständige Personen
- Röhrig, Rainer (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Professional competence
- The students:
 - know healthcare information systems and their functions
 - know clinical software architectures and apply their IT strategies
 - know and apply system integration standards, methods (including medical technology) and risk management
 - know and apply clinical information systems and maintain them
 - know the legal and regulatory framework (including data privacy) for the operation of healthcare IT systems
 - implement simple data analyses on care data
 - know and apply procurement processes and changes

Methodological competence
- The students:

Social competence
- The students:
 - reflect on and become more familiar with the different hospital roles (IT-manager, IT-employer, hospital supervisors, clinician, manager) and their interests

Self-competence
- The students:
 - reflect their solutions by using methods learned in this course and present them appropriately

Module contents
- Basics of the healthcare system
- Basics of the medical documentation
- Healthcare information systems / clinical information systems / intensive care information systems (PDMS)
- PDMS parameters, including interface terminology and semantic standards
- Data privacy and security
- System integration and interoperability (HL7, ...)
- Hospital financing / DRG-System: regulatory framework and implementation
- Care data analyses
- Requirements engineering
- Procurement project and risk management

Literatureempfehlungen
- Wird im Modul bekannt gegeben

Links
- Language of instruction: German
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Modullevel / module level: AS (Akzentsetzung / Accentuation)
<table>
<thead>
<tr>
<th>Modulart / typ of module</th>
<th>je nach Studiengang Pflicht oder Wahlpflicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehr- / Lernform / Teaching / Learning method</td>
<td></td>
</tr>
</tbody>
</table>
| Vorkenntnisse / Previous knowledge | - Medizin für Informatiker
- Informationssysteme / Datenbanken |
| Examination | | | | |
| Prüfungszeiten | Type of examination |
| Final exam of module | At the end of the lecture periode | Written or oral exam |
| Form of teaching | Comment | SWS | Frequency | Workload of compulsory attendance |
| Lecture | 3 | SoSe | 42 |
| Exercises | 1 | SoSe | 14 |
| Präsenzzeit Modul insgesamt | 56 h |
inf522 - Information Processing in Bio-Medical Research

Module label: Information Processing in Bio-Medical Research
Modulkürzel: inf522
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Hein, Andreas (Module responsibility)
Kaspar, Mathias (Module responsibility)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
The students are aware of the requirements of biomedical research information processing and technologies. They know, develop and evaluate approaches.

Professional competences:
The students:
- Know the principles of biomedical research and identify resulting requirements and develop appropriate solutions
- Know the regulatory guidelines and assess the suitability of (IT) solutions or develop them
- Plan, apply, evaluate, report and assess IT solution evaluation studies
- Are aware of the biomedical research responsibility and the ethical challenges

Methodological competences:
The students:
- Search literature systematically
- Plan and assess clinical studies
- Develop concepts for a data privacy and GCP conform study management
- Know and apply medical classification systems
- Validate and run software for clinical trials, cohorts and registries
- Plan and assess healthcare IT studies

Social competences:
The students:
- Present solutions/results
- Discuss studies constructively, professionally and appropriately
- Discuss ethical biomedical research problems from different points of view

Self-competences:
The students:
- Reflect their own values and attitudes in the context of medical and biomedical research border areas
- Reflect their self-capacity with regard to the responsibility and the workload during the implementation of studies and the operation of study information systems

Module contents
- Basics / Biomedical research theory
- Systematic literature research, repositories
- Study schedule and method design
- Biomedical research regulatory framework
- Biomedical research ethics
- IT infrastructure in research / IT components incl. molecular medicine
- (Data) privacy
- Operating of software for clinical trials, cohorts and registries
- Clinical study report standards (Equator-Network), review process
- Evaluation of healthcare IT (GEP-HI and STARE-HI) / evidence based healthcare informatics

<table>
<thead>
<tr>
<th>Literatureempfehlungen</th>
<th>Wird im Modul bekannt gegeben</th>
</tr>
</thead>
</table>

Links

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
Once a year

Module capacity
Unlimited

Reference text

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
Je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
V+Ü

Vorkenntnisse / Previous knowledge
Medizin für Informatiker, Statistik

Examination
Prüfungszeiten
Type of examination

Final exam of module
At the end of the lecture period
Written exam

Form of teaching
Comment
SWS
Frequency
Workload of compulsory attendance

| Lecture | 2 | WiSe | 28 |
| Exercise | 2 | WiSe | 28 |

Präsenzzeit Modul insgesamt
56 h
inf523 - Medical Software Engineering

Module label Medical Software Engineering

Modulkürzel inf523

Credit points 6.0 KP

Workload 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Hein, Andreas (Module responsibility)
Kaspar, Mathias (Module responsibility)
Klausen, Andreas (Module responsibility)
Lehrenden, Die im Modul (Prüfungsberechtigt)
Röhrig, Rainer (Prüfungsberechtigt)

Prerequisites
This Module provides the regulatory requirements of medical software. Focus is on software life cycle methods and approaches, the implementation of combined usability- and risk management processes as well as quality management.

Skills to be acquired in this module

Professional competence
The students:
- Know and use obligatory medical software requirements
- Know methods and approaches to develop security-critical medical software and implement them by example
- Know at least one medical application area and its specific professional, organisational and regulatory requirements

Methodological competence
The students:
- Are able to apply risk management methods of socio-technical systems
- Are able to extend their knowledge of new application areas. They are able to handle the obstacles of normative frameworks and software development.

Social competence
The students:
- Realise the importance of communication during the software development process between developer, customer and user of a successful and secure system. Feedback, request, respectful cooperation and empathy of other disciplines' working processes are of great importance.

Self-competence
The students:
- Realise their responsibility as a computer scientist and reflect their impact on patients, medical employers and hospitals (corporates)

Module contents
Content of the Module:
This module provides medical software development processes. The module deals with normative software requirements with the focus on patient privacy and quality management. Contents are the declaration of conformity based on medical product classes and software security classes. The software security is focused on software quality, tests and verification, validation as well as quality and risk management. The software life cycle provides security related systems and software as well as software architecture and different process models.

Literaturempfehlungen
wird im Modul bekannt gegeben

Links
<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>once a year</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>V + Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Medizin für Informatiker / Programmierkenntnisse / Softwareentwicklung / Informationssysteme / Mensch Maschine Interaktion</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Type of examination</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>At the end of the lecture periods</td>
</tr>
<tr>
<td>Comment</td>
<td>written exam</td>
</tr>
<tr>
<td>Workload of compulsory attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf524 - Introduction to Medicine for Computer Science Students

<table>
<thead>
<tr>
<th>Module label</th>
<th>Introduction to Medicine for Computer Science Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf524</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | Master's Programme Computing Science (Master) > Angewandte Informatik
| | Master's Programme Computing Science (Master) > Nicht Informatik |
| Zuständige Personen | Hein, Andreas (Module responsibility)
| | Klausen, Andreas (Module responsibility)
| | Kaspar, Mathias (Module responsibility)
| | Röhrig, Rainer (Prüfungsberechtigt)
| | Lehrenden, Die im Modul (Prüfungsberechtigt) |

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

- Speckmann / Wittkowski, Handbuch Anatomie, h.f. ullmann publishing GmbH 2015, ISBN 978-3-8480- 0878-0

Links

https://www.uni-oldenburg.de/versorgungsforschung/abteilungen/medizininformatik/lehre/

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

jährlich

Module capacity

unlimited

Reference text

Die Durchführung der Veranstaltung erfolgt in Kooperation mit verschiedenen Professuren der Departments. Für Humanmedizin, sowie der Anatomie der Fakultät VI.

Module level / module level

AS (Akzentsetzung / Accentuation)

Modular / type of module

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Am Ende der Vorlesungszeit / Anfang des Folgesemesters</td>
<td>KL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
Module: Probabilistic Modelling I

Module label	Probabilistic Modelling I
Modulkürzel | inf533
Credit points | 3.0 KP
Workload | 90 h
Verwendbarkeit des Moduls |
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering
Zuständige Personen | Möbus, Claus (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)
Prerequisites | Probabilistic Bayesian models are generated with special tools (e.g. BUGS, JAGS, STAN) or domain specific programming languages (WebPPL, PyMC3, …etc.). If they mimic cognitive processes of humans (e.g. pilots, drivers) or animals they could be used as cooperative assistance systems in technical or financial systems like cars, robots, or recommenders.
Professional competence | The students:
- learn to map problem to model classes to come up with practical solutions
Methodological competence | The students:
- acquire basic skills in the design, implementation, and identification of probabilistic models with Bayesian methods
- acquire knowledge about alternative non-Bayesian machine learning methods
Social competence | The students:
- learn to present and discuss probabilistic theories, methods, and models.
Self-competence | The students:
- reflect and evaluate chances and limitations of probabilistic approaches
- learn to deliberate on machine-learning alternatives
Module contents | Theories, methods, and examples of Bayesian models with practical applications
Literaturrempfehlungen | Recent eBooks, eTutorials
Links | http://www.uni-oldenburg.de/en/computingscience/lcs/probabilistic-programming/
Languages of instruction | German, English
Duration (semesters) | 1 Semester
Module frequency | jährlich
Module capacity | unlimited
Reference text | Associated with the module:
- inf534 Probabilistic Modelling II
Modullevel / module level | AS (Akzentsetzung / Accentuation)
Modulart / typ of module | je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method | S
<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Programmierkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Will be announced in the lecture</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf534 - Probabilistic Modelling II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Probabilistic Modelling II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf534</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction

Zuständige Personen
- Möbus, Claus (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Probabilistic models are generated with special tools (e.g. BUGS, JAGS, STAN) or domain specific programming languages (WebPPL, PyMC3, etc.). If they mimic cognitive processes of humans (e.g. pilots, drivers) or animals they could be used as cooperative assistance systems in technical or financial systems like cars, robots, or recommender systems. In this part of the seminar we read, present, and discuss recent research papers.

Professional competence
The students:

- learn to connect problem- with model classes to come up with practical solutions

Methodological competence
The students:

- acquire advanced skills in the design, implementation, and identification of probabilistic models with Bayesian methods
- acquire knowledge about alternative machine learning methods

Social competence
The students:

- learn to present and discuss probabilistic theories, methods, and models

Self-competence
The students:

- reflect and evaluate chances and limitations of probabilistic approaches
- learn to deliberate on machine-learning alternatives

Module contents
Theories, methods, and examples of Bayesian models with practical applications

Literatureempfehlungen
Recent publications

Links
http://www.uni-oldenburg.de/en/computingscience/lcs/probabilistic-programming/

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
halbjährlich

Module capacity
unlimited

Reference text
Associated with the module:

- inf533 Probabilistische Modellierung I

Modulelevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

28 / 325
Vorkenntnisse / Previous knowledge
- Grundkenntnisse Progammierung

Examination
<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>individuell in Absprache mit dem Lehrenden</td>
<td>seminar talk, reflective written summary</td>
</tr>
</tbody>
</table>

Form of teaching
- Seminar

SWS
- 2

Frequency
- SoSe

Workload Präsenzzeit
- 28 h
Computational Intelligence I

<table>
<thead>
<tr>
<th>Modulkürzel</th>
<th>inf535</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Applied Economics and Data Science (Master) > Data Science
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodulle der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Environmental Modelling (Master) > Mastermodule

Zuständige Personen
- Kramer, Oliver (Prüfungsberechtigt)

Lehrende, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Professional competence:
The students:

- recognise optimisation problems
- implement simple algorithms of heuristic optimisation
- critically discuss solutions and selection of methods
- deepen previous knowledge of analysis and linear algebra

Methodological competence
The students:

- deepen programming skills
- apply modelling skills
- learn about the relation between problem class and method selection

Social competence
The students:

- cooperatively implement content introduced in lecture
- evaluate own solutions and compare them with those of their peers

Self-competence
The students:

- evaluate own skills with reference to peers
- realize personal limitations
- adapt own problem solving approaches with reference to required method competences

Module contents

Computational Intelligence comprises intelligent and adaptive methods for optimisation and learning. The module "Computational Intelligence I" concentrates on methods for evolutionary optimisation and heuristic approaches. The exercises introduce and deepen practical aspects of the implementation and algorithmic design, also taking into account application aspects.

Overview of Content:

- foundations of optimisation
- genetic algorithms and evolution strategies
- parameter control and self-adaptation
- runtime analysis
- swarm algorithms
- constrained optimisation
- multi-objective optimisation
- meta-modelling

Literatureempfehlungen

Links

<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>English, German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
</tbody>
</table>

Lehr-/Lernform / Teaching/Learning method

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Grundlagen der Statistik</th>
</tr>
</thead>
</table>

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
</table>

Final exam of module

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
inf536 - Computational Intelligence II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Computational Intelligence II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf536</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Applied Economics and Data Science (Master) > Data Science
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodul Modul Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Environmental Modelling (Master) > Mastermodule

Zuständige Personen
Lehrenden, Die im Modul (Prüfungsberechtigt)
Kramer, Oliver (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Professional competence
The students:
- Recognise machine learning problems
- Implement simple algorithms of machine learning
- Critically discuss solutions and selection of methods
- Deepen previous knowledge of analysis and linear algebra

Methodological competence
The students:
- Deepen programming skills
- Apply modelling skills
- Learn about the relation between problem class and method selection

Social competence
The students:
- Cooperatively implement content introduced in lecture
- Evaluate own solutions and compare them with those of their peers

Self-competence
The students:
- Evaluate own skills w.r.t. peers
- Realise personal limitations
- Adapt own problem solving approaches w.r.t. required method competences

Module contents
Computational Intelligence comprises intelligent and adaptive methods for optimisation and learning. The module "Computational Intelligence II" concentrates on methods for machine learning and data mining. The exercises introduce and deepen practical aspects of the implementation and algorithmic design, also taking into account application aspects.

Overview of Content:
- Foundations of learning and classification
- Nearest neighbouring methods
- Model selection and parameter tuning
- Regression
- Support vector and kernel methods
- Clustering
- Dimensionality reduction

Literaturempfehlungen
<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
<tr>
<td>Modul level / module level</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Examination</td>
</tr>
<tr>
<td>Final exam of module</td>
</tr>
<tr>
<td>Form of teaching</td>
</tr>
<tr>
<td>Lecture</td>
</tr>
<tr>
<td>Exercises</td>
</tr>
<tr>
<td>Präsenzzzeit Modul insgesamt</td>
</tr>
</tbody>
</table>

- HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J.H.: The Elements of Statistical Learning, Springer 2009
inf537 - Intelligent Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Intelligent Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf537</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
- Sauer, Jürgen (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
Skills to be acquired in this module
- **Professional competence**
 - The students: name the structure of agent-based systems
 - use problem-solving methods for complex problems
 - characterise the application area of process planning
 - evaluate the suitability of processes regarding to specific problems
- **Methodological competence**
 - The students: assign problem-solving methods to different problems
- **Social competence**
 - The students: implement selected methods in small teams
- **Self-competence**
 - The students: develop own solutions for given problems

Module contents
A lot of application areas use "intelligent" problem-solving methods. These are the main focus of this lecture. They will be illustrated by examples in order to enhance the students' problem-solving abilities. These include:
- A brief introduction into AI
- Agent systems
- Solution methods of AI like heuristics, meta-heuristics, soft computing methods.
To apply and foster the contents of the lecture, an intelligent planning system is implemented in practical exercises.

Literaturempfehlungen
- Ghallab/ Nau/Traverso: Automated Planning, Morgan Kaufman, 2004

Links
- www.wi-ol.de

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency
- once a year

Module capacity
- unlimited

Reference text
- Dieses Modul ist im Rahmen der Projekte FiF und FoL konzipiert worden

Modullevel / module level
- AS (Akzentsetzung / Accentuation)

Modulart / typ of module
- je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
- V+Ü

Vorkenntnisse / Previous knowledge
- Produktionsorientierte Wirtschaftsinformatik

Examination
- Prüfungszeiten

Final exam of module
- At the end of the lecture period
- Practical exercises and oral exam or practical exercises and written exam or portfolio

Form of teaching
- Lecture
- Exercises

Frequency
- 2 WiSe
- 2 WiSe

Workload of compulsory attendance
- 28
- 28

Präsenzzeit Modul insgesamt
- 56 h
inf538 - Management of IT-Services

Module label: Management of IT-Services

Modulkürzel: inf538

Credit points: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik

Zuständige Personen:
- Sauer, Jürgen (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)
- Sauer, Jürgen (Module responsibility)

Prerequisites:
Professional competence
The students: - characterise problems that occur during the operation of large-scale operating systems - characterise conceptional, technical, economical and organizational problem-solving processes - use these concepts to solve problems validly
Methodological competence
The students: - describe a current problem area based on information from the internet and literature
Social competence
The students: - present their findings on a problem area - discuss their results regarding a specific application area
Self-competence
The students: - reflect actual concepts with regard to specific application areas

Module contents:
Content of the Module: "Adaptive Computing" deals with the field of concepts and solutions to manage large scale application systems or dynamic data centers. Technically oriented solutions like the configuration of data centers such as the hard- and software virtualization, the high availability, the storage management and the identity management are not the only contributions of Adaptive Computing. Others are organisational aspects of companies, such as personnel planning and service agreements. This module provides and compiles current topics of Adaptive Computing. The module also presents and evaluates several adaptive Computing technologies. Current HW-/ SW-concepts of large-scale application systems, strategies, service management and security concepts are specifically included. The lecture introduces current concepts and solutions for the management of dynamic data centers. Among others, the following subjects are provided: - IT-Strategy, Organisation - ITIL (overview) - Service-Management Tools (e.g. OTRS) - Outsourcing - Security (policies, privacy, data security, safety) - Spatial design of data centers - HW-Strategies: Cluster, Storage, ... - Virtualization - IdM - Portals - Configuration management - Accounting, performance calculation and evaluation, performance indicators - SOA, EAI - Controlling tools, Monitoring - Solutions: SAP Adaptive Computing

Literaturempfehlungen:
Suggested reading:
- current company data
- current materials from internet
- Tiemeyer, Ernst: Handbuch IT-Management: Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis, Hansen, 2006

Links:

Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: jährlich

Module capacity: unlimited

Modulelevel / module level: AS (Akzentsetzung / Accentuation)

Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method:

Vorkenntnisse / Previous knowledge:

Examination: Prüfungszeiten: at the end of the semester
Type of examination: Portfolio

Final exam of module: Workload of compulsory attendance:

Form of teaching: Comment: SWS: Frequency: Workload of compulsory attendance

Vorlesung und Seminar: 2: SoSe: 28

Exercises: 2: SoSe: 28

Präsenzzeit Modul insgesamt: 56 h
inf551 - Maritime Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Maritime Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf551</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Akzentsetzungmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
- Hahn, Axel (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
The module deals with the economic aspects and synergy effects of maritime sub-areas. In addition to the basic knowledge of the maritime sub-areas, current approaches from research are taught. The basic ship parameters are examined with regard to their economic efficiency, stability calculations and ship dynamics are derived and effects of the ship hull, propellers and systems on the economic efficiency of a ship are considered. The focus here is on understanding economic thinking and the interaction of the sub-areas. Furthermore, future-oriented solutions and trends will be discussed. **Professional competence** The students - name the basics of planning and control of operational logistics in a shipyard - name the basics of planning of economic design - recognise the application possibilities of simulation in design, construction and dynamics - identify the basic maritime sub-areas and their synergies **Methodological competence** The students - Link relations with tree structures - Illustrate the questions and concepts of the design process **Social competence** The students - Present computational problem solving to groups - Discuss their outcomes appropriately - Implement solutions of given problems in teams - Accept criticism of their peer group as valuable contributions **Self-competence** The students - reflect their self-image and their actions of their results

Module contents

Literaturempfehlungen

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
annually in winterterm

Module capacity
unlimited

Modulart / typ of module
Wahlmodul / Opportunity

Lehr-/Lernform / Teaching/Learning method
V+Ü

Vorkenntnisse / Previous knowledge
Transportsysteme, Analysis, Differentialgleichungen, lineare Algebra, Mechanik

Examination
Prüfungszeiten
Type of examination
- Final exam of module at the end of the lecture period practical exercises and oral examination

Form of teaching
<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
inf584 - Special Topics in 'Energy Informatics' I

Module label: Special Topics in 'Energy Informatics' I
Modulkürzel: inf584
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik

Zuständige Personen
Lehnhoff, Sebastian (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links

Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: unregelmäßig
Module capacity: unlimited

Modulelevel / module level: AS (Akzentsetzung / Accentuation)
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method: 2 Veranst. aus V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination
Final exam of module
At the end of the lecture period
Portfolio or presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>VA-Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf585 - Special Topics in 'Energy Informatics' II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Energy Informatics' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf585</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master's Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Lehnhoff, Sebastian (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
</tbody>
</table>

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- support team process by their abilities

Self-competences

The students:

- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents

See assigned course description

Literaturempfehlungen

As announced in course

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modullevel / module level

AS (Akzentsetzung / Accentuation)

Modulart / typ of module

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

2 Veranst. aus V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Prüfungszeiten

Type of examination

Examination

At the end of the lecture period

Final exam of module

Portfolio or presentation or oral exam

Form of teaching

VA-Auswahl
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf586 - Current Topics in 'Energy Informatics' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Energy Informatics' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf586</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Lehnhoff, Sebastian (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:
- communicate with users and experts convincingly

Self-competences
The students:
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
S oder V (2 SWS)

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination

Final exam of module
At the end of the lecture period
Presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf587 - Current Topics in 'Energy Informatics' II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Energy Informatics' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf587</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Lehnhoff, Sebastian (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Literatureempfehlungen

As announced in course

Links

German

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten

Type of examination

Presentation or oral exam

Final exam of module

At the end of the lecture period
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf588 - Special Topics in 'Medical Informatics'' I

Module label
Special Topics in 'Medical Informatics'' I

Modulkürzel
inf588

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik

Zuständige Personen
Hein, Andreas (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g. „Medizinische Bildverarbeitung“ or „Standard und Systeme für die Kommunikation in der Medizin“

Literaturempfehlungen
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
2 Veranst. aus V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination

Final exam of module
At the end of the lecture period
Portfolio or presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>VA-Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf589 - Spezielle Themen aus dem Gebiet "IT im Gesundheitswesen" II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Spezielle Themen aus dem Gebiet "IT im Gesundheitswesen" II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf589</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Hein, Andreas (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- support team process by their abilities

Self-competences

The students:

- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents

See assigned course description, e.g. „Medizinische Bildverarbeitung“ or „Standard und Systeme für die Kommunikation in der Medizin“

Literaturempfehlungen

As announced in the according course

Links

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modulelevel / module level

AS (Akzentsetzung / Accentuation)

Modulart / typ of module

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

2 Veranst. aus V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten

Type of examination

Final exam of module

At the end of the lecture period

Portfolio or presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>VA-Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf590 - Current Topics in 'Medical Informatics' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Medical Informatics' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf590</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Hein, Andreas (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Literaturempfehlungen

As announced in course

Links

German

Language of instruction

1 Semester

Duration (semesters)

unregelmäßig

Module frequency

unlimited

Module capacity

AS (Akzentsetzung / Accentuation)

Module level / module level

je nach Studiengang Pflicht oder Wahlpflicht

Modulart / typ of module

S oder V (2 SWS)

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfungszeiten

Examination

At the end of the lecture period

Final exam of module

Presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf591 - Aktuelle Themen aus dem Gebiet "IT im Gesundheitswesen" II

Modulkürzel: inf591
Credit points: 3.0 KP
Workload: 90 h

Verwendbarkeit des Moduls: Master's Programme Computing Science (Master) > Angewandte Informatik

Zuständige Personen:
Hein, Andreas (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
Skills to be acquired in this module:
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:
- communicate with users and experts convincingly

Self-competences
The students:
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents:
See assigned course description

Literaturempfehlungen:
As announced in course

Links:
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: unregelmäßig
Module capacity: unlimited

Modullevel / module level: AS (Akzentsetzung / Accentuation)
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method: S oder V (2 SWS)

Vorkenntnisse / Previous knowledge
Examination:
Prüfungszeiten
Type of examination
Final exam of module:
At the end of the lecture period
Presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf594 - Current Topics in 'Learning and Cognitive Systems' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Learning and Cognitive Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf594</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Möbus, Claus (Prüfungsberechtigt) Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description, e.g. „Kognitive Modellierung“, „KI und Wissensrepräsentation“

Literaturempfehlungen

As announced in course

Links

Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modullevel / module level

AS (Akzentsetzung / Accentuation)

Modulart / typ of module

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

S oder V (2 SWS)

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Course or seminar</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>
inf595 - Current Topics in 'Learning and Cognitive Systems' II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Learning and Cognitive Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf595</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
</tbody>
</table>

Workload

90 h

Verwendbarkeit des Moduls

- Master's Programme Computing Science (Master) > Angewandte Informatik

Zuständige Personen

- Möbus, Claus (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Literaturempfehlungen

As announced in course

Links

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

unregelmäßig

Module capacity

unlimited

Module level / module level

AS (Akzentsetzung / Accentuation)

Modulart / typ of module

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

S oder V (2 SWS)

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten

Type of examination

Final exam of module

At the end of the lecture period

Presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf596 - Spezielle Themen aus dem Gebiet "Computational Intelligence" I

Module label
Spezielle Themen aus dem Gebiet "Computational Intelligence" I

Modulkürzel
inf596

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik

Zuständige Personen
Kramer, Oliver (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g. „Medizinische Bildverarbeitung“ or „Standard und Systeme für die Kommunikation in der Medizin“

Literaturempfehlungen
As announced in the according course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
2 Veranst. aus V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination
Final exam of module
At the end of the lecture period
Portfolio or presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>VA-Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf597 - Spezielle Themen aus dem Gebiet "Computational Intelligence" II

Module label
Spezielle Themen aus dem Gebiet "Computational Intelligence" II

Modulkürzel
inf597

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik

Zuständige Personen
Kramer, Oliver (Prüfungsberechtigt)

Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:

- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:

- support team process by their abilities

Self-competences
The students:

- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
2 Veranst. aus V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination

Final exam of module
At the end of the lecture period
Portfolio or presentation or oral exam

Form of teaching
VA-Auswahl
<table>
<thead>
<tr>
<th>SWS</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf598 - Current Topics in 'Computational Intelligence' I

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
S oder V (2 SWS)

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination

Final exam of module
At the end of the lecture period
Presentation or oral exam

This module integrates current developments in the field in adequate study courses.

Professional competences
The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:

- communicate with users and experts convincingly

Self-competences
The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsentzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf599 - Aktuelle Themen aus dem Gebiet "Computational Intelligence" II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Aktuelle Themen aus dem Gebiet "Computational Intelligence" II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf599</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master's Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Kramer, Oliver (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description, e.g. „Kognitive Modellierung“, „KI und Wissensrepräsentation“

Literaturempfehlungen

As announced in course

Links

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

unregelmäßig

Module capacity

unlimited

Module level / module level

AS (Akzentsetzung / Accentuation)

Modularität / typ of module

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

S oder V (2 SWS)

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten

Type of examination

Final exam of module

At the end of the lecture period

Presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf604 - Business Intelligence I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Business Intelligence I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf604</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Applied Economics and Data Science (Master) > Data Science
- Master of Education Programme (Vocational and Business Education) Computing Science (Master of Education) > Mastermodule
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
- Marx Gomez, Jorge (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Objective of the module/skills:
Current module provides basics of business intelligence with focus on enterprises and strong emphasis on data warehousing technologies. Students of the course are provided with knowledge, which reflects current research and development in a data analytic domain.

Professional competence
The students:
- name and recognize the role of business intelligence as part of daily business process
- being able to analyse advantages and disadvantages of different approaches and methods of the data analytics and being able to apply them in simple case studies
- obtain theoretical knowledge about data collection and modelling processes, including most applicable approaches and best practices

Methodological competence
The students:
- being able to execute typical tasks of business intelligence, and also being able to deepen knowledge on different approaches and methods
- gain a hands on experience and being able to understand advantages and disadvantages of different methods and being able to use obtained knowledge in most efficient ways

Social competence
The students:
- build solutions based on case studies given to the group, for example solving the issue of a factless fact table
- discuss solutions on a technical level
- present obtained case studies solutions as part of the exercises

Self-competence
The students:
- critically review provided data and information

Module contents
Data warehousing technology together with business intelligence are increasingly being used by business in order to get better decision support and enrich ongoing processes with data-rich decisions. Data warehouse technology enables an integration of data from heterogeneous sources, whether business intelligence builds data processing on top of it. For instance, business intelligence allows to build reporting on very large volumes of data (including historical) coming primary from data warehouse.

As part of the current module following contents are taught:
- Definition and scope of business intelligence.
- Procedures and objectives of data warehousing.
• Process of extracting, transforming and loading (ETL) of data.
• Phases of data modelling, data capturing and reporting in conjunction with a plausible case studies/scenarios.
• Prospects for further and evolving topics for business intelligence (e.g. Adaptive Business Intelligence, In-MemoryComputing, etc.)
• Introduction to Data Mining.
• Case studies based practical exercises and assessments in order to impart practical knowledge.

Literaturempfehlungen

• Adamson (2010): The complete reference star schema.
• Marx Gómez, Rautenstrauch, Cissek (2008): Einführung in die Business Intelligence mit SAP NetWeaver 7.0.
• Müller, Lenz (2013): Business Intelligence.

Links
http://www.wi-ol.de

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Modulelevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method
V + Ü

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination

Final exam of module
At the end of the lecture period
Written exam max. 120 minutes

Form of teaching
Comment
SWS
Frequency
Workload of compulsory attendance

Lecture
2
WiSe
28

Exercises
2
WiSe
28

Präsenzzeit Modul insgesamt
56 h
inf607 - Business Intelligence II

Module label | Business Intelligence II
Modulkürzel | inf607
Credit points | 6.0 KP
Workload | 180 h

Verwendbarkeit des Moduls
- Master Applied Economics and Data Science (Master) > Data Science
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodul der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Marx Gomez, Jorge (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
Current module provides advanced business intelligence, data science with focus on enterprises and strong emphasis on big data and data analytics. Students of the course are provided with knowledge, which reflects current research and development in a data analytics domain.

Professional competence
The students:
- name and recognize the role of data analytics / data science as part of a daily business process in a particular company
- able to organize from management perspective data analysis project
- being able to analyse advantages and disadvantages of different approaches and methods of the data analytics and being able to apply them in simple case studies
- obtain theoretical knowledge about data collection and modelling processes, including state of the art approaches and available best practices

Methodological competence
The students:
- being able to execute typical tasks of data analysis, and also being able to proceed deeper with respect to different approaches and methods
- gain a hands on experience and being able to understand advantages and disadvantages of different methods and being able to use obtained knowledge

Social competence
The students:
- build solutions based on case studies given to the group, for example design of regression model based on provided dataset
- discuss solutions on a technical level
- present obtained case studies solutions as part of the exercises

Self-competence
The students:
- critically review provided offered information

Module contents
After current course students will get advanced knowledge in the domains such as business intelligence and data analytics. Besides that, students will have a chance to have a deeper look into related technical fields such as InMemory Computing, Data Mining and Machine Learning, Big Data Processing with Distributed Systems (e.g. Apache Hadoop / Spark) from both, research and practical, perspectives. Students will be provided with real-world experience gained from business intelligence and data science related projects. Materials of the course are believed to be justified with current demands of data analytics market. Thus, providing students with relevant knowledge in order to give them advantages in future job.

Literaturempfehlungen
- Jürgen Cleve, Uwe Lämmel (2014): "Data mining" (Deutsch)
- Max Bramer (2013): "Principles of data mining" (English)
- Ian Witten, Eibe Frank, Mark Hall (2011): "Data mining : practical machine learning tools and..."
Links

http://www.wi-ol.de/

Languages of instruction

German, English

Duration (semesters)

1 Semester

Module frequency

jährlich

Module capacity

unlimited

Module level / module level

AS (Akzentsetzung / Accentuation)

Modulart / type of module

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

SE nach Ankündigung zu Beginn der Veranstaltung (2 SWS V + 2 SWS Ü oder Blockseminar)

Vorkenntnisse / Previous knowledge

Final exam of module

At the end of the lecture period

Form of teaching

| Lecture | 2 | SoSe | 28 |
| Seminar | 2 | SoSe | 28 |

Präsenzzeit Modul insgesamt

56 h
inf650 - Transport Systems

Module label: Transport Systems

Modulkürzel: inf650

Credit points: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Hahn, Axel (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
Objective of the module/skills:
The Module Transport systems deals with planning and controlling systems of internal and external company logistics as well as public transport. It provides basic knowledge and recent research topics. The focus is on a resource orientated holistic view of company logistics as well as the planning of transport infrastructure. Furthermore, trends such as autonomous vehicles and intelligent transport systems are discussed.

Professional competence
The students:
- name the basics of planning and controlling company logistics
- assess transport systems of companies
- name methods and approaches of computer aided transport systems and classify them
- characterise software to plan complex logistics

Methodological competence
The students:
- display topics and concepts of transport systems
- simulate transport and its systems with appropriate methods

Social competence
The students:
- work in groups
- discuss their results appropriately

Self-competence
The students:
- realise their limits while working on a project containing aspects of modelling and implementation
- question the presentation of their results

Module contents
- Transport and logistics concepts
- Data acquisition of company logistics
- Planning- and simulation software for complex logistics- and transport processes
- Energy- and resource efficient transport systems
- Resource oriented transport cost calculations (e.g. CO2, noise pollution)
- Planning models for transport infrastructure

Literaturempfehlungen
Suggested reading:
- Produktion und Logistik (Springer-Lehrbuch) von Hans-Otto Günther und Horst Tempelmeier von
<table>
<thead>
<tr>
<th>Links</th>
<th>http://wi-ol.de</th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td>Dieses Modul ist im Rahmen der Projekte FiF und FoL konzipiert worden</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Produktionsorientierte Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Präsenzzzeit Modul insgesamt</td>
<td></td>
</tr>
</tbody>
</table>
inf651 - Environmental Management Information Systems I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Environmental Management Information Systems I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf651</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Business Administration, Economics and Law (Master) > Schwerpunkt "Nachhaltigkeitsmanagement" (NM)
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Sustainability Economics and Management (Master) > Additional Modules

Zuständige Personen
Marx Gomez, Jorge (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
This module completes the knowledge and abilities gained in the field of Environmental Informatics and it creates a strong reference to up to date topics in the field of sustainability. The content taught in this module can directly be applied in an upcoming study and professional career.

Professional competence
The students:
- are able to classify and explain the sustainability paradigm
- are aware of the current status of sustainability reporting
- are able to define and to model material flows
- have obtained know-how in the field of corporate environmental management information systems (CEMIS)

Methodological competence
The students:
- implement CEMIS
- apply different techniques and methods to case studies
- develop new case studies in teams

Social competence
The students:
- are supposed to work in teams and therefore have to identify working packages and have to take on responsibility for the jobs assigned to them
- present and discuss their own results with the team and the other members of the course

Self-competence
The students:
- learn about their own limitations and learn to accept criticism in order to strengthen their own abilities

Module contents
This course teaches methods, approaches and techniques in the field of information processing in order to support solutions to problems that arise from companies' impact on the environment. In particular, ICT supported approaches of production-integrated environmental protection, environmental controlling and reporting are introduced and discussed. In order to enable the integration of such approaches into environmental protection, environmental management and its systems are taught as well.

The content in detail:
- environmental management as a basis for sustainability
- sustainability and material flow management
- strategic environmental management
- eco-controlling life cycle
- characteristics and system architectures of CEMIS
- standard software systems
- environmental accounting systems
Literaturempfehlungen

Links
http://www.wi-ol.de

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
V+Ü

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination
Final exam of module
At the end of the lecture period
exercises and written exam (max. 120 min.)

Form of teaching
Comment
SWS
Frequency
Workload of compulsory attendance
Lecture
2
SoSe
28
Exercises
2
SoSe
28

Präsenzzeit Modul insgesamt
56 h
inf652 - Production-oriented Business Informatics

Module label: Production-oriented Business Informatics

Modulkürzel: inf652

Credit points: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodulte der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik

Zuständige Personen
- Hahn, Axel (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
The module deepens the contents of the modules „Wirtschaftsinformatik“ and „Wirtschaftsinformatik/Informationsmanagement“. The students will be able to contextualise IT systems and their functions in companies. They are able to participate in the implementation of IT systems in companies. The students know the essential tasks of materials management, production planning and controlling, warehousing, acquisition and supply chain management.

Professional competence
The students:
- name and differentiate the basics of business informatics and information management
- classify IT systems and their functions in companies
- name and characterise the essential tasks of materials management, production planning and controlling, warehousing, acquisition and supply chain management

Methodological competence
The students:
- transfer a holistic development process of production planning and control
- implement IT systems in businesses

Social competence
The students:
- participate in implementing IT systems in companies
- construct and present computational solutions to groups and within their work group
- integrate professional and objective criticism in their own and others’ results

Self-competence
The students:
- recognize the planning horizon for IT systems
- reflect their role and skills to implement IT systems in businesses

Module contents
The module "Production-oriented Business Informatics“ deals especially with production planning and control processes affected by process planning tasks, as well as classic problems of industrial production. The lecture is focussed on the application of information systems in industrial production companies. Priorities are order flow business processes and PPS-/ERP-Systems. Case studies and demonstrations illustrate the application of these systems.

Literaturempfehlungen
- Kurbel, Karl: Produktionsplanung und -steuerung im Enterprise Resource Planning und Supply Chain Management, Oldenbourg Verlag, 2005
- Further literature will be announced in the lecture

Links
- **Language of instruction**: German
- **Duration (semesters)**: 1 Semester
- **Module frequency**: jährlich
- **Module capacity**: unlimited
<table>
<thead>
<tr>
<th>Modullevel / module level</th>
<th>AS (Akzentsetzung / Accentuation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Exercises and written exam</td>
</tr>
</tbody>
</table>

Form of teaching

| Lecture | 3 | SoSe | 42 |
| Exercises | 1 | SoSe | 14 |

Präsenzzeit Modul insgesamt 56 h
Module Overview

inf653 - ERP Technologies

<table>
<thead>
<tr>
<th>Module label</th>
<th>ERP Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf653</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
</tbody>
</table>

Workload

180 h

Verwendbarkeit des Moduls

- Master of Education Programme (Vocational and Business Education) Computing Science (Master of Education) > Mastermodule
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik

Zuständige Personen

Marx Gomez, Jorge (Prüfungsberechtigt)

Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Learning objectives:

- Generation of understandings into the working approaches and tasks of ERP systems
- Examining components of ERP systems
- Generating knowledge about important aspects of the operation processes of ERP systems, such as data storage and processing, user management, and system maintenance.

Professional competence

The students:

- describe ERP systems in compliance with functions and technologies
- identify state-of-the-art and future architectures of ERP systems
- discuss the usage of core technologies (also in practical case studies, for example with SAP NetWeaver)

Methodological competence:

The students:

- categorize fundamental technologies in combination with other enterprise-wide information systems
- apply the presented methods in practical contexts

Social Competence:

The students:

- construct solutions to given problems in groups
- present solutions to computing science problems before groups

Self-competence:

The students:

- recognize the limits of their capacity in implementing and customizing of business application systems

Module contents

The module provides the following content:

- Overview of the components of ERP systems and their functionality and administration
- In-depth analysis of ERP system architecture under consideration of surface structures and user management in ERP systems, with focus on of data storage, particularly the used data models and database structures, backup and recovery strategies
- Deployment of ERP applications in form of application service providing, including the technical characteristics of this business model, especially Special Administration, delimitation and monitoring tasks for systems, which at the same time be provided several customers

Lecture will be accompanied by SAP case studies.

Literaturempfehlungen

<table>
<thead>
<tr>
<th>Links</th>
<th>http://www.wi-ol.de</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>End of lecture period</td>
<td>Practical Exercise and Portfolio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
inf654 - Mobile Commerce

<table>
<thead>
<tr>
<th>Module label</th>
<th>Mobile Commerce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf654</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master of Education Programme (Vocational and Business Education) Computing Science (Master of Education) > Mastermodule
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodul der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik

Zuständige Personen

Marx Gomez, Jorge (Prüfungsberechtigt)

Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Professional competence

The students:

- define and encompass MC
- explain the development stages of MC
- are aware of the current developments within MC and are able to classify them
- get to know technical essentials, functionalities and standards of wireless ICT
- assess the fields of application and limitations of wireless ICT
- examine the relevant mobile devices and their respective operating systems, know their characteristics and evaluate their fields of application
- examine market participants, assess business models, optimize business processes
- gain insight into specifics via examples and exercises

Methodological competence

The students:

- get to know security aspects and specifics of mobile application design
- prototypically develop an Android application
- prepare and give presentations
- develop a concept of a business model for an Android application

Social competence

The students:

- work on their project in groups of three

Self-competence

The students:

- reflect their own group-dynamic activities in respect of a mutual goal (successfully finish their project)

Module contents

See above

Literaturempfehlungen

- Also all materials provided within the lecture

Links

http://vlba.wi-ol.de

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

jährlich

Module capacity

unlimited

Modullevel / module level

AS (Akzentsetzung / Accentuation)

Modulart / typ of module

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning

V+Ü
Method

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
</tr>
<tr>
<td>Final exam of module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzzeit Modul insgesamt 56 h
inf655 - IT-Controlling

Module label IT-Controlling
Modulkürzel inf655
Credit points 6.0 KP
Workload 180 h

Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodulle der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik

Zuständige Personen
Marx Gomez, Jorge (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
This module emphasizes the importance of IT-Controlling within an enterprise. The students gain knowledge on practically orientated technologies in order to leave a better understanding for the application and conversion possibilities of IT-Controlling.

Professional competence
The students:
- name general tasks and functions of IT-Controlling.
- recognize the importance strategical IT-Controlling applications.
- learn strategies and methods of IT-Controlling.
- identify the existence of an IT-Strategy as a pre condition of IT-Controlling.
- know about the risks of IT-Outsourcing.
- use IT-Controlling tools (e.g. information systems, portfolio analysis, benchmarking IT-Reporting).

Methodological competence
The students:
- use their knowledge by independently compiled presentations on recent IT-Controlling subjects.

Social competence
The students:
- discuss their results essentially and appropriately in this subject.
- present their subjects to the group.

Self-competence
The students:
- understand and analyse their own state of knowledge.
- reflect their own effects on groups.

Module contents
The employment of information technologies for enterprises is usually a key factor. By the change of our society to an information society, information gains more and more importance and takes a central role within ICT systems. The specifics of the ICT area cannot be supported by the classical economic controlling. The application of a strategical IT-Controlling becomes more and more important. The result of a study shows that in the meantime in about 80% of the German enterprises an ICT strategy was compiled. However, the study makes also clear, that about two out of three enterprises use no methods of strategical IT-Controlling. The new discipline of IT-Controlling provides plans and methods to avoid isolated applications.

Literaturempfehlungen
- Gadatsch, A: IT-Controlling: Praxiswissen für IT-Controller und Chief-InformationOfficer. Springer Verlag, 2012
- Gadatsch, A, Mayer, E: Masterkurs IT-Controlling: Grundlagen und Praxis für ITController und CIOs- Balanced Scorecard- Portfoliomanagement- Wertbeitrag der ITProjekcontrolling-Kennzahlen
 - IT-Sourcing- IT-Kosten und Leistungsrechnung. 5 Auflage. Springer Vieweg, 2014

Links
http://www.wi-ol.de

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
jährlich
<table>
<thead>
<tr>
<th>Modulkapazität</th>
<th>unlimited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnivelle / Modultyp</td>
<td>AS (Akzentsetzung / Accentuation) je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehre-/Lernform / Lehre-/Lernform</td>
<td>V+Ü</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Practical work, papers or written examination. Announcement at the beginning of the lecture</td>
<td></td>
</tr>
</tbody>
</table>

Form of teaching

<table>
<thead>
<tr>
<th>SWS</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
inf657 - Product Engineering

Module label
Product Engineering

Modulkürzel
inf657

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodul der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Hahn, Axel (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
Focus of this module is to learn and apply the product engineering process. A project will enable the students to design a product from the idea to the prototype. More specifically, a systematic, partial domain-specific, approach to solve technical problems and aspects of project management will be learned. Regular meetings are used to train the presentation capabilities of the students and to schedule working packages within the teams.

Professional competence
The students:

- learn and try out the handling of virtual and physical prototypes
- learn and try out the construction and validation of virtual prototypes with the aid of CAD-applications
- learn and combine different basic development concepts from the mechanical engineering, microelectronics, control engineering and software engineering

Methodological competence
The students:

- learn and try out project management concepts
- learn and recognise the connections of different development concepts from different fields, e.g. mechanical engineering, control engineering, microelectronics and software engineering
- develop own products with creativity techniques
- schedule and organise the product development supported by project management techniques independently
- learn the systematic refining of their own product idea with SysML
- design and test products with state-of-the-art CAD-applications

Social competence
The students:

- impart their structure and mode of action to other people
- develop their own products in small teams
- present their solutions to groups
- integrate criticism to their solutions
- support other groups by giving appropriate criticism

Self-competence
The students:

- recognise and reflect their own limitations to get familiar and to plan a project in an unknown field (e.g. maritime construction/industries)

Module contents
This module is a lecture accompanied by a hands-on project. The students work on one product development task. The product development starts with the idea-finding/brainstorming process which is used to create a digital product concept. During the semester a digital prototype will be created and validated by its initial requirements. Finally, a physical prototype is produced with a 3D-Printer (Rapid Prototyping). The progress of the project has to be documented and presented at different milestones.

Literaturempfehlungen
- Ehrlenspiel (2003): Integrierte Produktentwicklung

Links
www.wi-ol.de
<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>Once a year</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td>The lecture material contains English parts</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
</tr>
<tr>
<td>Final exam of module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
inf659 - Environmental Management Information Systems II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Environmental Management Information Systems II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf659</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | • Master's Programme Business Administration, Economics and Law (Master) > Schwerpunkt "Nachhaltigkeitsmanagement" (NM)
• Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
• Master's Programme Computing Science (Master) > Angewandte Informatik
• Master's Programme Environmental Modelling (Master) > Mastermodule
• Master's Programme Sustainability Economics and Management (Master) > Additional Modules |
| Zuständige Personen | Marx Gomez, Jorge (Prüfungsberechtigt) Lehrenden, Die im Modul (Prüfungsberechtigt) |
| Prerequisites | This course aims at examining emerging research questions in the field of corporate environmental management information systems (CEMIS). After finishing this course, the students will have extensive knowledge regarding Business Environmental Informatics. In addition, they will be aware of recent research topics and challenges as well as relevant software solutions and practical projects. |

Professional competence

The students:

- will obtain extensive knowledge in the field of CEMIS
- know emerging research questions and challenges as well as software solutions and projects

Methodological competence

The students:

- find their own solutions or apply already existing approaches to new and unsolved questions in the field of CEMIS
- capture required data, analyse it and present it to their team or the whole group

Social competence

The students:

- are supposed to work in teams and therefore have to identify working packages and have to take on responsibility for the jobs assigned to them
- present and discuss their own results with the team and the other members of the course

Self-competence

The students:

- learn about their own limitations and learn to accept criticism in order to strengthen their own abilities

Module contents

A strong social pressure forces enterprises to question their current way of implementing their business and to include different aspects of sustainability into their strategies and operational actions. Such a rethinking of one's business is supported by corporate environmental management information systems. Such systems aim at optimising the energy and resource usage, emission and waste minimisation as well as production integrated environmental protection. Of course they support the fulfillment of legal requirements such as waste management or hazardous material handling.

The module will cover:

- recent and emerging research questions and topics related to the field of CEMIS as well as Business Environmental Informatics.
- discussion and hands-on experience of standard software systems and newly established solutions.
- applying the knowledge obtained to the definition of new as well as on solving new case studies.

Literatureempfehlungen

<table>
<thead>
<tr>
<th>Reference text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rautenstrauch, C. (1999), Betriebliche Umweltinformationssysteme, Springer-Verlag</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://www.wi-ol.de</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Languages of instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>German, English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration (semesters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>jährlich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type and language of program will be announced prior to the beginning of the course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modullevel / module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulart / typ of module</th>
</tr>
</thead>
<tbody>
<tr>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehr-/Lernform / Teaching/Learning method</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (2 SWS), Ü (2 SWS) oder SE</td>
</tr>
<tr>
<td>Nach Ankündigung zu Beginn der Veranstaltung (2SWS V + 2 SWS Ü oder Blockseminar)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
</tr>
<tr>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Type of examination</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final exam of module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usually 2 weeks after the end of the lecture period</td>
</tr>
<tr>
<td>Seminar paper and presentation or term paper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Präsenzzzeit Modul insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
</tr>
</tbody>
</table>
inf660 - Sustainability Informatics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Sustainability Informatics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf660</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>Type and language of program will be announced prior to the beginning of the course. The course is recognised as a practical project in the Master's programme Sustainability Economics and Management.</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master's Programme Business Informatics (Master) > Akzentsetzungsmodul der Informatik</td>
</tr>
<tr>
<td></td>
<td>• Master's Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Marx Gomez, Jorge (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Bremer-Rapp, Barbara (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>After finishing this course, students should be able to set up a sustainability report tailormade for different target groups for any kind of organization. The students will be enabled to know and apply different available standards and guidelines as well as to estimate the influence of data defects and the feasibility of recent information and communication technology. This course emphasizes the importance of sustainability reporting as a means of an organization's communication (internal and external) and provides an overview on relevant indicators, standards and guidelines. Based on that the handling of data defects and missing data as well as different approaches of reporting will be discussed. In addition, the specific requirements of different target groups regarding content and presentation of a report will be discussed as well.</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Professional competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• are aware of different indicators, standards and guidelines and know when to apply which.</td>
</tr>
<tr>
<td></td>
<td>• know different approaches of data capturing, interpolation of missing or corrupt data as well as the influence of each of these issues on the validity of a report.</td>
</tr>
<tr>
<td></td>
<td>• implement concepts for tailormade target group orientation.</td>
</tr>
<tr>
<td>Methodological competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• prepare a small sustainability report based on their decision which standard or guideline to use.</td>
</tr>
<tr>
<td></td>
<td>• capture existing data and analyse it.</td>
</tr>
<tr>
<td></td>
<td>• prepare a tailormade target oriented presentation of their results.</td>
</tr>
<tr>
<td>Social competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• are supposed to work in teams and therefore have to identify working packages and have to take on responsibility for the jobs assigned to them.</td>
</tr>
<tr>
<td></td>
<td>• present and discuss their own results with the team and the other members of the course</td>
</tr>
<tr>
<td>Self-competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• learn about their own limitations and learn to accept criticism in order to strengthen their own abilities</td>
</tr>
<tr>
<td>Module contents</td>
<td>The following topics will be covered in this module:</td>
</tr>
<tr>
<td></td>
<td>• different definitions of the term sustainability.</td>
</tr>
<tr>
<td></td>
<td>• the importance of sustainability reporting as a means of an organisation's communication.</td>
</tr>
<tr>
<td></td>
<td>• LCA, environmental accounting, supply chain management as data sources.</td>
</tr>
<tr>
<td></td>
<td>• semantic, comparability and transformation of indicators, standards and guidelines.</td>
</tr>
<tr>
<td></td>
<td>• interpolation and interpretation of data defects.</td>
</tr>
<tr>
<td></td>
<td>• how to report (e.g. knowledge management, document engineering, integrated reporting, different target groups).</td>
</tr>
</tbody>
</table>
Literaturempfehlungen

Links
http://vlba.wi-ol.de

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency

Module capacity
unlimited

Reference text
Die Lehrveranstaltung wird im Masterstudiengang Sustainability Economics and Management als practical project anerkannt.

Modullevel / module level
AC (Aufbaucurriculum / Composition)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination

Form of teaching
Comment
SWS
Frequency
Workload of compulsory attendance

- Lecture
 Comment
 SWS
 Frequency
 Workload of compulsory attendance

- Übung oder Praktikum
 Comment
 SWS
 Frequency
 Workload of compulsory attendance

Präsenzzeit Modul insgesamt
56 h
inf661 - Digital Transformation

Module label: Digital Transformation
Modulkürzel: inf661
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodul der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik

Zuständige Personen:
Marx Gomez, Jorge (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:
After successful completion of the lecture, the students should be able to define enabler and actors of a digital transformation within the context of a model company. Furthermore, key competences such as Cloud Computing or IoT are used to make potential exploitation by new digital business models visible. The results will be evaluated.
The lecture explains basic properties of a digital transformation for companies and shows specific development potential. By forming and building a model company, students are able to create a realistic and practical scenario. A final documentation reveals the degree of fulfilment and the students' point of view on the scenario.

Skills to be acquired in this module:
- recognize basic properties and facts of a digital transformation for companies
- devise different terms of digital transformation
- expose actual introduction projects
- compile practical knowledge by dividing goals of enabler and actors of a digital transformation
- obtain basic knowledge of key competences such as IT-Security, Data Analytics, Big Data, Cloud Computing
- identify digital business models within the specific development potential

Professional competence:
The students:
- determine and analyse required information
- prepare the given information for specific target groups
- establish an analytical understanding of digital enterprise structures within key competences and applications

Methodological competence:
The students:
- work in groups, identify work packages and take on responsibility for the jobs assigned to them
- discuss and introduce the results on a functional level

Social competence:
The students:
- reflect their actions on the basis of self defined objectives
- analyse their own state of knowledge

Module contents:
Within the lecture the upcoming topics are discussed:
- definition and introduction of digital transformation
- success factors, market changes and introductory projects
- enabler of a digital transformation (competences, applications and structures)
- digital business models and networks
- actors of a digital transformation
- Industry 4.0 in the context of a digital transformation

Literaturempfehlungen:

<table>
<thead>
<tr>
<th>Links</th>
<th>http://www.wi-ol.de</th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages of Instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>AC (Aufbaucurriculum / Composition)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehre-/Lernform / Teaching/Learning method</td>
<td>Referat, Projekt oder Klausur. Bekanntgabe zu Beginn der Veranstaltung</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

Examination

- **Final exam of module**: After the end of the lecture period
- Type of examination: Papers, project or written examination. Announcement at the beginning of the lecture period.

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt: 56 h
 inf663 - Application Area Maritime

Module label Application Area Maritime
Modulkürzel inf663
Credit points 6.0 KP
Workload 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master’s Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Hahn, Axel (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
Skills to be acquired in this module
Professional competences:
The students gain knowledge about ship handling and navigation and learn to understand maritime transportation as a system of systems with systems on board for stability, propulsion and steering as for bridge resource management. They understand the latter as a mayor contribution to organize navigation as a hierarchical team concept of a safety critical sociotechnical system. The students are aware of the special technical and physical challenges of navigation.

Methodological competences:
The students can apply system engineering methods to describe, analyse and design maritime systems. By looking on maritime transportation the gain transferable knowledge on other cyber physical systems. Students learned to how systems can deal with harsh environmental conditions in a resilient way.

Social competences:
Maritime transportation is a mayor basis of a global economy. Typically, students do not have an understanding of these transportation systems nor their technical and systemic challenges. Therefore, the student knows the concepts of maritime transportation and its role in international transportation networks after finishing this module.

Self-Competences:
Especially their competences cover an understanding as maritime transportation as a systems of system with high requirements on reliability, dependability and safety in combination with efficiency to be competitive in a global economy.

Module contents
The module consists of a lecture and an exercise part:
Lecture: - Maritime Transportation in global and local supply chains, Base concepts of ship handling and navigation, maritime system dynamics, bridge resource management, eNAvigation and high automation systems.
Seminar: Covering aspects of maritime transportation

Literatureempfehlungen
Bernhard Berking, Werner Huth (Herausgeber), Handbuch Nautik 1: Navigatorische Schiffsführung, Seehafen Verlag, 2010

Links
Language of instruction English
Duration (semesters) 1 Semester
Module frequency Once a year
Module capacity unlimited
Modulelevel / module level AS (Akzentsetzung / Accentuation)
Modulart / typ of module Pflicht o. Wahlpflicht / compulsory or optional
Lehr-/Lernform / Teaching/Learning method V+S

Vorkenntnisse / Previous knowledge
Examination Prüfungszeiten Type of examination
Final exam of module At the end of the lecture period Oral exam and documentation
Form of teaching Comment SWS Frequency Workload of compulsory attendance

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>Sose und WS</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>Sose und WS</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
inf690 - Special Topics in 'Business Informatics' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Business Informatics' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf690</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
 | Master's Programme Computing Science (Master) > Angewandte Informatik |

Zuständige Personen
Lehrenden, Die im Modul (Prüfungsberechtigt)
Hahn, Axel (Module responsibility)
Marx Gomez, Jorge (Module responsibility)
Sauer, Jürgen (Module responsibility)

Prerequisites
Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and
- apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links
Language of instruction German
Duration (semesters) 1 Semester
Module frequency unregelmäßig
Module capacity unlimited
Modullevel / module level AS (Akzentsetzung / Accentuation)
Modulart / typ of module je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method 2 Veranst. aus V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge
Examination Prüfungszeiten Type of examination
Final exam of module At the end of the lecture period Portfolio or presentation or oral exam

Form of teaching VA-Auswahl
SWS 2
Frequency Sose oder WiSe
| Workload Präsenzzzeit | 28 h |
inf691 - Special Topics in 'Business Informatics' II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Business Informatics' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf691</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Marx Gomez, Jorge (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Hahn, Axel (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Sauer, Jürgen (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>This module integrates current developments in the field, especially with a focus on corporate environmental management information systems, in adequate study courses.</td>
</tr>
<tr>
<td></td>
<td>Professional competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>- recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>- identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>- apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>- are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>- discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td></td>
<td>Methodological competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- evaluate and apply tools, technology and methods sophisticatedly</td>
</tr>
<tr>
<td></td>
<td>- combine new and original approaches and methods creatively</td>
</tr>
<tr>
<td></td>
<td>- evaluate problems/tasks, including new or developing subject areas of their discipline and</td>
</tr>
<tr>
<td></td>
<td>- apply computer science methods for solutions and research</td>
</tr>
<tr>
<td></td>
<td>Social competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- support team process by their abilities</td>
</tr>
<tr>
<td></td>
<td>Self-competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>- implement innovative professional activities effectively and independently</td>
</tr>
<tr>
<td>Module contents</td>
<td>See assigned course description</td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td>As announced in course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>2 Veranst. aus V, S, Ü P, PR</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf692 - Special Topics in 'Business Informatics' III

Module label Special Topics in 'Business Informatics' III
Modulkürzel inf692
Credit points 6.0 KP
Workload 180 h
Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
Zuständige Personen
Marx Gomez, Jorge (Module responsibility)
Hahn, Axel (Module responsibility)
Sauer, Jürgen (Module responsibility)

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field, especially with a focus on business intelligence, in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modulelevel / module level: AS (Akzentsetzung / Accentuation)
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method: 2 Veranst. aus V, S, Ü P, PR

Vorkenntnisse / Previous knowledge
Examination: Prüfungszeiten
Type of examination: Portfolio or presentation or oral exam

Final exam of module
At the end of the lecture period

Form of teaching
VA-Auswahl

SWS
2

Frequency
Sose oder WiSe
| Workload Präsenzzzeit | 28 h |
inf693 - Special Topics in 'Business Informatics' IV

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Business Informatics' IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf693</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik

Zuständige Personen
Lehrenden, Die im Modul (Prüfungsberechtigt)
- Marx Gomez, Jorge (Module responsibility)
- Hahn, Axel (Module responsibility)
- Sauer, Jürgen (Module responsibility)

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and
- apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
2 Veranst. aus V, S, Ü, P, PR (4SWS)

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination

Final exam of module
At the end of the lecture period
Portfolio or presentation or oral exam

Form of teaching
VA-Auswahl

SWS
4
Frequency
Sose oder WiSe
| Workload Präsenzzeit | 56 h |
inf694 - Current Topics in 'Business Informatics' I

Module label: Current Topics in 'Business Informatics' I
Modulkürzel: inf694
Credit points: 3.0 KP
Workload: 90 h

Verwendbarkeit des Moduls:
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik

Zuständige Personen:
Lehrenden, Die im Modul (Prüfungsberechtigt)
Marx Gomez, Jorge (Module responsibility)
Hahn, Axel (Module responsibility)
Sauer, Jürgen (Module responsibility)

Prerequisites:
Skills to be acquired in this module:
This module integrates current developments in the field in adequate study courses.

Professional competences:
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences:
The students:
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences:
The students:
- communicate with users and experts convincingly

Self-competences:
The students:
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents:
See assigned course description

Literaturempfehlungen:
As announced in course

Links:
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: unregelmäßig
Module capacity: unlimited

Modullevel / module level: AS (Akzentsetzung / Accentuation)
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method:
S oder V (2 SWS)

Vorkenntnisse / Previous knowledge:

Examination:
Prüfungszeiten
Type of examination
Final exam of module:
At the end of the lecture period
Presentation or oral exam

Form of teaching:
Course or seminar

SWS:
2
Frequency:
Sose oder WiSe

99 / 325
| Workload Präsenzzzeit | 28 h |
inf695 - Current Topics in 'Business Informatics' II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Business Informatics' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf695</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | Master’s Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
Master’s Programme Computing Science (Master) > Angewandte Informatik |

Zuständige Personen

Lehrenden, Die im Modul (Prüfungsberechtigt)
- Marx Gomez, Jorge (Module responsibility)
- Hahn, Axel (Module responsibility)
- Sauer, Jürgen (Module responsibility)

Prerequisites

This module integrates current developments in the field, especially with a focus on corporate environmental management information systems, in adequate study courses.

Professional competences

The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:
- communicate with users and experts convincingly

Self-competences

The students:
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Literatureempfehlungen

As announced in course

Module page

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
<tr>
<td>Modulart / module level</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>

Form of teaching

<table>
<thead>
<tr>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
</tr>
</tbody>
</table>
inf696 - Current Topics in 'Business Informatics' III

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Business Informatics' III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf696</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Marx Gomez, Jorge (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Hahn, Axel (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Sauer, Jürgen (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites
- This module integrates current developments in the field, especially with a focus on business intelligence, in adequate study courses.

Professional competences
- The students:
 - define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
 - recognise and evaluate applied techniques and methods of their subject and are aware of their limits
 - identify, structure and solve problems/tasks, also in new or developing subject areas
 - apply state of the art and innovative methods to solve problems, if necessary from other disciplines
 - are aware of the current limits and contribute to the development of computer science research and technology
 - discuss and evaluate recent computer science developments

Methodological competences
- The students:
 - examine tasks with technical and research literature, write an academic article and present their solutions academically
 - evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
 - schedule time processes and resources

Social competences
- The students:
 - communicate with users and experts convincingly

Self-competences
- The students:
 - pursue the overall and special computer science development critically
 - develop and reflect self-developed hypotheses to theories independently

Module contents
- See assigned course description

Literaturempfehlungen
- As assigned in course

Links
- Language of instruction: German
- Duration (semesters): 1 Semester
- Module frequency: unregelmäßig
- Module capacity: unlimited
- Modullevel / module level: AS (Akzentsetzung / Accentuation)
- Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht
- Lehr-/Lernform / Teaching/Learning method: S oder V (2 SWS)

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Course or seminar</td>
<td></td>
</tr>
</tbody>
</table>

SWS
- 2
<table>
<thead>
<tr>
<th>Frequency</th>
<th>WiSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf697 - Current Topics in 'Business Informatics' IV

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Business Informatics' IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf697</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik</td>
</tr>
<tr>
<td></td>
<td>Master’s Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Marx Gomez, Jorge (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Hahn, Axel (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Sauer, Jürgen (Module responsibility)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td></td>
<td>Professional competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>- recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>- identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>- apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>- are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>- discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td></td>
<td>Methodological competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- examine tasks with technical and research literature, write an academic article and present their solutions academically</td>
</tr>
<tr>
<td></td>
<td>- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td></td>
<td>- schedule time processes and resources</td>
</tr>
<tr>
<td></td>
<td>Social competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- communicate with users and experts convincingly</td>
</tr>
<tr>
<td></td>
<td>Self-competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>- develop and reflect self-developed hypotheses to theories independently</td>
</tr>
<tr>
<td>Module contents</td>
<td>See assigned course description</td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td>As assigned in course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>S oder V (2 SWS)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Course or seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WISe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
Technische Informatik

inf300 - Hybrid Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Hybrid Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf300</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Computing Science (Master) > Theoretische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen

Fränzle, Martin Georg (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

The module gives an introduction to hybrid discrete-continuous systems, as arising by embedding digital hardware into physical environments, and it elaborates on state of the art methods for the mathematical modelling and the analysis of such systems. It thus provides central competences for understanding and designing reliable cyber-physical systems.

Professional competence

The students:

- characterise formal models of cyber-physical systems: hybrid automata, hybrid state transition systems
- name domain-specific system requirements: safety, stability, robustness
- name analysis methods: symbolic state-space exploration, abstraction and abstraction refinement, generalized Lyapunov-Methods
- use state-of-the-art analysis tools
- select and apply adequate modelling and analysis methods for concrete application scenarios
- apply methods to reduce large state spaces and reduce infinite-state systems by abstraction
- know the de-facto industry standards for system modelling and are able to apply the corresponding modelling frameworks and tools

Methodological competence

The students:

- model heterogeneous dynamical systems with adequate modelling and design tools, in particular Simulink/Stateflow
- transfer modelling and analysis methods to other heterogeneous domains, e.g. socio-technical systems

Social competence

The students:

- work in teams
- solve complex modelling, design, and analysis tasks in teams

Self-competence

The students:

- reflect their actions and respect the scope of methods dedicated to hybrid systems

Module contents

Embedded computer systems continuously interact with their environment, which generally comprises state- and time-continuous components. The coupling of the embedded system to its environment thus induces complex interleavings between discrete computational and decision processes and continuous processes. The resulting processes are neither amenable to the analytic techniques of continuous control nor of discrete mathematics. They instead require a broader, integrated theory: hybrid discrete-continuous systems. The lectures provide an in-depth introduction into a variety of analysis and design methods of these computer-based systems and their recent extensions to cyber-physical systems.
The accompanying hands-on-project enhances the lecture by developing and using design and verification tools.

Literatureempfehlungen

Links

Languages of instruction English, German

Duration (semesters) 1 Semester

Module frequency once a year

Module capacity unlimited

Module level / module level AS (Akzentsetzung / Accentuation)

Module type / module level Pflicht o. Wahlpflicht / compulsory or optional

Lehr-/Lernform / Teaching/Learning method V+Ü

Vorkenntnisse / Previous knowledge Bachelor in Computing Science oder Kenntnisse gewöhnlicher Differentialgleichungen

Examination Prüfungszeiten Type of examination

Final exam of module At the end of the lecture period Semester project including written work and final presentation

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
inf301 - Machine-oriented Systems Engineering

Module label: Machine-oriented Systems Engineering

Modulkürzel: inf301

Credit points: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microbiotics (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen:
- Mikschl, Alfred (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:
Skills to be acquired in this module:
The module provides practical relevance to the design of digital embedded systems.

Professional competence:
The students:
- characterise the structure of microprocessor systems
- name control aspects of time sensitive external components
- program efficient embedded systems

Methodological competence:
The students:
- use specifications from electrical components data sheets

Social competence:
The students:
- work in a team
- discuss solutions

Module contents:
Embedded systems support complex feedback problems, control problems and data processing tasks. They have an important value creation potential for telecommunications, production management, transport and electronics. The functionality of embedded systems is realised by the integration of processors, special hardware and software. The embedded systems design is influenced by the heterogeneity of system architectures, the complexity of systems and technical and economic requirements.

This module gives an initial review of computer architectures. After that embedded systems are introduced by a specific microprocessor. Furthermore, external hardware will be connected to the microprocessor. Besides this, the design of circuit boards will be discussed. The students will design, develop and implement a circuit layout with CAD and programme this embedded system with a Flash-eprom.

Literaturempfehlungen:
Lecturers notes, hardware manuals and data sheets, and development tool manuals

Links:
Languages of instruction: English, German
Duration (semesters): 1 Semester
Module frequency: semi-annual
Module capacity: unlimited
Modullevel / module level: AS (Akzentsetzung / Accentuation)
Modulart / typ of module: Pflicht o. Wahlpflicht / compulsory or optional
Lehr-/Lernform / Teaching/Learning method: V+P

Vorkenntnisse / Previous knowledge:

Examination:
Prüfungszeiten: Type of examination
Final exam of module: At the end of the lecture period
Portfolio (Design, development and implementation of embedded systems, colloquium)
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Practical training</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf303 - Fuzzy Control and Artificial Neural Networks in Robotics and Automation

Module label
Fuzzy Control and Artificial Neural Networks in Robotics and Automation

Modulkürzel
inf303

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master's Programme Engineering Physics (Master) > Schwerpunkt: Renewable Energies

Zuständige Personen
Fatikow, Sergej (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
Experts in different branches try to approach their application-specific control and information processing problems by using fuzzy logic and artificial neural networks (ANN). The experiences gathered up to now prove robotics and automation technology to be predestined fields of application of both these approaches. The major topics of the course are control problems in robotics and automation technology, principles of fuzzy logic and ANN and their practical applications, comparison of conventional and advanced control methods, combination of fuzzy logic and ANN in control systems. The course gives a comprehensive treatment of these advanced approaches for interested students.

Professional competence
The students:
- recognise control problems in robotics and automation technology,
- name principles of fuzzy logic and ANN and their practical applications,
- compare conventional and advanced control methods,
- characterise the combination of fuzzy logic and ANN in control systems

Methodological competence
The students:
- will acquire knowledge of the tools, methods and applications in fuzzy logic and ANN
- deepen their knowledge for the practical use of the given methods
- can use common software tools for design and application of fuzzy logic and ANN

Social competence
The students:
- gain experience in interdisciplinary work
- are integrated into the recent research work

Objective of the module / skills:

Self-competence
The students:
- are able to transfer the gained knowledge for later use in their theses or studies for AMiR
- can Design (complex) fuzzy logic controller and ANN systems
- reflect their (control) solutions by using methods learned in this course

Module contents
- Control problems in robotics and automation technology
- Basic ideas of fuzzy logic and ANN
- Principles of fuzzy logic
- Fuzzy logic of rule-based systems
- ANN models
- ANN learning rules
- Multilayer perceptron networks and backpropagation
- Associative networks
- Self-organizing feature maps
- PID design principles
- Design of fuzzy control systems
- Fuzzy logic application examples
- Design of ANN control systems
- ANN application examples
- Fuzzy + Neuro: principles and applications

Literature Empfehlungen

Essential:
- Lecture notes (available at the secretariat, A1-3-303) in book form

Recommended:

Secondary Literature:
- Altrock, M. O. R.: Fuzzy Logic, R. Oldenbourg Verlag, 1993
- Kahler, J. und Hubert, F.: Fuzzy-Logik und Fuzzy-Control, Vieweg, 1993
- Kratzer, K.P.: Neuronale Netze, Carl Hanser, 1993
- Lawrence, J.: Neuronale Netze, Sythema Verlag, München, 1992
- Patterson, D.W.: Künstliche neuronale Netze, Prentice Hall, 1996
- Pham, D.T. a200
- Schulte, U.: Einführung in Fuzzy-Logik, Franzis-Verlag, München, 1993
- Zakharian, S. Ladewig-Riebler, P. und Thoer, St.: Neuronale Netze für Ingenieure, Vieweg, Wiesbaden, 1998
- Zimmermann H.-J. (Hrsg.): Datenanalyse, VDI-Verlag, 1995

Links
- Languages of instruction: English, German
- Duration (semesters): 1 Semester
- Module frequency: once a year
- Module capacity: unlimited
- Modullevel / module level: AS (Akzentsetzung / Accentuation)
- Modulart / typ of module: Pflicht o. Wahlpflicht / compulsory or optional
- Lehr-/Lernform / Teaching/Learning method: V+Ü
- Vorkenntnisse / Previous knowledge: Regelungstechnik
- Examination: Prüfungszeiten
- Type of examination: Final exam of module: At the end of the lecture period until the beginning of the next semester
- Hands-on-exercises and oral Exam
- Form of teaching: Comment: SWS
- Frequency: Workload of compulsory attendance: 112 / 325
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Präsenzzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf305 - Medical Technology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Medical Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf305</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Nicht Informatik
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Hein, Andreas (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
Professional competence
The students:
- Describe medical diagnosis and therapy methods
- Understand the core concepts of computer-assisted medical interventions
- Are aware of the basic concepts and legal conditions of the development of medical devices
- Define the character of medical devices' software parts and implement them
- Assess the complex interaction of medical products and patients
- Get familiar with the development of medical products within a short period of time

Methodological competence
The students:
- Recognise the interdisciplinary challenges and accordingly exchange information with other disciplines

Social competence
The students:
- Present solutions for specific questions

Self-competence
The students:
- reflect their solutions by using methods learned in this course

Module contents
- Medical areas and areas of application
- Basic requirements for medical systems (hygiene, MPG, technical security, materials)
- Medical systems:
 - Functional diagnostics (ECG, EMG, EEG)
 - Imaging systems (CT, MRI, ultrasound, PET, SPECT) - Therapy equipment (Laser, RF, Microtherapy)
 - Signal processing / monitoring (cardiovascular, hemodynamic, respiratory, metabolic, cerebral)
- Medical Informatics (HIS, DICOM, Telemedicine, VR, image processing).

Literatureempfehlungen
essential:
- Lecture slides

recommended:
Links

Languages of instruction
English, German

Duration (semesters)
1 Semester

Module frequency
once a year

Module capacity
unlimited

Module level / module level
AS (Akzentsetzung / Accentuation)

Modul art / typ of module
Pflicht o. Wahlpflicht / compulsory or optional

Lehr-/Lernform / Teaching/Learning method
V+Ü

Vorkenntnisse / Previous knowledge
- Signal und Bildverarbeitung
- Regelungstechnik

Examination
Prüfungszeiten
Type of examination

Final exam of module
At the end of the lecture period
Portfolio: Hands-on exercises, report, and written or oral exam

Form of teaching
Comment
SWS
Frequency
Workload of compulsory attendance

Lecture
3
WiSe
42

Exercises
1
WiSe
14

Präsenzzzeit Modul insgesamt
56 h
inf307 - Robotics

Module label: Robotics
Modulkürzel: inf307
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Nicht Informatik
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Lehrenden, Die im Modul (Prüfungsberechtigt)
Hein, Andreas (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
Professional competence
- Name and know the functions and applications of robot systems
- Characterise the basic concepts to program robot systems
- Differentiate between the interaction of mechanical, electrical and software components

Methodological competence
- Define characteristics and components of robot systems for a specific application
- Design and implement robot system sub-components
- Design and parameterise simple control structures
- Plan the application of robot systems and derive the requirements
- Model electrical and mechanical systems
- Develop and realise simple robot systems

Social competence
- Solve robot systems problems in team work

Self-competence
- Reflect their solutions in reference to robot system methods

Module contents
- Integration in production plants / aims / subsystems
- Architectures / classifications (classification of robots)
- Robot components + Computer systems for programming
 - PA-10
 - Lego Mindstorms
- Basics of kinematics
 - Coordinate transformation, homogeneous coordinates, Coordinate transitions
 - Kinematic equation systems, transformation of vectors
- Kinematic
 - Joint types (manipulators) / Wheels, TCP
 - Denavit-Hartenberg-Transformation
 - Forward calculation
 - Backward calculation
- Sensors
 - General properties of sensors, parameter
 - Simple optical position sensors
 - Inductive-, capacitive- und ultrasonic-sensors
 - Distance sensors (laser scanner, triangulation sensors)
 - Force sensors
- Sensor data preparation
- Planing / Regulation
 - Overall regulation approach, terms, process- and control functions, PID-controller
 - Planning concepts and approaches (On-Line, Off-Line), planning processes, construction and path planning
- Actuators

Literaturempfehlungen

essential:
lecture nodes

recommended:

sekundäre literature:

Links

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
once a year

Module capacity
unlimited

Modulelevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
Pflicht o. Wahlpflicht / compulsory or optional

Lehr-/Lernform / Teaching/Learning method
V+Ü

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination

Final exam of module
At the end of the lecture period
Portfolio: Hands-on exercises, report, and written or oral exam

Form of teaching
Comment
SWS
Frequency
Workload of compulsory attendance

<table>
<thead>
<tr>
<th>Lecture</th>
<th>3</th>
<th>SoSe</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
inf308 - Microrobotics II

Module label: Microrobotics II

Modulkürzel: inf308

Credit points: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Nicht Informatik
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master's Programme Engineering Physics (Master) > Schwerpunkt: Laser and Optics

Zuständige Personen:
- Fatikow, Sergej (Prüfungsberechtigt)

Lehrenden, Die im Modul (Prüfungsberechtigt):

Prerequisites

Skills to be acquired in this module:

After having given an established introduction in the module "Microrobotics and Microsystem Technology" this lecture offers a further specialisation in microrobotics. Within the course, all relevant areas (among others the research topics of the division "Microrobotics and Control Engineering (AMiR)") will be presented and analysed. The student will be provided with an insight into current research projects of AMiR and of other research institutes of microrobotics worldwide; here mainly the requirements of industry to microrobots will be discussed. The lecture will be enhanced by practical courses in the research laboratories of AMiR.

Professional competence

The students:
- name and recognise the basic concepts of nanotechnology, in particular, micro- and nanorobotics approaches
- differentiate the development, control and application of micro- and nanorobotics systems
- implement and design application-specific micro- and nanorobotics systems

Methodological competence

The students:
- transfer their control engineering and image processing abilities on interdisciplinary problems
- transfer their hands-on experience to develop controls and applications of microrobotic systems on new tasks

Social competence

The students:
- work in a team

Self-competence

The students:
- reflect their problem-solving behaviour and use hands-on experience to develop, control and application of microrobotics

Module contents

Smart and versatile microrobots; microactuators (piezo-, ferrofluid- and SMA-actuators) for microrobots; real-time image processing in the micro world (SEM, optical microscopy); micro force sensors and tactile sensors for microrobots; microrobot control systems, e.g. neural networks and fuzzy logic; haptic interface for the control of microrobots; neural speech interface for the control of microrobots; robot-based micro- and nanohandling (SEM, optical microscopy); applications: microassembly, nano-testing, cell handling; Micro Air Vehicles (MAVs); multi-robot systems: team behavior, communication, control issues

Literaturempfehlungen

- Lecture notes (can be obtained in secretariate, A1-3-303)

Links
<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>English, German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>once a year</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Mikrorobotik und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Type of examination</td>
<td>Oral Exam and exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
inf311 - Low Energy System Design

<table>
<thead>
<tr>
<th>Module label</th>
<th>Low Energy System Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf311</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master's Programme Computing Science (Master) > Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodulle</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Nebel, Wolfgang (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>This module introduces the estimation of power dissipation and optimisation.</td>
</tr>
<tr>
<td>Professional competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- Discuss the fundamental problems of power dissipation</td>
</tr>
<tr>
<td></td>
<td>- Characterise the requirements-driven design process of embedded systems</td>
</tr>
<tr>
<td></td>
<td>- Name power loss analysis and optimization methods</td>
</tr>
<tr>
<td></td>
<td>- Design embedded systems with common design and analysis tools</td>
</tr>
<tr>
<td></td>
<td>- Design power-optimized embedded systems</td>
</tr>
<tr>
<td>Methodological competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- Model systems with a hardware description language</td>
</tr>
<tr>
<td></td>
<td>- Analyze and model hardware components</td>
</tr>
<tr>
<td></td>
<td>- Perform multi-dimensional optimization of systems</td>
</tr>
<tr>
<td>Social competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- Implement solutions of given problems in teams</td>
</tr>
<tr>
<td></td>
<td>- Discuss their outcomes appropriately</td>
</tr>
<tr>
<td>Self-competence</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- Acknowledge the limits of their ability to cope with pressure during the modeling process of systems</td>
</tr>
<tr>
<td>Module contents</td>
<td>According to Moore's Law the number of integratable transistors on a computer chip doubles every two years. In addition, new circuits are getting faster and faster. This leads not only to an increased functionality of a system, but it also increases the electrical power consumption.</td>
</tr>
<tr>
<td></td>
<td>This electrical power consumption is problematic from two different points of view. Firstly, the electrical power must be supplied. Secondly, the resulting heat has to dissipate from the system. An increased power consumption always causes lower battery life and higher energy costs. The heat generation reduces the reliability and life of integrated circuits. The cooling (ceramic housings, cooling elements, fans, etc.) increases the system's costs.</td>
</tr>
<tr>
<td></td>
<td>Today the development of heat, caused by power dissipation, needs to be considered during the embedded system design process. This knowledge takes the system's reliability and operation costs into account.</td>
</tr>
<tr>
<td></td>
<td>This module introduces the estimation of power dissipation and optimisation.</td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td>Designing CMOS Circuits for Low Power – Dimitros Soudris, Christian Piguet, Costas Goutis</td>
</tr>
<tr>
<td></td>
<td>Low-Power CMOS VLSI Circuit Design – Kaushik Roy, Sharat C. Prasad</td>
</tr>
<tr>
<td></td>
<td>Low-Power Electronics Design – Christian Piguet et al.</td>
</tr>
<tr>
<td></td>
<td>Leakage in Nanometer CMOS Technologies – Siva G. Narendra, Anantha Chandrakasan</td>
</tr>
<tr>
<td></td>
<td>Entwurf von digitalen Schaltungen und Systemen mit HDLs und FPGAs – F. Kesel, R. Bartholomä</td>
</tr>
<tr>
<td></td>
<td>Slides of the module „Eingebettete Systeme I+II“ von Professor Dr.-Ing. Wolfgang Nebel</td>
</tr>
<tr>
<td></td>
<td>Slides and technical readouts of the used hardware and development tools</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>English, German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>- inf200 Grundlagen der Technische Informatik,</td>
</tr>
<tr>
<td>- inf201 Technische Informatik,</td>
</tr>
<tr>
<td>- inf203 Eingebettete Systeme I+</td>
</tr>
<tr>
<td>- inf204 Eingebettete Systeme II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe 28</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe 28</td>
<td>28</td>
</tr>
</tbody>
</table>

| Präsenzezeit Modul insgesamt | 56 h |
inf331 - Automated and Connected Driving

Module label: Automated and Connected Driving
Modulkürzel: inf331
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction

Zuständige Personen:
Köster, Frank (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:

Skills to be acquired in this module:

This module introduces the principles of automated driving.

Professional competences:
The students:

- Discuss different levels of automated driving (e.g., SAE-Level) and the differences
- Discuss different levels of connected driving and the differences
- Discuss core-domains of automated vehicles
- Discuss important technological pillars in the areas sense, plan, and act
- Discuss transition between different levels of automation
- Discuss the impact of connected vehicle functions on automated driving
- Discuss the impact of automated vehicle functions on connected driving
- Characterise the impact of automated and connected driving on road traffic
- Characterise the interaction of humans and automated and connected vehicles
- Design an abstract procedure for the change of different levels of automation
- Design a rough vehicle architecture for automated and connected driving

Methodological competences:
The students:

- Analyze complex automated and connected vehicles (-> domains)
- Analyze core-functions of automated and connected vehicles (-> functions)

Social competences:
The students:

- Work in teams
- Discuss their outcomes appropriately

Self-competences:
The students:

- Acknowledge the limits of their ability to cope with pressure during the analysis of complex (automated and connected) socio-technical systems

Module contents:

- Levels of automated driving (e.g., SAE-Level)
- Levels of connected driving
- Core-domains of automated vehicles
- Sense, plan, and act in the context of automated and connected vehicles
- Transition between different levels of automation
- Selected connected vehicle functions
- Selected automated vehicle functions
- Human factors and socio-technical systems
- Vehicle architectures

Literaturempfehlungen:

Suggested reading:

<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>Once a year</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulant / typ of module</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>inf201 Technische Informatik, inf203 Eingebettete Systeme I, inf203 Eingebettete Systeme II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Praktical work and oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
inf32 - Practice Robotics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Practice Robotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf32</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | Master's Programme Computing Science (Master) > Technische Informatik
Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction |
| Zuständige Personen | Lehrenden, Die im Modul (Prüfungsberechtigt)
Hein, Andreas (Prüfungsberechtigt) |

Prerequisites

Skills to be acquired in this module

Professional competences:
The students learn:
- Programming of robots (mobile or stationary)
- Implementation of elementary operations
- Integration of operations into a small application scenario
- Programming using Robot Operating System (ROS)

Methodological competences:
The students learn:
- Systematic development process with team members
- Systematic evaluation of the application
- Designing a robotic application using basic and advanced robotic concepts

Social competences:
The students learn:
- Project management
- Team work
- Organization of the team

Self-competences:
The students:
- Time management
- Autodidactic work (literature search, technical specs, related work)

Module contents

Robotic systems will be provided to the students. They will then define the project/application scenario of the robots by their own and complete the project as a small team with self-organization and work distribution among the team members.

The module consists of a lecture and an exercise part:
- Lecture: 2-3 lectures for introduction onto the module and introduction into the Robot Operating System (ROS) as well as the concepts of the projects.
- Exercises: After the introduction period, the students will work self-organized to complete the proposed project. Work can be distributed weekly or on as concentrated time blocks.

Literaturempfehlungen
John J. Craig, Introduction to Robotics: Mechanics and Control
Patrick Goebel, ROS By Example

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
Once a year

Module capacity
unlimited

Modulart / typ of module
AS (Akzentsetzung / Accentuation)

Lehr-/Lernform / Teaching/Learning method
V+Ü

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten: At the end of the lecture period
Type of examination: Demonstration and written documentation

Form of teaching
<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>Sose oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td>Sose oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Comment</td>
<td>SWS</td>
<td>Frequency</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
inf333 - Sensor Technology in the Automotive Domain

Module label: Sensor Technology in the Automotive Domain

Module label: inf333

Credit points: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Lehrende, die im Modul (Prüfungsberechtigt)
Köster, Frank (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
This module introduces the principles of sensors and sensor-systems as well as data-fusion in the automotive domain.

Professional competences:
The students:
- Discuss different levels/diverse levels sensor-technologies
- Discuss sensor-data fusion (multi-level fusion)
- Discuss Kalman-Filter
- Discuss in-vehicle data-processing
- Discuss car2cx-technologies
- Design simple multi-sensor systems
- Evaluate multi-sensor systems

Methodological competences:
The students:
- Analyze multi-sensor systems
- Design multi-sensor systems
- Evaluate multi-sensor systems

Social competences:
The students:
- Work in teams
- Discuss their outcomes appropriately

Self-competences:
The students:
- Acknowledge the limits of their ability to cope with pressure during the work on the topics of the module

Module contents
- Sensor-technologies
- Data fusion (multi-level fusion)
- Kalman-Filter
- In-vehicle data-processing
- Car2cx-technologies (ITS G5 and 5G)
- Multi-sensor and multi-level fusion architectures

Literaturempfehlungen

Suggested reading:
Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
once a year

Module capacity
100

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
Pflicht o. Wahlpflicht / compulsory or optional

Lehr-/Lernform / Teaching/Learning method
V+Ü

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Practikal Work and oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
inf334 - System Level Design

Module label: System Level Design
Modulkürzel: inf334
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen:
Lehrenden, Die im Modul (Prüfungsberechtigt):
Grüttner, Kim (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Professional competences:
The students:
- Ability to describe and analyze system components and architectures using system level description languages SpecC and SystemC
- Capabilities for partitioning and parallelizing of applications

Methodological competences:
The students:
- Knowledge of refinement and transformation techniques for transferring an initial specification into a real implementation
- Knowledge of the phases of a system-level design flow
- Knowledge of current design methods and tools in system level design
- Knowledge about formal models of computation of specification languages
- Knowledge of current research results and trends in system level design
- Capabilities for partitioning and parallelizing of applications
- Ability to evaluate and explore design decisions
- Ability to implement a complete system design-to-implementation specification

Social competences:
The students:
- Implement solutions of given problems in teams
- Discuss their outcomes appropriately

Self-competences:
The students:
- presentation skills
- reflect their solutions by using methods learned in this course

Module contents

The ever-increasing integration densities of integrated circuits enable the implementation of increasingly powerful and complex systems. This can be on the one hand the integration of several sub-components on the same chip (system-on-chip) or on the other hand the implementation of more powerful algorithms. However, traditional design techniques are hardly able to cope with the increasing complexity of today's embedded systems. Therefore, in research and practice efforts through new methods and tools, there is a significant increase in productivity in the design process, thus closing the so-called "design productivity gap". This is achieved, for example, by a stronger abstraction, in which the behavior of components is described only at the algorithmic level and is automatically translated into hardware or software implementations by high-level synthesis techniques. The final system implementation is achieved by means of a structured refinement and exploration processes. Throughout this refinement flow, system properties (for example, timing, energy consumption, chip area and costs) are estimated on each abstraction level and guide the designer in the iterative decision process. By means of techniques such as virtual prototyping, entire systems can be simulated and verified on each refinement layer, even without the availability of a full implementation for all system components.

This module builds on the modules Embedded Systems I and II, deepens the knowledge acquired there for the design of hardware/software systems and expands them with current methods and tools. With SystemC, a language is presented that is already widely used in industry and research for the design and verification of hardware/software systems and supports several abstraction levels from clock cycle accurate hardware description, over transaction level models to process based functional specifications.
Literaturempfehlungen

Suggested reading:

Main textbooks:

Optional books:

Additional reading material posted on Stud.IP

Links

https://www.uni-oldenburg.de/informatik/ehs/lehre/vorlesungen/system-level-design/

Language of instruction

English

Duration (semesters)

1 Semester

Module frequency

once a year

Module capacity

unlimited

Module level / module level

AS (Akzentsetzung / Accentuation)

Modulart / typ of module

Pflicht o. Wahlpflicht / compulsory or optional

Lehr-/Lernform / Teaching/Learning method

V+Ü

Vorkenntnisse / Previous knowledge

Examination Prüfungszeiten Type of examination

Final exam of module

at the end of the lecture period hands-on exercises and oral exam

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
inf335 - Strategy Synthesis

Module label | Strategy Synthesis
Modulkürzel | inf335
Credit points | 6.0 KP
Workload | 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction

Zuständige Personen
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

The students learn fundamental techniques in strategy synthesis as foundation for high-level control strategies in highly autonomous systems

Professional competences:
The students:

- understand the concepts of open, reactive systems and can explain their relevance
- can provide formal model of open reactive systems and their relevance for system design
- understand the concept of world models as internal representation of a systems environment
- understand and can explain the concept of strategies, and relate this to system design
- understand the relevance of information flow in distributed system
- understand the relevance of choosing the periphery of world models
- can formalize system requirements in temporal logic
- understand the relevance of assumptions in system design

Methodological competences:
The students:

- methods for synthesis of winning strategies in closed systems
- methods for synthesizing remorse-free strategies in open systems
- methods for determining the perimeter of world models
- methods for cooperative strategy synthesis

Social competences:
The students:

- Work in teams
- Solve complex modelling, design, and synthesis tasks in teams

Self-competences:
The students:

- Reflect their actions and respect the scope of methods for strategy synthesis

Module contents

The module gives an introduction to the synthesis of control strategies for highly autonomous systems. We first introduce classical game theory and present algorithms for synthesizing strategies for reactive system. We extend this to open systems, and analyze conditions, under which synthesis for distributed systems is decidable. We introduce remorse-free strategies and present compositional approaches to synthesis of remorse-free strategies. We analyze under what conditions world models allow for optimal remorse free strategies. We provide algorithms for computing weakest assumptions on the system environments under which winning strategies exist. We extend this to cooperative strategy synthesis, where multiple players cooperate in achieving jointly the system objectives. We illustrate these concepts with examples from autonomous driving.

Literatureempfehlungen

Suggested reading:

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>once a year</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Präsenzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf336 - Application Area Automotive

<table>
<thead>
<tr>
<th>Module label</th>
<th>Application Area Automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf336</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Lehrenden, Die im Modul (Prüfungsberechtigt)
Köster, Frank (Prüfungsberechtigt)

Prerequisites
Skills to be acquired in this module
This module introduces the application area Automotive.

Professional competences:
- Discuss core-concepts of the transportation domain
- Discuss different modes of transportation (focus on the automotive sector)
- Discuss automated and connected driving (short introduction/overview)
- Discuss human factors in the automotive sector
- Discuss traffic infrastructure (focus on intersections)
- Discuss basic principles in traffic management

Methodological competences:
- Analyze vehicle systems
- Analyze traffic infrastructure
- Analyze cooperative vehicle/infrastructure systems
- Analyze socio-technical systems

Social competences:
- Work in teams
- Discuss their outcomes appropriately

Self-competences:
- Acknowledge the limits of their ability to cope with pressure during the work on the topics of the module

Module contents
- Core-concepts of the transportation domain
- Modes of transportation (focus on the automotive sector)
- Automated and connected driving (short introduction/overview)
- Human factors in the automotive sector
- Traffic infrastructure (focus on intersections)
- Basic principles in traffic management

Literaturrempfehlungen

Links
- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: once a year
- Module capacity: unlimited
- Modullevel / module level: AS (Akzentsetzung / Accentuation)
- Modulart / typ of module: Pflicht o. Wahlpflicht / compulsory or optional
- Lehr-/Lernform / Teaching/Learning method: V+Ü

Vorkenntnisse / Previous knowledge

Examination
- Prüfungszeiten
- Type of examination

Final exam of module
- At the end of the lecture period
- Practical Work and oral Exam

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
inf338 - Design of Autonomous Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Design of Autonomous Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf338</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Lehrenden, Die im Modul (Prüfungsberechtigt)
Fränzle, Martin Georg (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Professional competences:
The students are enabled to analyze and build autonomous systems.

Methodological competences:
The students know examples of existing autonomous systems, understand the elements involved in their architectural design and the rationale behind decomposing the problem into obligations for the respective system components. The module furthermore enables the students to analyze existing architectures for autonomous systems with respect to their performance and safety. The students learn how to decompose a problem of designing an autonomous system into an architecture, are able to derive design obligations for its components, and can structure a pertinent safety case. They understand the software and hardware components necessary for achieving system autonomy and are able to design or instantiate these.

Social competences:
The students acquire hands-on experience in designing components for autonomous systems in small teams and present the underlying theory, their particular design decisions, and their personal evaluation to fellow students.

Self-competences:
The students can judge adequacy of their methodological skills for designing particular autonomous solutions. They are able to assess the safety impact of such a solution and are therefore able to develop a personal ethical stance towards its realization.

Module contents
The module consists of a lecture and an exercise part

Literaturrempfehlungen

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
once a year

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
Pflicht o. Wahlpflicht / compulsory or optional

Lehr-/Lernform / Teaching/Learning method
V+Ü

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination

Final exam of module
Second half of semester
Presentation

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
inf350 - Special Topics in 'Safety-Critical Systems’ I

Module label
Special Topics in 'Safety-Critical Systems’ I

Modulkürzel
inf350

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master’s Programme Computing Science (Master) > Technische Informatik
- Master’s Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Zuständige Personen
Hein, Andreas (Prüfungsberechtigt)

Prerequisites
This module integrates current developments in the field in adequate study courses.

Skills to be acquired in this module

Professional competences
The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:

- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:

- support team process by their abilities

Self-competences
The students:

- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g. „Sicherheitsanalysetechniken“, „Zielarchitekturen Eingebetteter Systeme für Automotive-Anwendungen“, „Modellbasiertes Systementwurf“, ...

Literaturempfehlungen
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
2 Veranst. aus V, Ü, S, P, PR (4SWS)

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination
Final exam of module
Portfolio or presentation or oral exam

Form of teaching
VA-Auswahl
<table>
<thead>
<tr>
<th>SWS</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf351 - Special Topics in 'Safety-Critical Systems' II

Module label
Special Topics in 'Safety-Critical Systems' II
Modulkürzel
inf351
Credit points
6.0 KP
Workload
180 h
Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
Zuständige Personen
Hein, Andreas (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g. „Sicherheitsanalysetechniken“, „Modellbasierter Systementwurf“, ...

Literaturempfehlungen
As announced in course

Links

Language of instruction
German
Duration (semesters)
1 Semester
Module frequency
halbjährlich
Module capacity
unlimited
Modulelevel / module level
AS (Akzentsetzung / Accentuation)
Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method
2 Veranst. aus V, S, Ü, P, PR (4SWS)

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination
Final exam of module
Portfolio or presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>VA-Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf352 - Current Topics in 'Safety-Critical Systems' I

Module label: Current Topics in 'Safety-Critical Systems' I

Modulkürzel: inf352

Credit points: 3.0 KP

Workload: 90 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Zuständige Personen
- Hein, Andreas (Prüfungsberechtigt)
- Lehrende, die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:
- communicate with users and experts convincingly

Self-competences
The students:
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links

Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modulart / type of module: AS (Akzentsetzung / Accentuation)

Modularitätsart / type of module: je nach Studiengang Pflicht oder Wahlpflicht

Lehr- /Lernform / Teaching/Learning method: S oder V (2 SWS)

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten

Type of examination

Final exam of module

At the end of the lecture period

Presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf353 - CurrentTopics in 'Safety-Critical Systems' II

<table>
<thead>
<tr>
<th>Module label</th>
<th>CurrentTopics in 'Safety-Critical Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf353</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | Master's Programme Computing Science (Master) > Technische Informatik
Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule |
| Zuständige Personen | Hein, Andreas (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt) |
| Prerequisites | This module integrates current developments in the field in adequate study courses. |

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Literaturempfehlungen

As announced in course

Links

Languages of instruction

German, English

Duration (semesters)

1 Semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modulart / typ of module

AS (Akzentsetzung / Accentuation)

Lehr- /Lernform / Teaching/Learning method

S oder V (2SWS)

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten

Type of examination

Final exam of module

At the end of the lecture period

Presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf354 - Special Topics in 'Hybrid Systems' I

Module label
Special Topics in 'Hybrid Systems' I

Modulkürzel
inf354

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Zuständige Personen
- Hein, Andreas (Prüfungsberechtigt)
- Fränzle, Martin Georg (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g. „Modellbasierter Systementwurf“, „Konstruktionsprinzipien ausgewählter Klassen von Fahrzeugfunktionen“

Literaturempfehlungen
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
halbjährlich

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
2 Veranst. aus V, Ü, S, P, PR (4SWS)

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Exercises or presentation or oral exam</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>VA-Auswahl</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzeit</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>
inf355 - Special Topics in 'Hybrid Systems' II

Module label: Special Topics in 'Hybrid Systems' II
Modulkürzel: inf355
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Zuständige Personen
Hein, Andreas (Prüfungsberechtigt)
Fränzle, Martin Georg (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modullevel / module level: AS (Akzentsetzung / Accentuation)
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method: 2 Veranst. aus V, Ü, S, P, PR (4SWS)

Vorkenntnisse / Previous knowledge
Examination
Prüfungszeiten
Type of examination

144 / 325
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Exercises or presentation or oral exam</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>VA-Auswahl</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>
inf356 - CurrentTopics in 'Hybrid Systems' I

Module label: CurrentTopics in 'Hybrid Systems' I
Modulkürzel: inf356
Credit points: 3.0 KP
Workload: 90 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Zuständige Personen:
- Hein, Andreas (Prüfungsberechtigt)
- Fränzle, Martin Georg (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:
- communicate with users and experts convincingly

Self-competences
The students:
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents: See assigned course description
Literaturrempfehlungen: As announced in course

Languages of instruction: German, English
Duration (semesters): 1 Semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modulart / module level: AS (Akzentsetzung / Accentuation)
Lehr-/Lernform / Teaching/Learning method: S oder V (2SWS)

Vorkenntnisse / Previous knowledge:

146 / 325
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>

Form of teaching

- Course or seminar

SWS

- 2

Frequency

- Sose oder WiSe

Workload Präsenzzeit

- 28 h
inf357 - Aktuelle Themen aus dem Gebiet "Hybride Systeme" II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Aktuelle Themen aus dem Gebiet "Hybride Systeme" II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf357</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | • Master’s Programme Computing Science (Master) > Technische Informatik
• Master’s Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule |
| Zuständige Personen | Hein, Andreas (Prüfungsberechtigt) |
| | Fränzle, Martin Georg (Prüfungsberechtigt) |
| | Lehrenden, Die im Modul (Prüfungsberechtigt) |

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Literaturempfehlungen

As announced in course

Links

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modulart / module level

AS (Akzentsetzung / Accentuation)

Lehr-/Lernform / Teaching/Learning method

S oder V (2SWS)

Vorkenntnisse / Previous knowledge

148 / 325
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Course or seminar</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>
inf358 - Special Topics in 'Hardware/Software Systems' I

Module label | Special Topics in 'Hardware/Software Systems' I
Modulkürzel | inf358
Credit points | 6.0 KP
Workload | 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Zuständige Personen
Hein, Andreas (Prüfungsberechtigt)
Nebel, Wolfgang (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g., „Spezifikation und Modellierung Eingebetteter Systeme“

Literaturempfehlungen
As announced in course

Links

Language of instruction | German
Duration (semesters) | 1 Semester
Module frequency | halbjährlich
Module capacity | unlimited
Modullevel / module level | AS (Akzentsetzung / Accentuation)
Modulart / typ of module | je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method | 2 Veranst. aus V, Ü, S, P, PR (4SWS)

Vorkenntnisse / Previous knowledge
Examination | Prüfungszeiten | Type of examination
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>

Form of teaching

- VA-Auswahl

SWS

- 2

Frequency

- Sose oder WiSe

Workload Präsenzzeit

- 28 h
inf359 - Spezielle Themen aus dem Gebiet "Hardware-/Software-Systeme" II

<table>
<thead>
<tr>
<th>Modulkürzel</th>
<th>Spezielle Themen aus dem Gebiet "Hardware-/Software-Systeme" II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points</td>
<td>inf359</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodulle</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Hein, Andreas (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Nebel, Wolfgang (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- support team process by their abilities

Self-competences

The students:

- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents

See assigned course description, e.g., „Spezifikation und Modellierung Eingebetteter Systeme“

Literaturempfehlungen

As announced in course

Links

Language of instruction German

Duration (semesters) 1 Semester

Module frequency unregelmäßig

Module capacity unlimited

Modulart / typ of module je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method 2 Veranst. aus V, Ü, S, P, PR (4SWS)

Vorkenntnisse / Previous knowledge

Examination Prüfungszeiten Type of examination
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
<td>Exercises or presentation or oral exam</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>VA-Auswahl</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>
inf360 - Current Topics in 'Hardware/Software Systems' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Hardware/Software Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf360</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | Master's Programme Computing Science (Master) > Technische Informatik
| | Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmoduls |
| Zuständige Personen | Hein, Andreas (Prüfungsberechtigt)
| | Nebel, Wolfgang (Prüfungsberechtigt)
| | Lehrenden, Die im Modul (Prüfungsberechtigt) |
| Prerequisites | |

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:

- Communicate with users and experts convincingly

Self-competences
The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description, e.g. „Energieeffizienz in der IKT“, „Smart Resource Integration“, ...

Literaturempfehlungen
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
S oder V (2SWS)

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>

Form of teaching
VA-Auswahl

SWS
2

Frequency
Sose oder WiSe

Workload Präsenzzeit
28 h
inf361 - Current Topics in 'Hardware/Software Systems' II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Hardware/Software Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf361</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Zuständige Personen
- Hein, Andreas (Prüfungsberechtigt)
- Nebel, Wolfgang (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
- This module integrates current developments in the field in adequate study courses.

Skills to be acquired in this module

Professional competences
- The students:
 - define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
 - recognise and evaluate applied techniques and methods of their subject and are aware of their limits
 - identify, structure and solve problems/tasks, also in new or developing subject areas
 - apply state of the art and innovative methods to solve problems, if necessary from other disciplines
 - are aware of the current limits and contribute to the development of computer science research and technology
 - discuss and evaluate recent computer science developments

Methodological competences
- The students:
 - examine tasks with technical and research literature, write an academic article and present their solutions academically
 - evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
 - schedule time processes and resources

Social competences
- The students:
 - communicate with users and experts convincingly

Self-competences
- The students:
 - pursue the overall and special computer science development critically
 - develop and reflect self-developed hypotheses to theories independently

Module contents
- See assigned course description, e.g. „Energieeffizienz in der IKT“, „Smart Resource Integration“, ...

Literaturempfehlungen
- As announced in course

Links

Language of instruction
- German

Duration (semesters)
- 1 Semester

Module frequency
- unregelmäßig

Module capacity
- unlimited

Modullevel / module level
- AS (Akzentsetzung / Accentuation)

Modulart / typ of module
- je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
- S oder V (2 SWS)

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>As announced in the according course</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Course or seminar</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>
Module contents

See assigned course description, e.g. „Nanomontage und Nanohandhabung“

Literature recommendations

As announced in course

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>2 Veranst. aus V, S, Ü, P, PR (4SWS)</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf37 - Spezielle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" II

Module label
Spezielle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" II

Modulkürzel
inf367

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Zuständige Personen
Hein, Andreas (Prüfungsberechtigt)
Fatikow, Sergei (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links
Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modulelevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
2 Veranst. aus V, Ü, S, P, PR (4SWS)

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>The exam period will be announced during the course</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>VA-Auswahl</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>
inf368 - Aktuelle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" I

Module label: Aktuelle Themen aus dem Gebiet "Mikrorobotik und Regelungstechnik" I

Modulkürzel: inf368

Credit points: 3.0 KP

Workload: 90 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul

Zuständige Personen:
- Hein, Andreas (Prüfungsberechtigt)
- Fatikow, Sergej (Prüfungsberechtigt)
- Lehrende, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module:
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:
- communicate with users and experts convincingly

Self-competences
The students:
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links

Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modulart / module level: AS (Akzentsetzung / Accentuation)

Lehr-/Lernform / Teaching/Learning method: je nach Studiengang Pflicht oder Wahlpflicht

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>

Form of teaching | Course or seminar

SWS	2
Frequency	WiSe
Workload Präsenzzeit	28 h
inf369 - Current Topics in 'Microrobotics and Control Engineering' II

Module label
Current Topics in 'Microrobotics and Control Engineering' II

Modulkürzel
inf369

Credit points
3.0 KP

Workload
90 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul

Zuständige Personen
Hein, Andreas (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)
Fatikow, Sergej (Prüfungsberechtigt)

Prerequisites
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:
- communicate with users and experts convincingly

Self-competences
The students:
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Literaturrempfehlungen
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
S oder V (2 SWS)

Vorkenntnisse / Previous knowledge

164 / 325
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>

Form of teaching
Course or seminar

SWS
2

Frequency
Sose oder WiSe

Workload Präsenzzeit
28 h
inf374 - Special Topics in 'Automotive' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Automotive' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf374</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Zuständige Personen
- Hein, Andreas (Prüfungsberechtigt)
- Fränzle, Martin Georg (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
This module integrates current developments in the field in adequate study courses.

Skills to be acquired in this module

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description, e.g. „Zielarchitekturen Eingebetteter Systeme für Automotive-Anwendungen“

Literaturempfehlungen
As announced in course

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>halbjährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>2 Veranst. aus V, S, Ü, P, PR (4SWS)</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
<td>Type of examination</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
<td>Portfolio or presentation or oral exam</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>VA-Auswahl</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>
inf375 - Special Topics in 'Automotive' II

Module label: Special Topics in 'Automotive' II
Modulkürzel: inf375
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Zuständige Personen:
Hein, Andreas (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:
Skills to be acquired in this module:
This module integrates current developments in the field in adequate study courses.

Professional competences:
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences:
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences:
The students:
- Support team process by their abilities

**Self-competences++
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents:
See assigned course description

Literaturempfehlungen:
As announced in course

Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modulelevel / module level: AS (Akzentsetzung / Accentuation)
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method: 2 Veranst. aus V, S, Ü, P, PR (4SWS)

Vorkenntnisse / Previous knowledge:

Examination:
Prüfungszeiten
Type of examination
Final exam of module:
The exam period will be announced during the course
Portfolio or presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>VA-Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsentzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf376 - Current Topics in 'Automotive' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Automotive' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf376</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Zuständige Personen
- Hein, Andreas (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences

The students:

- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences

The students:

- Communicate with users and experts convincingly

Self-competences

The students:

- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Literatureempfehlungen

As announced in course

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modulart / typ of module

AS (Akzentsetzung / Accentuation)

Lehr-/Lernform / Teaching/Learning method

S oder V (2 SWS)

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Course or seminar</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>
inf377 - Current Topics in 'Automotive' II

Module label: Current Topics in 'Automotive' II
Modulkürzel: inf377
Credit points: 3.0 KP
Workload: 90 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Zuständige Personen:
Hein, Andreas (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:

Skills to be acquired in this module:
This module integrates current developments in the field in adequate study courses.

Professional competences:
The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identity, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences:
The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences:
The students:

- communicate with users and experts convincingly

Self-competences:
The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents:
See assigned course description

Literaturempfehlungen:
As announced in course

Links:

Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modulart / typ of module: AS (Akzentsetzung / Accentuation)

Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method: S oder V (2 SWS)

Vorkenntnisse / Previous knowledge:

Examination:
Prüfungszeiten
Type of examination

Final exam of module:
At the end of the lecture period
Presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf705 - Practical in Computer Science Education

Module label: Practical in Computer Science Education
Modulkürzel: inf705
Credit points: 6.0 KP
Workload: 180 h
Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Technische Informatik
Zuständige Personen:
- Diethelm, Ira (Prüfungsberechtigt)
 - Lehrende, Die im Modul (Prüfungsberechtigt)

Prerequisites:
Skills to be acquired in this module:
Professional competence
The students:
- know hard- and software system engineering approaches and use them in practice
- make a qualified and contextual choice of hard- and software designing approaches
- characterise and consider challenges of soft- and hardware systems in education
Methodological competence
The students:
- know engineering approaches and use them in new contexts
- evaluate decision making concepts and use them in different domains
Social competence
The students:
- cooperate with team members during the development process
- recognize package tasks and resume their responsibilities
- analyse team conflicts and resolve them
- document the software development process in a team
- moderate team meetings and decision making processes appropriately
Self-competence
The students:
- reflect their self-perception with regard to the implementation of software systems

Module contents:
A hard- or software system for education will be designed in this practical course. The requirements analysis of hard- or software systems and the dealing with customers are the main topics of this practical course.

Literaturempfehlungen:
As announced in course

Links
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Modullevel / module level: AS (Akzentsetzung / Accentuation)
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method: P

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination
Final exam of module
At the end of the semester
Practical implementation, presentation and oral exam

Form of teaching
Practical training

SWS: 4
<table>
<thead>
<tr>
<th>Frequency</th>
<th>SoSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload Präsenzzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf710 - Special Topics in 'Computer Science Education' I

Module label
Special Topics in 'Computer Science Education' I

Modulkürzel
inf710

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik

Zuständige Personen
Diethelm, Ira (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
2 Veranstaltungen aus V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination
Final exam of module
At the end of the lecture period
Portfolio or presentation or oral exam

Form of teaching
VA-Auswahl
<table>
<thead>
<tr>
<th>SWS</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf711 - Spezielle Themen aus dem Gebiet "Informatik in der Bildung" II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Spezielle Themen aus dem Gebiet "Informatik in der Bildung" II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf711</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Technische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Lehrenden, Die im Modul (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Diethelm, Ira (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- support team process by their abilities

Self-competences

The students:

- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents

See assigned course description

Literaturempfehlungen

As announced in course

Links

- German

Duration (semesters)

1 Semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modullevel / module level

AS (Akzentsetzung / Accentuation)

Modulart / typ of module

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

2 Veranstaltungen aus V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Prüfungszeiten

Type of examination

At the end of the lecture period

Portfolio or presentation or oral exam

Form of teaching

VA-Auswahl
<table>
<thead>
<tr>
<th>SWS</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf713 - Aktuelle Themen aus dem Gebiet "Informatik in der Bildung" II

Module label
Aktuelle Themen aus dem Gebiet "Informatik in der Bildung" II

Modulkürzel
inf713

Credit points
3.0 KP

Workload
90 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik

Zuständige Personen
Diethelm, Ira (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:
- communicate with users and experts convincingly

Self-competences
The students:
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
S oder V

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination

Final exam of module
At the end of the lecture period
Presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf339 - Industrie 4.0: Digitalisierung der industriellen Produktion

<table>
<thead>
<tr>
<th>Module label</th>
<th>Industrie 4.0: Digitalisierung der industriellen Produktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf339</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Language of instruction | German
Duration (semesters) | 1 Semester

Module frequency

Module capacity | unlimited

Modullevel / module level | AS (Akzentsetzung / Accentuation)
Modulart / typ of module | Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final exam of module

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>Sose oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>Sose oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt | 56 h
Praktische Informatik

inf100 - Human Computer Interaction

<table>
<thead>
<tr>
<th>Module label</th>
<th>Human Computer Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf100</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Praktische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction

Zuständige Personen
- Boll-Westermann, Susanne (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Professional competence
The students:
- Name the human-computer interaction core principles
- Characterise the basic elements of the human-centered design of interactive systems

Methodological competence
The students:
- Comprehend context of use and user requirements of human-machine interfaces
- Design, develop and evaluate human-machine interfaces
- Conduct experiments with their prototypes

Social competence
The students:
- Implement human-computer interfaces in practical hands-on projects in teams
- Evaluate human-machine interfaces with potential users
- Develop and present solutions for Human-Computer Interaction related problems
- Integrate technical and factual comments into own results

Module contents
The module introduces the field of human-computer interfaces and their historical context. Moreover, it shows motivating examples of human-computer interaction. The module covers the core principles of human-computer interaction. In detail, the module deals with the design concepts of interactive systems: context of use, requirements and task analysis, human perception capabilities, design process, usability, prototyping and evaluation. During the practical project a concrete human-computer interface will be designed, developed and evaluated according to these concepts.

Literaturempfehlungen
- Markus Dahm, Grundlagen der Mensch Computer-Interaktion, Pearson, 2006
- Literature in the reserve shelf in the university bibliography. Link list in Stud.IP.

Links
- medien.informatik.uni-oldenburg.de/lehre

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency
- once a year

Module capacity
- unlimited

Modullevel / module level
- AS (Akzentsetzung / Accentuation)

Modulart / typ of module
- Pflicht o. Wahlpflicht / compulsory or optional

Lehr-/Lernform / Teaching/Learning
- V+P
Method

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Grundkenntnisse Programmierung</th>
</tr>
</thead>
</table>

Examination

<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Prüfungszeiten</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>The completed practical projects will be presented on a single project day, which will take place at the end of the lecture period. The oral exam takes place within the last two weeks of the lecture period. If necessary, re-examinations will take place at the end of the term. Find out more about the schedule on the websites of the department and in Stud.IP.</td>
<td>Practical group project which progress has to be presented regularly during the tutorials. Oral exam on the topics of the lecture. Practical project and oral exam count 50% each to the final grade. Both practical project and oral exam have to be passed individually.</td>
</tr>
</tbody>
</table>

Form of teaching

<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Tutorial</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Präsentzeit Modul insgesamt</td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf105 - Fault Tolerance in Distributed Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Fault Tolerance in Distributed Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf105</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Praktische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Zuständige Personen
Lehrenden, Die im Modul (Module counselling)
Theel, Oliver (Module responsibility)
Modulverantwortlichen, Die (Prüfungsberechtigt)

Prerequisites
This module provides knowledge of fault-tolerant distributed systems. The terminology, structure, conception, core challenges and related implementation concepts will be covered in detail.

Skills to be acquired in this module

Professional competence
The students:
- Assess what a fault-tolerant distributed system is and develop awareness of its capabilities
- Name and discuss common implementations of fault-tolerant distributed systems

Methodological competence
The students:
- Reflect the implementation challenges of a distributed system
- Are able to adapt and evolve implementation concepts of fault-tolerant distributed systems in new contexts

Social competence
The students:
- Solve problems in small teams
- Present their solutions to the members of the tutorial
- Discuss their different solutions with members of the tutorial

Self-competence
The students:
- Accept criticism
- Question their initially applied methods for problem solving
- Question their initial solutions in the light of newly learned methods

Module contents
1) Fault, Error, Failure
2) Failure semantics, Fault tolerance
3) Byzantine agreement protocols
4) Stable storage
5) Fail-stop processors
6) Atomic commit protocols
7) Classification of replication control schemes
 - pessimistic vs. optimistic
 - semantic vs. syntactic
 - static vs. dynamic
8) Consistency notions
9) Quality criteria
10) Survey of replication control schemes
11) Design of replication control schemes
12) Unifying frameworks
13) Replication in practice

Literaturrempfehlungen
<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td>connectet with:</td>
</tr>
<tr>
<td></td>
<td>Betriebssysteme 1 und 2</td>
</tr>
<tr>
<td></td>
<td>Betriebssysteme-Praktikum</td>
</tr>
<tr>
<td></td>
<td>Verteilte Betriebssysteme</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+S bzw V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Verteilte Betriebssysteme</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>End of lecture period</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Comment</td>
</tr>
<tr>
<td></td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>Workload of compulsory attendance</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Seminar or exercise</td>
<td>2</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
<tr>
<td></td>
<td>WISe</td>
</tr>
<tr>
<td></td>
<td>WISe</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>
inf108 - Requirements Engineering and Management

<table>
<thead>
<tr>
<th>Module label</th>
<th>Requirements Engineering and Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf108</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Business Informatics (Master) > Akzentsetzungsmodul der Informatik Master's Programme Computing Science (Master) > Praktische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Winter, Andreas (Prüfungsberechtigt) Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

The objective of the module "Requirements Engineering and Management" is to convey the core concepts and technology of the requirements engineering and of the requirements management. In the second half of the semester these methods and techniques will be carried out practically to develop an exemplary requirements definition.

Professional competence

The students:

- integrate the process of requirements engineering in the software engineering process
- name the methods and tools of requirements engineering and management
- select methods and tools from requirements engineering and management to solve given problems appropriately
- illustrate the key tasks of the requirements engineering and management
- name the essential concepts to develop and to structure ideas
- discuss the methods of determination requirements and develop validation concepts
- differentiate the software development core activities in greater detail

Methodological competence

The students:

- apply the methods of determination, documentation, validation and confirmation of requirements and
- create a comprehensive requirement document in group work

Social competence

The students:

- communicate with all stakeholders dealing with software development
- design project visions in groups
- collect requirements in interviews
- design requirements for software systems collaboratively

Self-competence

The students:

- reflect their problem-solving behaviour by applying requirements engineering and management capabilities

Module contents

The module deals with requirements analysis core concepts as well as methods and techniques of requirements engineering and management. Topics of this module are:

- the necessity of requirements engineering and management
- the requirements engineering process in the software development process
- requirements engineering process (participants, documents, activities)
- understanding the application domains (vision development, system environment documentation, domain model development, use case identification)
- requirements collection (functional and non-functional requirements, requirements collection, requirements documentation, requirements validation, requirements needs)
- requirements management

Literatureempfehlungen

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
<tr>
<td>Modullevel / module level</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Kenntnisse aus Softwaretechnik I und Softwaretechnik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

| **Präsenzzeit Modul insgesamt** | 56 h |
inf109 - Information Systems III

Module label: Information Systems III
Modulkürzel: inf109
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master Applied Economics and Data Science (Master) > Specialization
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodulle der Informatik
- Master's Programme Computing Science (Master) > Praktische Informatik

Zuständige Personen:
Grawunder, Marco (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:
Skills to be acquired in this module:

Professional competence
The students:
- describe concepts, languages and architectures of database systems
- discuss state-of-the-art database research topics
- analyse information processing tasks and implement solutions appropriately

Methodological competence
The students:
- propose concrete processing requirements for special application classes
- assess the consequences of techniques and approaches
- perform supervised research in the field of information systems
- analyse and reflect complex information system requirements
- realize information demands and accordingly gather aim-oriented information

Module contents:
This module is a continuation of the content of information systems I and of information systems II. It deepens and extends the contents of the preceding modules and focuses mainly on current research questions. A special focus lies on concept of distributed data management.

Literaturempfehlungen:
- Ötsu, M. Tamer; Valduriez, Patrick, Principles of distributed database systems
- Rahm/Saake/Sattler: Verteiltes und Paralleles Datenmanagement, Springeer
- Paper from SIGMOD, VLDB or ICDE

Links:
http://www.is.informatik.uni-oldenburg.de/lehre/lehre.html

Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Modulelevel / module level: AS (Akzentsetzung / Accentuation)
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method:

Vorkenntnisse / Previous knowledge:
- Informationssysteme I
- Informationssysteme II
- JAVA

Examination:
Prüfungszweiten: Type of examination:
Final exam of module: At the end of the lecture period
Written exam, oral exam or term paper
Form of teaching:
Lecture: 2 WiSe 28
Exercises: 2 WiSe 28
Präsenzzeit Modul insgesamt: 56 h
Inf111 - Advanced Database Practical

Module label: Advanced Database Practical
Modulkürzel: inf111
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodul der Informatik
- Master's Programme Computing Science (Master) > Praktische Informatik

Zuständige Personen:
Grawunder, Marco (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:
- Informationssysteme I

Skills to be acquired in this module:
Objective of the module/skills:
The module enhances the previous knowledge of databases and information systems. In the context of a professional database system the students realize, implement, install and optimize the system. Theoretical and mathematical approaches are additional contents. Additionally the course provides the capability both to describe the differences between NoSQL Databases and (Object-)Relational Databases and how to use them.

Professional competence:
The students:
- name realisation techniques, implementations and programming of database systems
- program and implement database oriented system routines
- administer a professional database system
- identify database system performance problems and solve them appropriately

Methodological competence:
The students:
- make optimisation decisions during the modelling phase
- construct optimisation strategies mathematically

Social competence:
The students:
- develop appropriate implementations for given problems in a team

Self-competence:
The students:
- acknowledge the limits of their ability to cope with pressure during the implementation of database specific solutions

Module contents:
Content of the Module:
The module is a practical course. It is a continuation of the modules Information Systems I and Information Systems II. This module especially deals with the technical and theoretical concepts of database systems. Practical database implementation approaches and optimisation concepts are additional content of the module.

In detail the module provides: low-level database management programming, aspects of catalogue systems implementation, optimisation strategies based on different parallelisation and partitioning strategies, query concepts and modification.

Literaturempfehlungen:
Suggested reading:
- Held Andrea (2007), Oracle 10g Addison-Wesley.
- Feuerstein Steven, Pribyl Bill, Dawes Chip (2007), Oracle PL/SQL. 4. Auflage, O'Reillys Taschenbibliothek
- Oracle 10g, Das Programmierhandbuch, Galileo Computing
- Oracle Database 11g. DBA-Handbuch, Oracle Press-Hanser Verlag
<table>
<thead>
<tr>
<th>Links</th>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
<td></td>
</tr>
<tr>
<td>Module level/module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
<td></td>
</tr>
<tr>
<td>Modulart/typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform/Teaching/Learning method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse/Previous knowledge</td>
<td>- Betriebssystemkenntnisse</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>at the end of the lecture period</td>
<td>hands-on exercises and oral exam</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Practical training</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>56 h</td>
<td></td>
</tr>
</tbody>
</table>
inf112 - Modern Programming Technologies Practical

<table>
<thead>
<tr>
<th>Module label</th>
<th>Modern Programming Technologies Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf112</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Computing Science (Master) > Praktische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Boles, Dietrich (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Skils to be acquired in this module</td>
</tr>
<tr>
<td></td>
<td>The objective of the practical course is to provide the students with state-of-the-art programming techniques. After the course, the students are able to use these techniques during the implementation and development of applications.</td>
</tr>
<tr>
<td></td>
<td>Professional competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Name state-of-the-art programming techniques</td>
</tr>
<tr>
<td></td>
<td>Methodological competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Search for solutions on the internet</td>
</tr>
<tr>
<td></td>
<td>Social competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Discuss own and someone else's solutions</td>
</tr>
<tr>
<td></td>
<td>Self-competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• Reflect their problem-solving behaviour and take up new solutions, e.g. from the internet</td>
</tr>
<tr>
<td>Module contents</td>
<td>The practical course enhances the students' programming skills. It focuses on state-of-the-art programming techniques. Among others, these are .NET-Framework, OSGi, Java EE, Java ME, iOS Application development, Android Application development or Social Network API.</td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td>Online-Documentation of the technologies and systems</td>
</tr>
<tr>
<td>Links</td>
<td>http://www-is.informatik.uni-oldenburg.de/~dibo/teaching/programmierpraktikum/</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Practical training</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>- gute Programmierkenntnisse</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Exercises an oral exam, Programming tasks during the semester; short oral exam</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf13 - Operating Systems II

Module label: Operating Systems II
Modulkürzel: inf13
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Praktische Informatik

Zuständige Personen:
Theel, Oliver (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:
Skills to be acquired in this module:
The aim of the module "Operating Systems 2" is to convey further knowledge and skills regarding the conception, implementation, and evaluation of operating systems.

Professional competence:
The Students:
- assess in detail what an operating system is able do
- recognize the problems in the implementation of operating systems
- identify and evaluate implementations of further subproblems and apply them

Methodological competence:
The Students:
- transfer implementation concepts to other contexts
- critically question different solutions with regard to their properties

Social competence:
The Students:
solve problems partly in small groups
present own potential solutions to the exercise group
discuss their different potential solutions within the exercise group

Self-competence:
The Students:
- accept criticism
- reflect their own potential solutions taking into account the methods taught

Module contents:
The module conveys the following contents:
1) additional aspects of file systems
2) Input/output control
3) User representation
4) Advanced synchronization concepts
5) User interfaces
6) Job scheduling
7) Architectures of operating systems
8) Examples of operating systems

Literaturempfehlungen:

Links:
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: Alle 2 Jahre
Module capacity: unlimited
Modullevel / module level: AS (Akzentsetzung / Accentuation)
<table>
<thead>
<tr>
<th>Modulart / typ of module</th>
<th>je nach Studiengang Pflicht oder Wahlpflicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>- Betriebssysteme I</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>written or oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
inf131 - Advanced Topics in Human Computer Interaction

Module label: Advanced Topics in Human Computer Interaction

Modulkürzel: inf131

Credit points: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Computing Science (Master) > Praktische Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction

Zuständige Personen:
Boll-Westermann, Susanne (Module responsibility)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:
This course aims to provide a sample of some of the most recent and significant advances in this exciting area. Topics may include: situational awareness, designing for attention, ambient/peripheral interaction, computer support cooperative work and social computing (CSCW), ubiquitous and context-aware computing, haptic and gestural interaction, audio interaction, gaze-based interaction, biometric interfaces, and embedded, physical and tangible computing, mobile and wearable interfaces.

This course is explicitly not focused on the methods used in HCI practice (i.e., user-centered design cycle), but rather focuses on (recent) research.

Course prerequisite: Mensch-Maschine-Interaktion (Human Computer Interaction)

Professional competences:
The students:
- Demonstrate a systematic understanding of knowledge and critical awareness of a selection of the recent research advances in the area of HCI
- Evaluate and critique recent developments in the field of HCI on scientific and technological grounds
- Develop ability to conceptualize, design, implement, and evaluate user-centered systems and techniques.
- Plan and implement exploratory projects directed at envisioning and prototyping novel interactive artifact

Methodological competences:
The students:
- Analyze, review and critique research papers
- Carry out original research from start to finish
- Summarize and present research findings
- Work in a team to produce and evaluate prototypes of novel interactive artifact

Social competences:
The students:
- Work collaboratively in groups to analyze and review research papers
- Summarize and present research findings to rest of class
- Discuss how HCI concepts and methods can be applied in analysis, design, and evaluation of interactive technologies.
- Discuss social and ethical implications of interactive technologies

Self-competences:
The students:
- Be comfortable tackling original research questions
- Aptitude in conceptualizing and running both qualitative and quantitative HCI experiments
- Ability to summarize, analyze, and critique published (peer-review) research papers

Module contents:

HCI is a fast-growing field, where scientific research in this area crosses multiple disciplines. The body of theoretical and empirical knowledge that can inform the design of effective systems is rapidly developing, which underscores the importance of current research in the field.

This course aims to provide a sample of some of the most recent and significant advances in this exciting area. Topics may include: situational awareness, designing for attention, ambient/peripheral interaction, computer support cooperative work and social computing (CSCW), ubiquitous and context-aware computing, haptic and...
gestural interaction, audio interaction, gaze-based interaction, biometric interfaces, and embedded, physical and tangible computing, mobile and wearable interfaces.

Structure of the Module:

The course will consist of lectures and lab sessions. Lab sessions will cover assignments (writing paper reviews, presentations, and peer assessment). In addition to assignments and a final exam, a small part of the course includes a mini group-based HCI project.

Lectures: 2 hours per week
Lab: 2 hours per week

This lecture will be held in English. All assignment submissions and exams will be in English.

The primary audience for this class are Master students of Computer Science following the Human Computer Interaction track.

Literaturempfehlungen

Suggested reading:

Links

Language of instruction | English
Duration (semesters) | 1 Semester
Module frequency | semi-annual
Module capacity | 24
Modullevel / module level | AS (Akzentsetzung / Accentuation)
Modulart / typ of module | Pflicht o. Wahlpflicht / compulsory or optional
Lehr-/Lernform / Teaching/Learning method | V+P
Vorkenntnisse / Previous knowledge | Interaktive Systeme
Examination | Prüfungszeiten
Final exam of module | At the end of the lecture period

Missing the exam
If you cannot attend the exam with valid reasons (medical reason, exam schedule conflicts), you need to inform us before the exam, and submit a scanned copy of the evidence (medical certificate, course registration, boarding passes) within 5 days after the exam.
• If the reason for missing the exam is valid, you will do your first try of the exam for the parts that you missed on the same date as the second chance exam.
• If the reason is not valid, you will not get any score from that exam. If your overall score passed the course, you will not have a chance to take the exam again.

Grading:
Your grade will be calculated as follows:

<table>
<thead>
<tr>
<th>Scored Items</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td>40</td>
</tr>
<tr>
<td>Assignments A01-03</td>
<td>30</td>
</tr>
<tr>
<td>Mini HCI research project 20</td>
<td>20</td>
</tr>
</tbody>
</table>

Form of teaching	Comment	SWS	Frequency	Workload of compulsory attendance
Lecture | | 2 | Sose oder WiSe | 28
Practical training | | 2 | Sose oder WiSe | 28
Präsenzzeit Modul insgesamt | | 56 h |

197 / 325
inf170 - Special Topics in 'Information Systems' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Information Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf170</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Praktische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Grawunder, Marco (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- support team process by their abilities

Self-competences

The students:

- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents

According to the assigned course

Literaturempfehlungen

As announced in course

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modullevel / module level

AS (Akzentsetzung / Accentuation)

Modulart / typ of module

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

2 Veranstalt. aus V, S, Ü, P, PR (4 SWS)

Vorkenntnisse / Previous knowledge

Prüfungszeiten

Type of examination

Examination

At the end of the lecture period

Portfolio or presentation or oral exam

Form of teaching

VA-Auswahl
<table>
<thead>
<tr>
<th>SWS</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf171 - Special Topics in 'Information Systems' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Information Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf171</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Praktische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Grawunder, Marco (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td>Professional competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>- recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>- identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>- apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>- are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>- discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td>Methodological competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- evaluate and apply tools, technology and methods sophisticatedly</td>
</tr>
<tr>
<td></td>
<td>- combine new and original approaches and methods creatively</td>
</tr>
<tr>
<td></td>
<td>- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td>Social competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- support team process by their abilities</td>
</tr>
<tr>
<td>Self-competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>- pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>- implement innovative professional activities effectively and independently</td>
</tr>
<tr>
<td>Module contents</td>
<td>According to the assigned course</td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td>As announced in course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>2 Veranst. aus V, S, Ü, P, PR (4SWS)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>Language of instruction</td>
<td></td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td></td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td></td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td></td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
<tr>
<td>Form of teaching</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf172 - Special Topics in 'Information Systems' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Information Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf172</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master's Programme Computing Science (Master) > Praktische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Grawunder, Marco (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>der Informatik, Lehrende (Module responsibility)</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

- This module integrates current developments in the field in adequate study courses.

Professional competences

- The students:
 - Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
 - Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
 - Identify, structure and solve problems/tasks, also in new or developing subject areas
 - Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
 - Are aware of the current limits and contribute to the development of computer science research and technology
 - Discuss and evaluate recent computer science developments

Methodological competences

- The students:
 - Examine tasks with technical and research literature, write an academic article and present their solutions academically
 - Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
 - Schedule time processes and resources

Social competences

- The students:
 - Communicate with users and experts convincingly

Self-competences

- The students:
 - Pursue the overall and special computer science development critically
 - Develop and reflect self-developed hypotheses to theories independently

<table>
<thead>
<tr>
<th>Module contents</th>
<th>According to the assigned course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatureempfehlungen</td>
<td>As announced in course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel / module level</td>
<td>BC (Basiscurriculum / Base curriculum)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>1 V oder 1 S</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td></td>
<td>Type of examination</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Course or seminar</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf173 - Special Topics in 'Information Systems' II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Information Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf173</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master's Programme Computing Science (Master) > Praktische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Grawunder, Marco (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents

According to the assigned course

Literaturempfehlungen

As announced in course

Links

Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modulelevel / module level: AS (Akzentsetzung / Accentuation)

Modularität / typ of module: je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method: V oder S

Vorkenntnisse / Previous knowledge

Examination: Prüfungszeiten

Type of examination: Presentation or oral exam

Final exam of module: At the end of the lecture period
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>0 h</td>
</tr>
<tr>
<td>Module label</td>
<td>Special Topics in 'Media Informatics and Multimedia Systems' II</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Modulkürzel</td>
<td>inf174</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | • Master's Programme Computing Science (Master) > Praktische Informatik
• Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction |
| Zuständige Personen | Boll-Westermann, Susanne (Module responsibility)
Lehrenden, Die im Modul (Module counselling) |
| Prerequisites | |
| Skills to be acquired in this module | This module integrates current developments in the field in adequate study courses. **Professional competences** The students: - Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general - Recognise and evaluate applied techniques and methods of their subject and are aware of their limits - Identify, structure and solve problems/tasks, also in new or developing subject areas - Apply state of the art and innovative methods to solve problems, if necessary from other disciplines - Are aware of the current limits and contribute to the development of computer science research and technology - Discuss and evaluate recent computer science developments **Methodological competences** The students: - Evaluate and apply tools, technology and methods sophisticatedly - Combine new and original approaches and methods creatively - Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research **Social competences** The students: - Support team process by their abilities **Self-competences** The students: - Pursue the overall and special computer science development critically - Implement innovative professional activities effectively and independently |
| Module contents | According to the assigned course |
| Literatureempfehlungen | As announced in course |
| Links | |
| Languages of instruction | German, English |
| Duration (semesters) | 1 Semester |
| Module frequency | irregular |
| Module capacity | unlimited |
| Modullevel / module level | AC (Aufbaucurriculum / Composition) |
| Modulart / typ of module | je nach Studiengang Pflicht oder Wahlpflicht |
| Lehr-/Lernform / Teaching/Learning method | 2 Veranst. aus V, S, Ü P, PR |
| Vorkenntnisse / Previous knowledge | |
| Examination | Prüfungszeiten |
| Final exam of module | At the end of the lecture period |
| Type of examination | Portfolio or presentation or oral exam |
| Form of teaching | VA-Auswahl |
| SWS | 2 |
| Frequency | Sose oder WiSe |
| Workload Präsenzzeit | 28 h |
inf175 - Special Topics in 'Media Informatics and Multimedia Systems' II

Module label	Special Topics in 'Media Informatics and Multimedia Systems' II
Modulkürzel | inf175
Credit points | 6.0 KP
Workload | 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Praktische Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction

Zuständige Personen
Boll-Westermann, Susanne (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- Support team process by their abilities

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents
According to the assigned course

Literaturempfehlungen
As announced in course

Links

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
2 Veranst. aus V, S, Ü, P, PR (4 SWS)

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination

Final exam of module
At the end of the lecture period
Exercises or presentation Semesterbegleitende or
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form of teaching</td>
<td>VA-Auswahl</td>
<td>oral exam</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>
inf176 - Special Topics in 'Media Informatics and Multimedia Systems' I

Module label
Special Topics in 'Media Informatics and Multimedia Systems' I

Modulkürzel
inf176

Credit points
3.0 KP

Workload
90 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Praktische Informatik

Zuständige Personen
Boll-Westermann, Susanne (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
According to the assigned course

Literaturempfehlungen
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
S oder V

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten

Type of examination
Presentation or oral exam

Final exam of module
At the end of the lecture period
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
Inf177 - Special Topics in 'Media Informatics and Multimedia Systems' II

Module label
Special Topics in 'Media Informatics and Multimedia Systems' II

Modulkürzel
inf177

Credit points
3.0 KP

Workload
90 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Praktische Informatik

Zuständige Personen
Boll-Westermann, Susanne (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)
der Informatik, Lehrende (Module responsibility)

Prerequisites
- This module integrates current developments in the field in adequate study courses.

Skills to be acquired in this module

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:
- communicate with users and experts convincingly

Self-competences
The students:
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
As in the description of the assigned course

Literaturrempfehlungen
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
S oder V

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten Type of examination
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Presentation or oral exam</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Course or seminar</td>
<td></td>
</tr>
</tbody>
</table>

SWS	2
Frequency	Sose oder WiSe
Workload Präsenzzzeit	28 h
inf178 - Special Topics in ‘Software Engineering’ I

Module label: Special Topics in ‘Software Engineering’ I

Modulkürzel: inf178

Credit points: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls: Master's Programme Computing Science (Master) > Praktische Informatik

Zuständige Personen:
- Winter, Andreas (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents: See the assigned course description

Literaturempfehlungen: As announced in course

Links

Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modullevel / module level: BC (Basiscurriculum / Base curriculum)

Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method: 2 Veranst. aus V, S, Ü, P, PR (4SWS)

Vorkenntnisse / Previous knowledge

Examination: Prüfungszeiten

Type of examination: Final exam of module: At the end of the lecture period

Portfolio or presentation or oral exam

Form of teaching: VA-Auswahl
<table>
<thead>
<tr>
<th>SWS</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf179 - Special Topics in 'Software Engineering' II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Software Engineering' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf179</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Praktische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Winter, Andreas (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- support team process by their abilities

Self-competences

The students:

- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents

See the assigned course description

Literaturempfehlungen

As announced in course

Links

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modullevel / module level

AS (Akzentsetzung / Accentuation)

Modulart / typ of module

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

2 Veranst. aus V, S, Ü, P, PR (4SWS)

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten

Type of examination

At the end of the lecture period

Portfolio or presentation or oral exam

Form of teaching

VA-Auswahl
<table>
<thead>
<tr>
<th>SWS</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>14 h</td>
</tr>
</tbody>
</table>
inf180 - Current Topics in 'Software Engineering' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Software Engineering' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf180</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Praktische Informatik

Zuständige Personen
- Winter, Andreas (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Literaturempfehlungen

As announced in course

Links

Language of instruction
- German

Duration (semesters)
- 1 Semester

Module frequency
- unregelmäßig

Module capacity
- unlimited

Modullevel / module level
- AS (Akzentsetzung / Accentuation)

Modulart / typ of module
- je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
- S oder V ()

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten Type of examination

Final exam of module

At the end of the lecture period Presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf181 - Current Topics in 'Software Engineering' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Software Engineering' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf181</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Praktische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Winter, Andreas (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Literaturempfehlungen

As announced in course

Links

Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modulelevel / module level: AS (Akzentsetzung / Accentuation)

Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method: S oder V

Vorkenntnisse / Previous knowledge

Examination: Prüfungszeiten

Type of examination: Presentation or oral exam

Final exam of module: At the end of the lecture period
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf182 - Special Topics in 'System Software and Distributed Systems' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'System Software and Distributed Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf182</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Praktische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Theel, Oliver (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>• recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>• identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>• apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>• are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>• discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td>Professional competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• evaluate and apply tools, technology and methods sophisticatedly</td>
</tr>
<tr>
<td></td>
<td>• combine new and original approaches and methods creatively</td>
</tr>
<tr>
<td></td>
<td>• evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td>Methodological competences</td>
<td>The students:</td>
</tr>
<tr>
<td>Social competences</td>
<td>The students:</td>
</tr>
<tr>
<td>Self-competences</td>
<td>The students:</td>
</tr>
<tr>
<td>Module contents</td>
<td>According to the assigned course, e.g. „Verteilte Systeme“, „Realzeitbetriebssysteme“ or „Drahtlose Rechnernetze“</td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td>As announced in course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>2 Veranst. aus V, S, Ü, P, PR (4SWS)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf183 - Special Topics in 'System Software and Distributed Systems' II

Module label: Special Topics in 'System Software and Distributed Systems' II
Modulkürzel: inf183
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Praktische Informatik

Zuständige Personen:
Theel, Oliver (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents:
According to the assigned course, e.g. „Verteilte Systeme“, „Realzeitanbetriebssysteme“ or „Drahtlose Rechnernetze“

Literaturempfehlungen:
As announced in course

Links:
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modulelevel / module level: BC (Basisskript/um / Base curriculum)
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method: V+Ü

Vorkenntnisse / Previous knowledge:

Examination:
Prüfungszeiten
Type of examination
Final exam of module:
At the end of the lecture period
Portfolio or presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>VA-Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf184 - Current Topics in 'System Software and Distributed Systems' I

<table>
<thead>
<tr>
<th>Modulkürzel</th>
<th>Inf184</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Praktische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Theel, Oliver (Prüfungsberechtigt) Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Literature empfehlungen

As announced in course

Links

Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: unregelmäßig

Module capacity: unlimited

Module level / module level: BC (Basiscurriculum / Base curriculum)

Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht

Lernt/Lernform / Teaching/Learning method: S or V

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Presentation or oral exam</td>
<td></td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Course or seminar</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>
inf185 - Current Topics in 'System Software and Distributed Systems' II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'System Software and Distributed Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf185</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Praktische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Theel, Oliver (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

<table>
<thead>
<tr>
<th>Module contents</th>
<th>See assigned course description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatureempfehlungen</td>
<td>As announced in course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>ungeprüftärlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>S oder V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td></td>
<td>Presentation or oral exam</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Course or seminar</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf006 - Software Engineering II

Module label: Software Engineering II
Modulkürzel: inf006
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Bachelor's Programme Business Informatics (Bachelor) > Akzentsetzungsbereich Praktische Informatik und Angewandte Informatik
- Bachelor's Programme Computing Science (Bachelor) > Akzentsetzungsbereich - Wahlbereich Informatik
- Master of Education Programme (Gymnasium) Computing Science (Master of Education) > Mastermodule
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodul der Informatik
- Master's Programme Computing Science (Master) > Praktische Informatik
- Master's Programme Environmental Modelling (Master) > Mastermodule

Zuständige Personen
Winter, Andreas (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
The objective of the module inf005 Software Engineering II is to deepen the subjects and skills of the module Software Engineering I. Special software engineering topics will be presented, deepened and discussed. The lecture deals with different software engineering methods and technology which will be discussed in the seminar. The discussions are contextualised by scientific research projects, practical projects and latest research findings.

Professional competence
The students:
- Deepen software engineering methods and techniques
- Use specific software engineering methods and techniques
- Differentiate developmental techniques of software systems
- Discuss software engineering topics
- Design software systems by using appropriate methods
- Solve software engineering problems independently
- Reflect self-designed software engineering solutions critically and present them appropriately

Methodological competence
The Students:
- Structure problems with modelling techniques
- Develop actual methods of software engineering
- Present software engineering solutions
- Write scientific papers independently

Social competence
The Students:
- Explain and discuss software development solutions in their practical use
- Accept criticism and see it as an asset

Self-competence
The Students:
- Reflect their problem-solving behaviour with regard to the possibilities of software technology
- Internalize the presented developmental methods and integrate them in their own actions

Module contents
The following subjects are provided:
- Concept of systems
- Iterative and agile process models of software development
- System development and cost estimation
- Methods, techniques and tools to collect requirements
- Techniques to develop and describe software architecture
- Measurement and evaluation of software systems
- Extended techniques of modelling, meta-modelling, domain specific languages
- Model based development
- Methods and techniques of software evolution

Literatureempfehlungen

and actual papers from IEEE Software, IEEE Transactions on Software-Engineering, Informatik-Spektrum and conferences (z.B. ICSE, ICSM, WCRE, CSMR, ICPC, SLE, u.a.)

Links

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

jährlich

Module capacity

unlimited

Modullevel / module level

AS (Akzentsetzung / Accentuation)

Modulart / typ of module

ej nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

V+S

Vorkenntnisse / Previous knowledge

Softwaretechnik I

Examination

- Prüfungszeiten
- Type of examination

Final exam of module

At the end of the lecture period

Portfolio (30-minute presentation, 1 paper (4 pages, IEEE) and oral exam)

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
Theoretische Informatik

inf300 - Hybrid Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Hybrid Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf300</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Computing Science (Master) > Theoretische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen

Fränzle, Martin Georg (Prüfungsberechtigt)

Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

The module gives an introduction to hybrid discrete-continuous systems, as arising by embedding digital hardware into physical environments, and it elaborates on state of the art methods for the mathematical modelling and the analysis of such systems. It thus provides central competences for understanding and designing reliable cyber-physical systems.

Professional competence

The students:

- characterise formal models of cyber-physical systems: hybrid automata, hybrid state transition systems
- name domain-specific system requirements: safety, stability, robustness
- name analysis methods: symbolic state-space exploration, abstraction and abstraction refinement, generalized Lyapunov-Methods
- use state-of-the-art analysis tools
- select and apply adequate modelling and analysis methods for concrete application scenarios
- apply methods to reduce large state spaces and reduce infinite-state systems by abstraction
- know the de-facto industry standards for system modelling and are able to apply the corresponding modelling frameworks and tools

Methodological competence

The students:

- mtdel heterogeneous dynamical systems with adequate modelling and design tools, in particular Simulink/Stateflow
- transfer modelling and analysis methods to other heterogeneous domains, e.g. socio-technical systems

Social competence

The students:

- work in teams
- solve complex modelling, design, and analysis tasks in teams

Self-competence

The students:

- reflect their actions and respect the scope of methods dedicated to hybrid systems

Module contents

Embedded computer systems continuously interact with their environment, which generally comprises state- and time-continuous components. The coupling of the embedded system to its environment thus induces complex interleavings between discrete computational and decision processes and continuous processes. The resulting processes are neither amenable to the analytic techniques of continuous control nor of discrete mathematics. They instead require a broader, integrated theory: hybrid discrete-continuous systems. The lectures provide an in-depth introduction into a variety of analysis and design methods of these computer-based systems and their recent extensions to cyber-physical systems.
The accompanying hands-on-project enhances the lecture by developing and using design and verification tools.

Literaturempfehlungen

Links

Languages of instruction

- English, German

Duration (semesters)

- 1 Semester

Module frequency

- once a year

Module capacity

- unlimited

Modullevel / module level

- AS (Akzentsetzung / Accentuation)

Modulart / typ of module

- Pflicht o. Wahlpflicht / compulsory or optional

Lehr-/Lernform / Teaching/Learning method

- V+Ü

Vorkenntnisse / Previous knowledge

- Bachelor in Computing Science oder Kenntnisse gewöhnlicher Differentialgleichungen

Examination

- Prüfungszeiten Type of examination
- Final exam of module At the end of the lecture period Semester project including written work and final presentation

Form of teaching

<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

- 56 h
inf450 - Correctness of Graph Programs

Module label: Correctness of Graph Programs

Modulkürzel: inf450

Credit points: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Theoretische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul

Zuständige Personen:
- Habel, Annegret (Module responsibility)
- Hein, Andreas (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:
The objectives of this module are modelling of systems, system changes and system properties. Introduction to graph programs. Introduction into system correctness. Methods for proving system correctness.

Skills to be acquired in this module:
- The objectives of this module are modelling of systems, system changes and system properties. Introduction to graph programs. Introduction into system correctness. Methods for proving system correctness.

Professional competence:
The students:
- Describe the basics of graph programs and graph properties
- Describe verification procedures of system correctness

Methodological competence:
The students:
- Model systems, system changes and system properties
- Apply the formalism of graph programs

Social competence:
The students:
- Solve problems in a team
- Present and discuss their proposed solutions

Self-competence:
The students:
- Reflect upon their actions with regard to term rewriting systems and the methods of those

Module contents:
The module is an introduction to the modelling of systems, system changes and system properties by means of graphs, graph programs and graph conditions and presents a method for proving correctness of systems with respect to a pre- and a postcondition.

The basic structures used in this lecture are graphs; they are used in practically all domains of computing science for the representation of complex structures. Graph programs are constructed from the core constructs of nondeterministic rule application, sequential composition and iteration and they can effect programmatic changes of a graph structure. One well-known method for determining the correctness of programs with respect to a pre- and a postcondition is based on the construction of a weakest precondition of the postcondition with respect to the program and the attempt to decide whether the given precondition implies the computed weakest precondition.

Literaturempfehlungen:

Links:
- Language of instruction: German
- Duration (semesters): 1 Semester
<table>
<thead>
<tr>
<th>Module frequency</th>
<th>im 2-Jahres-Zyklus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td>Wird oft als Blockveranstaltung angeboten</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AC (Aufbaucurriculum / Composition)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
</tbody>
</table>
| **Vorkenntnisse / Previous knowledge** | - inf400 Theoretische Informatik I
- inf401 Theoretische Informatik II |
| **Examination** | **Prüfungszeiten** | **Type of examination** |
| **Final exam of module** | Will be announced during the course | presentation or oral exam |

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>WiSe</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
</tr>
</tbody>
</table>

| **Präsenzzeit Modul insgesamt** | 56 h |
inf451 - Complexity Theory

Module label Complexity Theory
Modulkürzel inf451
Credit points 6.0 KP
Workload 180 h
Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Theoretische Informatik
Zuständige Personen
Best, Eike (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
This module covers the computational complexity of algorithms. Complexity considerations are concerned with the time, the memory, and the parallelism required or allowed, for solving an algorithmic problem. In particular, one is interested in lower and/or upper time and space bounds, and in approximative investigations providing information about entire classes of algorithms. For any concrete problem, complexity theory aims at being able to find out which class it belongs to, and thus estimating the cost of the most efficient methods of solving it. Methods taught in this module are general, not depending on any particular algorithmic model or chosen programming language.

Professional competence
The students:
- use Turing machines and variants thereof
- define time, memory, and processor requirements of algorithmic problems
- specify the most relevant complexity classes
- estimate the computational complexity of the most important problems

Methodological competence
The students:
- analyse the complexity of algorithms
- apply techniques of simulation, reduction, and diagonalisation
- compare new problems in terms of complexity

Social competence
The students:
- present proof sketches, proofs, and algorithmic solutions in front of an audience

Module contents

- Mathematical foundations
- Turing machines and register machines
- Space and time hierarchies, equivalence and hierarchy theorems
- Complexity classes: P, NP, NPC, PSPACE, and others
- Alternating automata and polynomial time hierarchy
- Circuit complexity

Literaturempfehlungen
- Eike Best: Skript zur Vorlesung (2015)

Links
Language of instruction German
Duration (semesters) 1 Semester
Module frequency unregelmäßig
<table>
<thead>
<tr>
<th>Module capacity</th>
<th>unlimited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modullevel / module level</td>
<td>AC (Aufbaucurriculum / Composition)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
</tr>
</tbody>
</table>
inf453 - Combination of Specification Techniques

Module label | Combination of Specification Techniques
Modulkürzel | inf453
Credit points | 6.0 KP
Workload | 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Theoretische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Zuständige Personen
- Hein, Andreas (Prüfungsberechtigt)
- Olderog, Ernst-Rüdiger (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
inf400/inf401 Theoretische Informatik I and II

Skills to be acquired in this module
Introduction to the specification languages Z for data, CSP for processes, and their combination CSP-OZ for reactive systems with data and process parts.

Professional competence
The students:
- specify data and processes with Z, CSP and CSP-OZ formally
- check data refinement relations formally
- verify CSP-OZ specifications with FDR model checker

Methodological competence
The students:
- are able to integrate complementary specification methods

Social competence
The students:
- work together in small groups to solve problems
- present solutions to problems to groups of other students

Self-competence
The students:
- learn persistence in pursuing difficult tasks
- learn precision in specifying problems

Module contents
The course addresses a research trend in formal methods, the combination and integration of different specification methods. It focuses on a concrete combination CSP-OZ of the specification techniques CSP (Communicating Sequential Processes) for processes and Z and Object-Z for data, respectively. Reactive systems are described by CSP-OZ.

As a preparation, the specification languages Z and CSP are described, followed by the combination CSP-OZ with its process-oriented semantics. The concepts of refinement and inheritance and the possibility of automatic verification of a sublanguage of CSP-OZ with the FDR model checker for CSP will be discussed. Finally, the course explains possibilities of extending CSP-OZ for the specification of time-critical systems.

Topics:
- specification of complex data and operations in Z, type definition and pattern calculations of Z, data refinement
- specifications of communicating processes in CSP, operational semantics of CSP, three abstract semantic models
- for CSP: Trace semantics, failures semantics, failures-divergences semantics, process refinement in the above semantics, FDR model checker for CSP
- combined specification method CSP-OZ, transformational semantics as CSP-process, theorems of refinements,
- object-oriented concepts of class and inheritance in CSP-OZ
Literaturnachweise

Essential:

Recommended:

Links

Language of instruction
German
Duration (semesters)
1 Semester
Module frequency
unregelmäßig
Module capacity
unlimited
Modullevel / module level
BC (Basiscurriculum / Base curriculum)
Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge
- inf400 Theoretische Informatik I
- inf401 Theoretische Informatik II

Examination
Prüfungszeiten
Type of examination
Final exam of module
At the end of the lecture period
exercises and oral exam

Form of teaching
Comment
SWS
Frequency
Workload of compulsory attendance
Lecture
3
WiSe
42
Exercises
1
WiSe
14
Präsenzzeit Modul insgesamt
56 h
inf454 - Communicating and Mobile Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Communicating and Mobile Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf454</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Theoretische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Lehrenden, Die im Modul (Prüfungsberechtigt)
Olderog, Ernst-Rüdiger (Prüfungsberechtigt)

Prerequisites
Introduction to Milner's Calculus of Communicating Systems (CCS) and the \(? \)-Calculus.

Skills to be acquired in this module

Professional competence
The students:
- Know the theory of the operational semantics of CCS and the \(? \)-calculus
- Perform equivalence proofs using simulations and bisimulations
- Specify communicating and mobile systems with CCS and the \(? \)-calculus

Methodological competence
The students:
- Learn about different views on mobility
- Recognize equivalences as formal means for system correctness

Social competence
The students:
- Work together in small groups to solve problems
- Present their solutions to groups of other students

Self-competence
The students:
- Learn persistence in pursuing difficult tasks
- Learn precision in specifying problems

Module contents
Communication is one of the basic concepts of computer science. It occurs between computers in a network as well as between components of a computer. The focus of the course is on Robin Milner's \(? \)-calculus. It enables a new modelling of communication, taking the location of the communication into account.

The \(? \)-calculus can describe the change of data in a computer as well as the sending of messages or even programs along networks like the internet. It is also possible to describe reconfigurable networks. This will be shown using the examples of mobile phones, schedulers, automatic vending machines, data structures, communication protocols, and objects in object-oriented programming. All these applications are backed by the theory of the \(? \)-calculus, which is based on operational semantics and a concept of behavioural equivalence.

The theory will be explained in a step-by-step manner.

Topics:
- different views on mobility
- transition systems with simulations and bisimulations
- Milner's Calculus of Communicating Systems (CCS) and Milner's \(? \)-calculus for mobile systems, both with operational semantics, structural congruence, strong equivalence and observational equivalence, relationship between reactions and transitions, solvability of recursive equations
- formal specification of examples of communicating and mobile systems using CCS and the \(? \)-calculus
- proof of strong equivalence and observational equivalence of given processes
- specification of dynamic data structures in the \(? \)-calculus

Literaturempfehlungen

<table>
<thead>
<tr>
<th>Links</th>
<th>http://csd.informatik.uni-oldenburg.de/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>irregular</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level/module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart/typ of module</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lehr-/Lernform/Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse/Previous knowledge</td>
<td>Theoretische Informatik II</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Type of examination</td>
<td>written exam or oral exam</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
</tr>
</tbody>
</table>
inf456 - Real-Time Systems

Module label: Real-Time Systems

Modulkürzel: inf456

Credit points: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Theoretische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen:
Lehrenden, Die im Modul (Prüfungsberechtigt)
Olderog, Ernst-Rüdiger (Prüfungsberechtigt)

Prerequisites:

Skills to be acquired in this module:
Introduction to formal methods of the specification and verification of time sensitive systems and their combinations.

Professional competence
The students:
- Learn about different models of time and real-time properties
- Specify and verify real-time systems
- Model real-time systems using Timed Automata and PLC-Automata
- Apply the model checker UPPAAL for the verification of real-time properties
- Specify real-time systems using the Duration Calculus
- Learn about decidability and undecidability results for real-time systems

Methodological competence
The students:
- Recognize logic and automata as adequate forms for describing real-time systems

Social competence
The students:
- Work together in small groups to solve problems
- Present their solutions to groups of other students

Self-competence
The students:
- Learn persistence in pursuing difficult tasks
- Learn precision in specifying problems

Module contents:
Examples of time-critical systems are railway control systems, robots, or even gas burners. It is essential for these systems to comply with certain timing conditions. For example, the control of a railway crossing must close the gates not later than 4 seconds after the sensors have reported an approaching train. If the gates are open, they should stay that way for at least 15 seconds to allow for a safe crossing of vehicles. Different specification methods have been developed to describe such timing conditions.

The Duration Calculus developed by Zhou Chaochen in 1991 is one attractive method. It is a logic combined with a calculus, in which the duration of states can be described. The course will introduce the Duration Calculus and will explain its application by means of examples. As further specification method Timed Automata introduced by Alur & Dill in 1994 will be presented. After the specification of real-time system requirements the verification of programs implementing these requirements will follow. The specification methods of the Duration Calculus and Timed Automata are used to describe the real-time behaviour of these programs. The correctness is then proven on the basis of these behavioral descriptions.

Topics:
- discrete and continuous model of time
- logics and automata models for the specification of real-time systems (predicate logic, Duration Calculus, Timed CTL, Timed Automata, PLC-Automata)
- decidability and undecidability results for real-time systems
- model checker UPPAAL for Timed Automata
- formal specification of real-time systems using Duration Calculus as well as Timed Automata and PLC-Automata
- verification of concrete Timed Automata using the model checker UPPAAL,
- transformation of Duration Calculus for discrete time into regular languages
- implementability of real-time systems on PLC-like hardware

Literaturempfehlungen

essential:

recommended:

Links

Languages of instruction German, English
Duration (semesters) 1 Semester
Module frequency irregular
Module capacity unlimited
Modullevel / module level AS (Akzentsetzung / Accentuation)
Modulart / typ of module Pflicht o. Wahlpflicht / compulsory or optional
Lehr-/Lernform / Teaching/Learning method V+Ü
Vorkenntnisse / Previous knowledge Theoretische Informatik I + II
Examination Prüfungszeiten Type of examination
Final exam of module At the end of the lecture period Exercises and written or oral exam
Form of teaching Comment SWS Frequency Workload of compulsory attendance
Lecture 3 Sose oder WiSe 42
Exercises 1 Sose oder WiSe 14
Präsenzzeit Modul insgesamt 56 h
Module label: Term Rewriting Systems

Modulkürzel: inf458

Credit points: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Theoretische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodul

Zuständige Personen:
- Habel, Annegret (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

The objectives of this module are an introduction to (term) rewriting systems, termination and confluence, the undecidable sets of termination and confluence problems, verification procedures of termination and confluence.

Professional competence

The students:
- describe the basics of term rewriting systems
- characterise the undecidability of termination and confluence problems
- describe verification procedures of termination and confluence

Methodological competence

The students:
- apply verification procedures of termination and confluence
- apply Huet's completion procedure

Social competence

The students:
- solve problems in a team
- present and discuss their results

Self-competence

The students:
- reflect their actions with regard to term rewriting systems and the methods of those

Module contents

The module is an introduction to term rewriting systems and provides verification procedures for termination and confluence. Term rewriting systems, termination and confluence are introduced, the undecidability of termination and confluence problems and the decidability for a set of special term rewriting systems are shown. For this purpose reduction and simplification orders, critical pairs, orthogonality and Huet's completion procedure are introduced, examined and combined.

Literaturempfehlungen

Links

Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: im 2-Jahres-Zyklus

Module capacity: unlimited

Reference text: Blockveranstaltung

Modullevel / module level: AC (Aufbaucurriculum / Composition)

Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning
method

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>exercises and oral or written exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>WiSe</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzzeit Modul insgesamt 56 h
inf460 - Security

The goal of this module is to provide a foundation in computer and network security.

Professional competences:
The students: - are aware of the threats posed by cyber attacks to computer and network systems - understand the basic principles and mechanisms to protect a system against these threats - are able to apply this knowledge to assess the risk of cyber attacks to a given system as well as to develop and evaluate countermeasures against them

Methodological competences:
The students: - carry out a threat and risk assessment - formulate security requirements for a given system - identify and apply standard security solutions to meet them (These are examples, the exact skills depend on the focus chosen by the student.)

Social competences:
The students: - are able to master a new topic by self-study and interaction with experts and peers - are able to explain principles and applications of computer security to experts and non-experts - are able to expertly discuss security risks and incidents

Self-competences:
The students: - follow up and critically assess current developments in computer security including security incidents - are security aware in their own behaviour, in their assessment of the systems they work with, and those they develop

This module provides a broad and comprehensive knowledge in computer security. The topics cover threat analysis and attack trees, essential cryptographic tools, user authentication, access control, malware, intrusion detection and prevention, denial-of-service attacks and defences, software security and trusted systems, and network security. Students without prior knowledge in computer security focus on basic principles such as listed above. Students with prior knowledge in computer security can deepen their knowledge by studying real-world examples such as the SSL/TLS protocol. Typically, they will illustrate their topic by discussing a security incident reported in the public domain security news.

- access from http://vhome.offis.de/sibylle
<table>
<thead>
<tr>
<th>Frequency</th>
<th>SoSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf461 - Security of Cyber-Physical Systems

Module label
Security of Cyber-Physical Systems

Modulkürzel
inf461

Credit points
3.0 KP

Workload
90 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Theoretische Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Lehrenden, Die im Modul (Prüfungsberechtigt)
Fröschle, Sibylle (Prüfungsberechtigt)

Prerequisites
Professional competences: The students: - are aware of the threats posed by cyber attacks to cyber-physical systems - understand security solutions specific to CPS - know examples of security architectures of CPS - are able to apply this knowledge to assess the risk of cyber attacks to a given CPS as well as to develop a conceptual systems security architecture for it **Methodological competences:** The students: - carry out a threat and risk assessment for a given CPS - formulate security requirements for a given CPS - develop a systems security architecture for a given CPS to meet them (These are examples, the exact skills depend on the focus chosen by the student.) **Social competences:** The students: - are able to master a new topic by self-study and interaction with experts and peers - are able to explain the significance and facets of security for CPS to experts and non-experts - are able to expertly discuss security risks and incidents of CPS **Self-competences:** The students: - follow up and critically assess current developments in the security of CPS including relevant security incidents - are security aware and foster a security culture with respect to CPS and the resulting critical infrastructures

Module contents
Embedded systems in the energy, transportation, and health domains are currently undergoing a technological transition towards highly networked automated cyber-physical systems (CPS). Such systems are potentially vulnerable to cyber attacks, and these can have physical impact. This includes targeted sabotage of a plant (e.g. Stuxnet), large-scale sabotage of infrastructure to cause economic damage (e.g. attacks against energy grids), and indiscriminate attacks to cause civilian casualties (e.g. by compromise of transportation systems). In this module we investigate and discuss security principles, solutions, and architectures for CPS as well as real-life security incidents. The topics include distance bounding protocols, location tracking and counter-measures, safety and security engineering of CPS, security in the automotive and maritime domain including car hacking and vehicle-2-x communication, hacking in the medical domain, attacks against energy grids, Stuxnet, CPS and society: benefits, risks, acceptance.

Literaturempfehlungen
Recent scientific papers and reports in the public domain news.

 Links
http://vhome.offis.de/sibylle

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
once a year

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
Pflicht o. Wahlpflicht / compulsory or optional

Lehr-/Lernform / Teaching/Learning method
S or V

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination

Final exam of module
At the end of the lecture period
Presentation and written documentation, oral exam, or exam

Form of teaching
Course or seminar

SWS
2

Frequency
Sose oder WiSe

Workload Präsenzzeit
28 h
inf480 - Special Topics in 'Parallel Systems' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Parallel Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf480</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Theoretische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Best, Eike (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- support team process by their abilities

Self-competences

The students:

- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents

See assigned course description, e.g. „Automatentheorie und Logik“, „Modelchecking“, „Effiziente Algorithmen“ und „Theorie und Spiele“.

Literaturempfehlungen

As announced in course

Links

Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modulelevel / module level: AC (Aufbaucurriculum / Composition)

Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method: 2 Veranst. aus V, Ü, S, P, PR (4SWS)

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the end of the lecture period</td>
<td>Portfolio or presentation or oral exam</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf481 - Special Topics in 'Parallel Systems' II

Module label: Special Topics in 'Parallel Systems' II
Modulkürzel: inf481
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Theoretische Informatik

Zuständige Personen:
Best, Eike (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:

Skills to be acquired in this module:
This module integrates current developments in the field in adequate study courses.

Professional competences:
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences:
The students:
- Evaluate and apply tools, technology and methods sophisticatedly
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences:
The students:
- Support team process by their abilities

Self-competences:
The students:
- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently

Module contents:
See assigned course description, e.g., „Automatentheorie und Logik“, „Modelchecking“, „Effiziente Algorithmen“ und „Theorie und Spiele“.

Literaturempfehlungen:
As announced in course

Links:
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modullevel / module level: AC (Aufbaucurriculum / Composition)
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method: 2 Veranst. aus V, Ü, S, P, PR

Vorkenntnisse / Previous knowledge:

Examination:
Prüfungszeiten
Type of examination:
Final exam of module:
At the end of the lecture period
Portfolio or presentation or oral exam
Form of teaching:
VA-Auswahl
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf482 - Current Topics in 'Parallel Systems' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Parallel Systems' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf482</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Theoretische Informatik

Zuständige Personen
- Best, Eike (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
- This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description

Literaturempfehlungen

As announced in course

Links

Language of instruction
- German

Duration (semesters)
- 1 Semester

Module frequency
- unregelmäßig

Module capacity
- unlimited

Modulart / typ of module
- je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
- S oder V (2 SWS)

Vorkenntnisse / Previous knowledge

Examination
- Prüfungszeiten
- Type of examination
- Final exam of module
 - At the end of the lecture period
 - Presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
Skills to be acquired in this module

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

*Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf484 - Special Topics in 'Correct Systems Design' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Correct Systems Design' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf484</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
</tbody>
</table>

Workload 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Theoretische Informatik

Zuständige Personen
- Olderog, Ernst-Rüdiger (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
halbjährlich

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
2 Veranst. aus V, Ü, S, P, PR

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Portfolio or presentation or oral exam</td>
<td></td>
</tr>
</tbody>
</table>

Form of teaching
VA-Auswahl
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf485 - Special Topics in 'Correct Systems Design' II

Module label
Special Topics in 'Correct Systems Design' II

Modulkürzel
inf485

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Theoretische Informatik

Zuständige Personen
Olderog, Ernst-Rüdiger (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
2 Veranst. aus V, Ü, S, P, PR

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten

Type of examination
Portfolio or presentation or oral exam

Form of teaching
VA-Auswahl
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf486 - CurrentTopics in 'Correct Systems Design' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>CurrentTopics in 'Correct Systems Design' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf486</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master's Programme Computing Science (Master) > Theoretische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Zuständige Personen
Olderog, Ernst-Rüdiger (Module responsibility)

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:

- communicate with users and experts convincingly

Self-competences
The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modulelevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
S oder V (2 SWS)

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination

Final exam of module
At the end of the lecture period
Presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf487 - Current Topics in ’Correct Systems Design’ II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in ’Correct Systems Design’ II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf487</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Theoretische Informatik

Zuständige Personen
- Olderog, Ernst-Rüdiger (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
This module integrates current developments in the field in adequate study courses.

Skills to be acquired in this module

Professional competences
The students:
- Define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competences
The students:
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- Schedule time processes and resources

Social competences
The students:
- Communicate with users and experts convincingly

Self-competences
The students:
- Pursue the overall and special computer science development critically
- Develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
S oder V (2SWS)

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten

Final exam of module
At the end of the lecture period

Presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf488 - Special Topics in 'Formal Languages' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Formal Languages' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf488</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master's Programme Computing Science (Master) > Theoretische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Habel, Annegret (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

This module integrates current developments in the field in adequate study courses.

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences

The students:

- support team process by their abilities

Self-competences

The students:

- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents

See assigned course description

Literatureempfehlungen

As announced in course

Links

German

Duration (semesters)

1 Semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modullevel / module level

AS (Akzentsetzung / Accentuation)

Modulart / typ of module

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

2 Veranst. aus V, S, Ü, P, PR

Vorkenntnisse / Previous knowledge

Prüfungszeiten Type of examination

Final exam of module

At the end of the lecture period Portfolio or presentation or oral exam

Form of teaching

VA-Auswahl
<table>
<thead>
<tr>
<th>SWS</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf489 - Special Topics in 'Formal Languages' II

Module label: Special Topics in 'Formal Languages' II
Modulekürzel: inf489
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Theoretische Informatik

Zuständige Personen
- Lehrenden, Die im Modul (Module counselling)
 - Sonnenschein, Michael (Module responsibility)
 - Habel, Annegret (Module responsibility)

Prerequisites

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description

Literaturempfehlungen
As announced in course

Links
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: unregelmäßig
Module capacity: unlimited
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
2 Veranst. aus V, Ü, S, P, PR

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination
Final exam of module
At the end of the lecture period
Portfolio or presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>VA-Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf490 - Current Topics in 'Formal Languages' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Formal Languages' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf490</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Theoretische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Habel, Annegret (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Professional competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>• recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>• identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>• apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>• are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>• discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td></td>
<td>Methodological competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• examine tasks with technical and research literature, write an academic article and present their solutions academically</td>
</tr>
<tr>
<td></td>
<td>• evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td></td>
<td>• schedule time processes and resources</td>
</tr>
<tr>
<td></td>
<td>Social competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• communicate with users and experts convincingly</td>
</tr>
<tr>
<td></td>
<td>Self-competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>• develop and reflect self-developed hypotheses to theories independently</td>
</tr>
<tr>
<td>Module contents</td>
<td>See assigned course description</td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td>As announced in course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>halbjährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>S oder V (2 SWS)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td></td>
<td>Type of examination</td>
</tr>
<tr>
<td></td>
<td>Presentation or oral exam</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Course or seminar</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf491 - Current Topics in 'Formal Languages' II

Module label: Current Topics in 'Formal Languages' II

Modulkürzel: inf491

Credit points: 3.0 KP

Workload: 90 h

Verwendbarkeit des Moduls: Master's Programme Computing Science (Master) > Theoretische Informatik

Zuständige Personen
- Habel, Annegret (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:

- communicate with users and experts convincingly

Self-competences
The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Literaturrempfehlungen
As announced in course

Links

Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: unregelmäßig

Module capacity: unlimited

Modullevel / module level: AS (Akzentsetzung / Accentuation)

Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method: S oder V

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten Type of examination

Final exam of module
At the end of the lecture period Presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf494 - Current Topics in 'Modeling and Analysis of Complex Systems' I

Module label: Current Topics in 'Modeling and Analysis of Complex Systems' I
Modulkürzel: inf494
Credit points: 3.0 KP
Workload: 90 h

Verwendbarkeit des Moduls: Master's Programme Computing Science (Master) > Theoretische Informatik
Zuständige Personen: Fröschle, Sibylle (Prüfungsberechtigt), Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites: This module integrates current developments in the field in adequate study courses.

Professional competences
The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences
The students:

- communicate with users and experts convincingly

Self-competences
The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents: See assigned course description, e.g. „Security: Grundlagen“ oder „Security for Cyberphysical Systems“

Literaturempfehlungen: As announced in course

Links

Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: unregelmäßig
Module capacity: unlimited

Modulelevel / module level: AS (Akzentsetzung / Accentuation)
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method: S oder V (2 SWS)

Vorkenntnisse / Previous knowledge

Examination: Prüfungszeiten
Type of examination: Presentation or oral exam
Final exam of module: At the end of the lecture period

273 / 325
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf495 - Current Topics in 'Modeling and Analysis of Complex Systems' II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Modeling and Analysis of Complex Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf495</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
</tbody>
</table>

Workload
- 90 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Theoretische Informatik

Zuständige Personen
- Fröschle, Sibylle (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Professional competences

The students:

- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students:

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time processes and resources

Social competences

The students:

- communicate with users and experts convincingly

Self-competences

The students:

- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents

See assigned course description, e.g. „Security: Grundlagen“ oder „Security for Cyberphysical Systems“

Literaturrempfehlungen

As announced in course

Links

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

unregelmäßig

Module capacity

unlimited

Modullevel / module level

AS (Akzentsetzung / Accentuation)

Modulart / typ of module

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

S oder V (2 SWS)

Vorkenntnisse / Previous knowledge

Examination

Prüfungszeiten

Type of examination

Final exam of module

At the end of the lecture period

Presentation or oral exam
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Course or seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>Sose oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
Nicht Informatik

inf207 - Electrical Engineering

<table>
<thead>
<tr>
<th>Module label</th>
<th>Electrical Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf207</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Bachelor's Programme Computing Science (Bachelor) > Akzentsetzungsbereich - Wahlbereich Informatik
- Dual-Subject Bachelor's Programme Computing Science (Bachelor) > Wahlpflicht Technische Informatik (30 KP)
- Master of Education Programme (Gymnasium) Computing Science (Master of Education) > Mastermodule
- Master's Programme Computing Science (Master) > Nicht Informatik

Zuständige Personen
- Hein, Andreas (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Professional competence:
The students:
- Analyse linear electrical networks (direct current and alternating current)
- Name basic concepts to calculate and to use electrical and magnetic fields
- List the characteristics of simple electrical elements (two terminal networks)
- Calculate the parameters of simple electrical networks/wirings
- Apply computer based analysing tools
- Design and implement simple networks/wirings

Methodological competence:
The students:
- Transfer calculation methods onto complex dynamic systems
- Implement electrical system models

Social competence:
The students:
- Present solutions for specific questions

Self-competence:
The students:
- Reflect their solutions by using methods learned in this course

Module contents

- Basic concepts (electric dimensions and units)
- Network elements
- Calculation of linear direct current networks (Ohms law, Kirchhoff's circuit law, superposition principle)
- Characteristics, calculations and representations of electric and magnetic fields
- Construction elements (capacitor and coil)
- Extensions of periodical dimensions dependent on time, pointer representation, calculations with complex root-mean-square value pointers

Literaturempfehlungen

essential:
- slides

recommended:
Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehr-/Lernform / Teaching/Learning method</th>
<th>V+Ü</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Modul Analysis II oder Numerik</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>At the End of the Semester</th>
<th>Hands-on exercises / written exam or oral exam</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |

Module label

Microrobotics and Microsystems Technology

Modulkürzel

inf208

Credit points

6.0 KP

Workload

180 h

Verwendbarkeit des Moduls

- Bachelor's Programme Computing Science (Bachelor) > Akzentsetzungsbereich - Wahlpaket Informatik
- Dual-Subject Bachelor's Programme Computing Science (Bachelor) > Wahlpaket Technische Informatik (30 KP)
- Master of Education Programme (Gymnasium) Computing Science (Master of Education) > Mastermodule
- Master's Programme Computing Science (Master) > Nicht Informatik

Zuständige Personen

Fatikow, Sergej (Prüfungsberechtigt)

Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Within the last few years, microrobotics and microsystem technology (MST) have become a focus of interest to industry and evolved into an important field with great application potential. It plays a decisive role for industry to be competitive in many areas such as medicine, production engineering, biotechnology, environmental technology, automotive products, etc. Despite of the growing interest in this new technology, there is hardly any book or lecture course that treats microrobotics and MST in a coherent and comprehensive way. This course is an attempt of the Microrobotics and Control Engineering Division (AMiR) to give students a systematic introduction to microrobotics and MST. It discusses all important aspects of this rapidly expanding technology, its diversity of products and fields of application. The course contains an overview of numerous ideas of new devices and the problems of manufacturing them.

Skills to be acquired in this module

- name the ideas, challenges and activities of microrobotics and microsystem technology
- describe the microrobotics and MST applications
- characterise MST methods
- name microsensor functionality
- characterise microsensor examples
- discuss MST terms of information technology
- classify microrobotics

Methodological competence

The students:

- discover interdisciplinary connections and links between scientific and technical fields of research and development
- learn technical abstraction of complex contexts

Social competence

The students:

- solving problems partially as group
- present their solutions and approaches to the group

Self-competence

The students:

- reflect their knowledge of technical computer science
- learn to expand on their professional competence independently

Module contents

- Ideas and problems of microrobotics and MST; applications; techniques of MST; silicon-based micromechanics; LIGA technology; microactuators: principles and examples (electrostatic, piezoelectric, magnetostrictive, electromagnetic, SMA-based, thermomechanical, electrorheological and other actuators); microsensors: principles and examples (force and pressure, position and speed, acceleration, biological and chemical, temperature and other sensors); MST and information processing; microsystem design and simulation; classification of microrobots; coarse positioning of a microrobot; fine positioning of a microrobot; handling of microparts: problems and solutions; micro grasp techniques; microassembly; process automation by microrobots; desktop robot cell in SEM

Literaturempfehlungen

Essential:
Lecture notes

Recommended:

Secondary Literature (only available for some subareas!):

- Elbel, Th.: Mikrosensorik, Vieweg, Wiesbaden, 1996
- Völklein, F. und Zetterer, Th.: Einführung in die Mikrosystemtechnik, Vieweg, Wiesbaden, 2000

Links

Language of instruction: German

Duration (semesters): 1 Semester

Module frequency: jährlich

Module capacity: unlimited

Reference text: Associated with the modules:
Embedded Systems and MicroRobotics

Module level: AS (Akzentsetzung / Accentuation)

Module type: je nach Studiengang Pflicht oder Wahlpflicht

Teaching/Learning method: V+Ü

Previous knowledge: Analysis II oder Numerik

Examination:
Final exam of module: At the end of the semester
Type of examination: Oral exam in German

Form of teaching:

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>WiSe</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt: 56 h
inf209 - Control Theory

<table>
<thead>
<tr>
<th>Module label</th>
<th>Control Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf209</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Bachelor's Programme Computing Science (Bachelor) > Akzentsetzungsbereich - Wahlbereich Informatik
- Dual-Subject Bachelor's Programme Computing Science (Bachelor) > Wahlpflicht Technische Informatik (30 KP)
- Master of Education Programme (Gymnasium) Computing Science (Master of Education) > Mastermodule
- Master's Programme Computing Science (Master) > Nicht Informatik

Zuständige Personen
- Fatikow, Sergej (Prüfungsberechtigt)
- Hein, Andreas (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
- Module Differential Equations
- Module Basics Electrical Engineering

Skills to be acquired in this module
Professional competence
The students:
- Describe the core principles of steering and control of technical systems
- Discuss the modelling core concepts of systems and their controllers
- Name methods to determine the quality of controlled systems
- Model technical systems with differential equations and their transfer functions
- Develop control structures, evaluate their stability and determine their optimal control parameters

Methodological competence
The students:
- Are aware of the technical challenges and solve them by including the implementations of other disciplines and methods

Social competence
The students:
- Present solutions for specific questions

Self-competence
The students:
- Get used to the specific challenges of the development of controlled systems

Module contents
Basics; analog transfer elements: linear time invariant (LTI-) systems; simulation and modelling; step response; frequency response; frequency response locus; differential equations and transfer function; control loop stability; types of controlled systems; types of linear controllers; linear control loops: reference and disturbance reaction of the controlled system; rules for control loop optimization; methods of analysis and synthesis, implementation; computer based control MATLAB/Simulink

Literatureempfehlungen
- Unbehauen, H.: Regelungstechnik I, Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme
- Lutz, H. und Wendt, W.: Taschenbuch der Regelungstechnik
- Further reading will be announced at lecture

Links
<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Module typ / module frequency</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
</tbody>
</table>
| Vorkenntnisse / Previous knowledge | - Differenzialgleichungen
- Analysis II
- Grundlagen der Elektrotechnik |

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>Hands-on exercises and written or oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>WiSe</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
inf210 - Signal and Image Processing

<table>
<thead>
<tr>
<th>Module label</th>
<th>Signal and Image Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf210</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Bachelor's Programme Computing Science (Bachelor) > Akzentsetzungsbereich - Wahlbereich Informatik
- Dual-Subject Bachelor's Programme Computing Science (Bachelor) > Wahlpflicht Technische Informatik (30 KP)
- Master of Education Programme (Gymnasium) Computing Science (Master of Education) > Mastermodule
- Master's Programme Computing Science (Master) > Nicht Informatik

Zuständige Personen

Fränzle, Martin Georg (Prüfungsberechtigt)
Hein, Andreas (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Professional competence

The students:

- Name the concepts of signal and image processing in technical systems
- Name the methods/algorithms of preprocessing, filtering, classification, interpretation and visualisation of signals and pictures
- Select algorithms appropriately
- Evaluate the effectiveness of algorithms
- Design algorithms and processing chains and evaluate their quality

Methodological competence

The students:

- Get used to specific subjects of signal and image processing

Social competence

The students:

- Present solutions for specific questions in signal and image processing

Self-competence

The students:

- Reflect their solutions by using methods learned in this course

Module contents

- Basic Concepts
- Signal Processing
- Signal Spaces and Signal Processing Systems
- Discrete and Constant Signals
- Labelling of Signal Transmitters with Test Signals
- Representations Areas and Transformations
- Time-Discrete Systems and Scanning
- Estimation and Filtering
- Construction with MATLAB
- Image Processing
- Introduction / Range of Applications
- Functional Transformation
- Image Enhancement/Filtering
- Segmentation
- 3D Reconstruction an Visualization

Literaturempfehlungen

essential:
Slides
recommended:
- Meyer, M.; Signalverarbeitung: Analoge und digitale Signale, Systeme und Filter
- Grünigen, D. C. v.; Digitale Signalverarbeitung: mit einer Einführung in die kontinuierlichen Signale und Systeme
- Tönnies, K.; Grundlagen der Bildverarbeitung; Pearson Studium 2005
- Lehmann, Th.; Oberschelp, W.; Pelinak, E.; Ppenges, R.; Bildverarbeitung in der Medizin; Springer Verlag 1997
- Handels, H.; Medizinische Bildverarbeitung; Teubner Verlag, Stuttgart - Leipzig 2000

<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Moduleart / type of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge	Modul math040 Analysis II b: Differentialrechnung mehrerer Variablen
Examination	Prüfungszeiten
Type of examination	

| Final exam of module | At the end of the semester |
| Form of teaching | Hands-on exercises and written or oral exam |

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe 28</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe 28</td>
<td>28</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
inf305 - Medical Technology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Medical Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf305</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
</tbody>
</table>

| Workload | 180 h |

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Nicht Informatik
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Hein, Andreas (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Professional competence
The students:
- Describe medical diagnosis and therapy methods
- Understand the core concepts of computer-assisted medical interventions
- Are aware of the basic concepts and legal conditions of the development of medical devices
- Define the character of medical devices’ software parts and implement them
- Assess the complex interaction of medical products and patients
- Get familiar with the development of medical products within a short period of time

Methodological competence
The students:
- Recognise the interdisciplinary challenges and accordingly exchange information with other disciplines

Social competence
The students:
- Present solutions for specific questions

Self-competence
The students:
- reflect their solutions by using methods learned in this course

Module contents

- Medical areas and areas of application
- Basic requirements for medical systems (hygiene, MPG, technical security, materials)
- Medical systems:
 - Functional diagnostics (ECG, EMG, EEG)
 - Imaging systems (CT, MRI, ultrasound, PET, SPECT) - Therapy equipment (Laser, RF, Microtherapy)
 - Signal processing / monitoring (cardiovascular, hemodynamic, respiratory, metabolic, cerebral)
- Medical Informatics (HIS, DICOM, Telemedicine, VR, image processing).

Literatureempfehlungen

essential:

- Lecture slides

recommended:

secondary literature:

<table>
<thead>
<tr>
<th>Links</th>
<th>Language of instruction</th>
<th>English, German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td></td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
<td>once a year</td>
</tr>
<tr>
<td>Module capacity</td>
<td></td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td></td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td></td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
<td>- Signal und Bildverarbeitung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Regelungstechnik</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
<td>At the end of the lecture periode</td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
<td>Portfolio: Hands-on exercises, report, and written or oral exam</td>
</tr>
<tr>
<td>Form of teaching</td>
<td></td>
<td>SWS</td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td>Workload of compulsory attendance</td>
<td></td>
<td>Präsenzzzeit Modul insgesamt</td>
</tr>
<tr>
<td>Lecture</td>
<td>3</td>
<td>WiSe</td>
</tr>
<tr>
<td>Exercises</td>
<td>1</td>
<td>WiSe</td>
</tr>
<tr>
<td>Präsenzzzeit Modul insgesamt</td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf307 - Robotics

Module label: Robotics
Modulkürzel: inf307
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Nicht Informatik
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
Lehrenden, Die im Modul (Prüfungsberechtigt)
Hein, Andreas (Prüfungsberechtigt)

Prerequisites
Skills to be acquired in this module

Professional competence
The students:
- Name and know the functions and applications of robot systems
- Characterise the basic concepts to program robot systems
- Differentiate between the interaction of mechanical, electrical and software components

Methodological competence
The students:
- Define characteristics and components of robot systems for a specific application
- Design and implement robot system sub-components
- Design and parameterise simple control structures
- Plan the application of robot systems and derive the requirements
- Model electrical and mechanical systems
- Develop and realise simple robot systems

Social competence
The students:
- Solve robot systems problems in team work

Self-competence
The students:
- Reflect their solutions in reference to robot system methods

Module contents
- Integration in production plants / aims / subsystems
- Architectures / classifications (classification of robots)
- Robot components + Computer systems for programming
 - PA-10
 - Lego Mindstorms
- Basics of kinematics
 - Coordinate transformation, homogeneous coordinates, Coordinate transitions
 - Kinematic equation systems, transformation of vectors
- Kinematic
 - Joint types (manipulators) / Wheels, TCP
 - Denavit-Hartenberg-Transformation
 - Forward calculation
 - Backward calculation
- Sensors
 - General properties of sensors, parameter
 - Simple optical position sensors
 - Inductive-, capacitive- und ultrasonic-sensors
 - Distance sensors (laser scanner, triangulation sensors)
 - Force sensors
Sensor data preparation
- Planing / Regulation
 - Overall regulation approach, terms, process- and control functions, PID-controller
 - Planning concepts and approaches (On-Line, Off-Line), planning processes, construction and path planning
- Actuators

Literaturempfehlungen
essential:
lecture nodes

recommended:

sekundär literature:

Links

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
once a year

Module capacity
unlimited

Modulelevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
Pflicht o. Wahlpflicht / compulsory or optional

Lehr-/Lernform / Teaching/Learning method
V+Ü

Vorkenntnisse / Previous knowledge

Final exam of module
Prüfungszeiten At the end of the lecture period
Portfolio: Hands-on exercises, report, and written or oral exam

Form of teaching Comment SWS Frequency Workload of compulsory attendance
Lecture 3 SoSe 42
Exercises 1 SoSe 14

Präsenzzeit Modul insgesamt 56 h
inf308 - Microrobotics II

Module label: Microrobotics II
Modulkürzel: inf308
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Nicht Informatik
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master's Programme Engineering Physics (Master) > Schwerpunkt: Laser and Optics

Zuständige Personen:
Fatikow, Sergej (Prüfungsberechtigt)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:

Skills to be acquired in this module:
After having given an established introduction in the module "Microrobotics and Microsystem Technology" this lecture offers a further specialisation in microrobotics. Within the course, all relevant areas (among others the research topics of the division "Microrobotics and Control Engineering (AMiR)") will be presented and analysed. The student will be provided with an insight into current research projects of AMiR and of other research institutes of microrobotics worldwide; here mainly the requirements of industry to microrobots will be discussed. The lecture will be enhanced by practical courses in the research laboratories of AMiR.

Professional competence
The students:
- name and recognise the basic concepts of nanotechnology, in particular, micro- and nanorobotics approaches
- differentiate the development, control and application of micro- and nanorobotics systems
- implement and design application-specific micro- and nanorobotics systems

Methodological competence
The students:
- transfer their control engineering and image processing abilities on interdisciplinary problems
- transfer their hands-on experience to develop controls and applications of microrobotic systems on new tasks

Social competence
The students:
- work in a team

Self-competence
The students:
- reflect their problem-solving behaviour and use hands-on experience to develop, control and application of microrobotics

Module contents:
Smart and versatile microrobots; microactuators (piezo-, ferrofluid- and SMA-actuators) for microrobots; real-time image processing in the micro world (SEM, optical microscopy); micro force sensors and tactile sensors for microrobots; microrobot control systems, e.g. neural networks and fuzzy logic; haptic interface for the control of microrobots; neural speech interface for the control of microrobots; robot-based micro- and nanohandling (SEM, optical microscopy); applications: microassembly, nano-testing, cell handling; Micro Air Vehicles (MAVs); multi-robot systems: team behavior, communication, control issues

Literaturempfehlungen:
- Lecture notes (can be obtained in secretariate, A1-3-303)

Links
<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>English, German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>once a year</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Pflicht o. Wahlpflicht / compulsory or optional</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Mikrorobotik und Mikrosystemtechnik</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Type of examination</td>
<td>Oral Exam and exercises</td>
</tr>
</tbody>
</table>

| Final exam of module | At the end of the lecture period |

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |

| Frequenz | 290 / 325 |
inf524 - Introduction to Medicine for Computer Science Students

Module label
Introduction to Medicine for Computer Science Students

Modulkürzel
inf524

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master’s Programme Computing Science (Master) > Angewandte Informatik
- Master’s Programme Computing Science (Master) > Nicht Informatik

Zuständige Personen
- Hein, Andreas (Module responsibility)
- Klausen, Andreas (Module responsibility)
- Kaspar, Mathias (Module responsibility)
- Röhrig, Rainer (Prüfungsberechtigt)

Prerequisites

Module contents

Literaturempfehlungen
- Speckmann / Wittkowski, Handbuch Anatomie, h.f. ullmann publishing GmbH 2015, ISBN 978-3-8480- 0878-0

Links
https://www.uni-oldenburg.de/versorgungsforschung/abteilungen/medizininformatik/lehre/

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
yährlich

Module capacity
unlimited

Reference text
Die Durchführung der Veranstaltung erfolgt in Kooperation mit verschiedenen Professuren der Departments. Für Humanmedizin, sowie der Anatomie der Fakultät VI.

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Am Ende der Vorlesungszeit / Anfang des Folgesemesters</td>
<td>KL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
inf852 - IT Project Management

Modul kürzel: inf852
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:

- Bachelor's Programme Biology (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Business Administration and Law (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Business Informatics (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Chemistry (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Comparative and European Law (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Computing Science (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Economics and Business Administration (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Economics and Business Administration (Bachelor) > Studienrichtung Wirtschaftsinformatik
- Bachelor's Programme Engineering Physics (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Environmental Science (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Intercultural Education and Counselling (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Mathematics (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Physics, Engineering and Medicine (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Economics and Business Administration (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Economics and Business Administration (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Sustainability Economics (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Sustainable Business (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Bachelor's Programme Sustainability Economics (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Dual-Subject Bachelor's Programme Art and Media (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Dual-Subject Bachelor's Programme Computing Science (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Dual-Subject Bachelor's Programme Dutch Linguistics and Literary Studies (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Dual-Subject Bachelor's Programme Economic Education (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Dual-Subject Bachelor's Programme Economics and Business Administration (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Dual-Subject Bachelor's Programme Elementary Mathematics (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Dual-Subject Bachelor's Programme English Studies (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Dual-Subject Bachelor's Programme Gender Studies (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Dual-Subject Bachelor's Programme General Education (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Dual-Subject Bachelor's Programme German Studies (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Dual-Subject Bachelor's Programme History (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
- Dual-Subject Bachelor's Programme Material Culture: Textiles (Bachelor) > Praxismodule für Studierende mit außerschulischem Berufsziel
Skills to be acquired in this module

The participants of this course are aware of problems, activities and tools of data processing project management (DP-Project-Management). They are able to identify and select the corresponding tools in different project stages and are familiar with those tools. They are able to describe the business informatics fields of actions. The are competent to work in a team and organise and implement projects.

Professional competence

The students:

- Characterise problems, activities and tools of the data processing project management.
- Are able to identify the corresponding tools in different project stages
- Use specific DP-Project-Management tools
- Differentiate the business informatics field of actions

Methodological competence

The students:

- Perform projects with the tools of each phase

Social competence

The students:

- Work in small project-teams
- Make design decisions cooperatively
- Present solutions

Self-competence

The students:

- Acquire DP-Project-Management methods and use them
- Recognise and are responsible for working packages

Module contents

It is important to know different IT project management types and forms as well as corresponding methods and tools. This course provides basic data-processing problems, activities and methods. The course is based on M. Burghardt’s book. After an introduction, the course is divided as follows:

- Project management (Requirements Engineering, Profitability Analysis, Organisational Structure)
- Project Planning (Project Structure, Network Analysis, Project Plans)
- Project Control (Cost Evaluation, Quality Control)
- **Project Completion**

The participants get familiar with project management tools. Presentations drawn from practice are intended.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Links</td>
<td>www.wi-ol.de</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td>Type of examination</td>
</tr>
<tr>
<td>Form of teaching module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Written or oral exam</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>Comment</td>
</tr>
<tr>
<td>Workload of compulsory attendance</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>SWS</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>SoSe</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Exercise</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf950 - Interdisciplinary Module I

Module label: Interdisciplinary Module I
Modulkürzel: inf950
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Nicht Informatik
- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule

Zuständige Personen:
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:

Skills to be acquired in this module:

Ziele des Moduls/Kompetenzen:
Die Absolventinnen und Absolventen kennen die Grundlagen und anwendungsrelevanten Hintergründe der ausgewählten Disziplin.

Fachkompetenzen:
Die Studierenden:
- benennen die Grundlagen und Methoden des gewählten Gebietes
- wenden die Fachsprache des Anwendungsgebietes kompetent an

Methodenkompetenzen:
Die Studierenden:
- charakterisieren Nutzungskontext und Anforderungen von IT im gewählten Gebiet
- wenden die disziplinären Methoden und Techniken des Anwendungsgebietes an und kontrastieren diese mit den aus der Informatik bekannten Methoden und Techniken
- untersuchen Probleme eines Anwendungsgebietes mit den disziplin-typischen Methoden

Sozialkompetenzen:
Die Studierenden:
- können die Verschiedenheit von Fachkulturen einschätzen und respektieren andere Fachgebiete und deren Arbeitsweise
- bereiten sich auf Anwendungsszenarien für IT-Systeme vor

Selbstkompetenzen:
Die Studierenden:
- reflektieren ihr Selbstbild und Handeln vor dem Hintergrund einer anderen Fachdisziplin

Module contents:
Das Modul wird mit Fachmodulen aus anderen Disziplinen oder Modulen des Departments für Informatik instanziert, die als Nicht Informatik-Modul gekennzeichnet sind. Die Veranstaltungsformen und Prüfungsmodalitäten orientieren sich an dem jeweils gewählten Modul.

Literaturempfehlungen:

Links:

Languages of instruction:

Duration (semesters): 1 Semester
Module frequency:
Module capacity: unlimited
Modullevel / module level: AS (Akzentsetzung / Accentuation)
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method:
Vorkenntnisse / Previous knowledge:
Examination:
Prüfungszeiten: Type of examination: M
Final exam of module:
Form of teaching: VA-Auswahl
<table>
<thead>
<tr>
<th>SWS</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf951 - Interdisciplinary Module II

<table>
<thead>
<tr>
<th>Module label: Interdisciplinary Module II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: inf951</td>
</tr>
<tr>
<td>Credit points: 6.0 KP</td>
</tr>
<tr>
<td>Workload: 180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls:</td>
</tr>
<tr>
<td>- Master's Programme Computing Science (Master) > Nicht Informatik</td>
</tr>
<tr>
<td>- Master's Programme Embedded Systems and Microrobotics (Master) > Akzentsetzungsmodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
</tr>
<tr>
<td>Prerequisites:</td>
</tr>
<tr>
<td>Skills to be acquired in this module:</td>
</tr>
<tr>
<td>Module contents</td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
</tr>
<tr>
<td>Links</td>
</tr>
<tr>
<td>Languages of Instruction:</td>
</tr>
<tr>
<td>Duration (semesters): 1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity: unlimited</td>
</tr>
<tr>
<td>Modullevel / module level: BC (Basiscurriculum / Base curriculum)</td>
</tr>
<tr>
<td>Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method:</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge:</td>
</tr>
<tr>
<td>Examination:</td>
</tr>
<tr>
<td>Prüfungszeiten:</td>
</tr>
<tr>
<td>Type of examination:</td>
</tr>
<tr>
<td>Final exam of module:</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>Form of teaching:</td>
</tr>
<tr>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS:</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>Frequency:</td>
</tr>
<tr>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit:</td>
</tr>
<tr>
<td>28 h</td>
</tr>
</tbody>
</table>
wir021 - Double Entry Bookkeeping & Financial Statements under German Law (HGB)

<table>
<thead>
<tr>
<th>Module label</th>
<th>Double Entry Bookkeeping & Financial Statements under German Law (HGB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>wir021</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | • Bachelor's Programme Business Administration and Law (Bachelor) & Business Administration and Law (Bachelor) > Basiscurticulum
 Wirtschaftswissenschaften
 • Bachelor's Programme Business Informatics (Bachelor) & Business Informatics (Bachelor) > Aufbaucurticulum - Pflichtbereich
 • Bachelor's Programme Economics and Business Administration (Bachelor) & Economics and Business Administration (Bachelor) > Basismodule
 • Bachelor's Programme Mathematics (Bachelor) & Mathematics (Bachelor) > Nebenfachmodule
 • Bachelor's Programme Sustainability Economics (Bachelor) & Sustainability Economics (Bachelor) > Wahlpflichtbereich
 • Dual-Subject Bachelor's Programme Economics and Business Administration (Bachelor) > Basismodule
 • Master's Programme Computing Science (Master) > Nicht Informatik |
| Zuständige Personen | Lehrenden, Die im Modul (Prüfungsberechtigt)
 Hombach, Katharina (Module responsibility) |
| Prerequisites | none |
| Skills to be acquired in this module | Participants...
 1. understand financial accounting as the basis of corporate data and bookkeeping
 2. gain comprehensive knowledge of main accounting areas such as procurement, sales, HR, inventory, tax, provisions etc.
 3. obtain basic knowledge about annual report process of single entities. |
| Module contents | The main objective of this module is to give the students an overview of the double entry bookkeeping as well as the link between financial accounting, balance sheet and income statement. The acquisition of basis knowledge of the corporate accountancy stands in the foreground, for example, how organizations manage the bookkeeping, legal basis of the annual accounts, creating an inventory, content of accounting and income statement. |
 An additional script is provided. |
| Links | http://www.uni-oldenburg.de/accounting/ | | | |
| Language of instruction | German |
| Duration (semesters) | 1 Semester |
| Module frequency | jährlich |
| Module capacity | unlimited |
| Modulart / module level | BC (Basiscurticulum / Base curriculum) |
| Lehr-/Lernform / Teaching/Learning method | Grundfertigkeiten im Umgang mit Gesetzestexten |
| Vorkenntnisse / Previous knowledge | Grundfertigkeiten im Umgang mit Gesetzestexten |
| Examination | Prüfungszeiten | Type of examination |
| Final exam of module | at the end of the semester | final exam |
| Form of teaching | Comment | SWS | Frequency | Workload of compulsory attendance |
| Lecture | 2 | | | 28 |
| Tutorial | 2 | WiSe | 28 |
| Präsenzzeit Modul insgesamt | 56 h |
wir082 - Corporate Finance

<table>
<thead>
<tr>
<th>Module label</th>
<th>Corporate Finance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>wir082</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Bachelor's Programme Business Administration and Law (Bachelor) > Aufbaubereich Wirtschaftswissenschaften
- Bachelor's Programme Business Informatics (Bachelor) > Akzentsetzungsbereich Wirtschaftswissenschaften
- Bachelor's Programme Economics and Business Administration (Bachelor) > Akzentsetzungsmodul
- Bachelor's Programme Mathematics (Bachelor) > Nebenfachmodule
- Bachelor's Programme Sustainability Economics (Bachelor) > Wahlpflichtbereich more...
- Dual-Subject Bachelor's Programme Economics and Business Administration (Bachelor) > Aufbaumodule
- Dual-Subject Bachelor's Programme Economics and Business Administration (Bachelor) > Schwerpunkt Management und Ökonomie
- Master of Education Programme (Vocational and Business Education) Economics and Business Administration (Master of Education) > Mastermodule
- Master's Programme Business Informatics (Master) > Module der Wirtschafts- und Rechtswissenschaften (Master)
- Master's Programme Computing Science (Master) > Nicht Informatik

Zuständige Personen

Prokop, Jörg (Module responsibility)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

- understand the role corporate finance plays in today’s business environment,
- are able to make consistent investment decisions based on established financial models both under certainty and under uncertainty,
- are able to place these models in within the broader context of economic theory, including both neoclassical theory and principal-agent theory,
- are able to assess the limitations of these models,
- analyze firm’s main sources of (long-term) financing.

Module contents

Course outline:
1. Introduction
2. Valuation and Capital Budgeting
3. Risk and Return
4. Long-Term Financing

This course is an introduction to corporate finance. It covers typical tools and techniques used in making investment and financing decisions, and it provides insights into their theoretical foundations. The concept of time value of money and net present value is discussed in detail, first under certainty, and then in the presence of uncertainty. We will examine the relationship between an investment’s risk and its return, and discuss ways to derive risk-adjusted cost of equity capital. In addition, the course provides insights into firms’ main sources of (long-term) financing.

The topics covered in this course are relevant for financial decision-making in various areas of business management, including operations management, marketing, and in particular corporate strategy.

Literaturempfehlungen

Main textbook:
Hillier, Ross, Westerfield, Jaffe & Jordan, Corporate Finance, current edition, McGraw-Hill (especially chapters 1, 2, 4-10, 14).

Supplementary readings:
Berk & DeMarzo, Corporate Finance, current edition, Boston (Mass.).
Brealey, Myers & Allen, Principles of Corporate Finance, current edition, Boston (Mass.).

Links

http://www.uni-oldenburg.de/fiwi_bbl/

Language of instruction

English

Duration (semesters)

1 Semester

Module frequency

jährlich

Module capacity

unlimited

Modulart / typ of module

je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning
<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Financial Accounting (wir060)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistik I (wir150)</td>
</tr>
<tr>
<td></td>
<td>Managerial Accounting (wir032)</td>
</tr>
<tr>
<td></td>
<td>Einführung in die VWL (wir041)</td>
</tr>
<tr>
<td></td>
<td>Mikroökonomische Theorie (wir120)</td>
</tr>
</tbody>
</table>

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>within three weeks after the last lecture</td>
<td>written exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorial</td>
<td>2</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td>56 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
wir160 - Entrepreneurship

- **Module label**: Entrepreneurship
- **Modulkürzel**: wir160
- **Credit points**: 6.0 KP
- **Workload**: 180 h

Verwendbarkeit des Moduls
- Bachelor's Programme Business Administration and Law (Bachelor) > Aufbaubereich Wirtschaftswissenschaften
- Bachelor's Programme Business Informatics (Bachelor) > Akzentsetzungsbereich Wirtschaftswissenschaften
- Bachelor's Programme Business Informatics (Bachelor) > Wahlbereich Informatik, Kultur und Gesellschaft
- Bachelor's Programme Economics and Business Administration (Bachelor) > Studienrichtung Betriebswirtschaftslehre
- Bachelor's Programme Sustainability Economics (Bachelor) > Wahlplichtbereich
- Master of Education Programme (Vocational and Business Education) Economics and Business Administration (Master of Education) > Mastermodule
- Master's Programme Business Informatics (Master) > Module der Wirtschafts- und Rechtswissenschaften (Master)
- Master's Programme Computing Science (Master) > Module der Wirtschafts- und Rechtswissenschaften (Master)

Zuständige Personen
Lehrende, Die im Modul (Prüfungsberechtigt)

- Nicolai, Alexander (Module responsibility)

Prerequisites
- none

Skills to be acquired in this module
- The module introduces to the basics of Entrepreneurship
- Upon completion of the module, students will be able to:
 - understand the challenges of launching an enterprise,
 - strategically analyse the structure of market
 - understand how employees are able to behave like an entrepreneur in established enterprises
 - develop innovative business ideas
 - shape the key factors for realizing a business idea
 - demonstrate a knowledge of the entrepreneurial process
 - demonstrate a knowledge of cost accounting (especially break-even analysis, etc.) and will be able to calculate costs by themselves
 - analyse and evaluate business models

Module contents
The module combines the lecture “Strategie und Entrepreneurship” with a tutorial. It investigates the challenges of launching enterprises and entrepreneurial behaviour in large companies as well. The content of the module follows the process of an entrepreneur. It starts with business ideas, their perception, and evaluation. In addition, it deals with the most important questions of development and management of new business models. The contents of the courses include the following topics:
- historical, institutional, and theoretical context
- development, evaluation, and pitching ideas
- business models
- building entrepreneurial teams
- entrepreneurship in large enterprises
- resources and finance
- management of growth

Literaturempfehlungen

Links

Language of instruction
- German

Duration (semesters)
- 1 Semester

Module frequency
- jährlich

Module capacity
- unlimited

Reference text
- The lecture “Strategie und Entrepreneurship”
must be attended in combination with the “Tutorium”.

<table>
<thead>
<tr>
<th>Modullevel / module level</th>
<th>---</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>at the end of the semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course or seminar</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Tutorial</td>
<td></td>
<td>2</td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
wir210 - Corporate Environmental Management

Module label: Corporate Environmental Management
Modulkürzel: wir210
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Bachelor's Programme Business Administration and Law (Bachelor) > Aufbaubereich Wirtschaftswissenschaften
- Bachelor's Programme Business Informatics (Bachelor) > Akzentsetzungsbereich Wirtschaftswissenschaften
- Bachelor's Programme Business Informatics (Bachelor) > Wahlbereich Informatik, Kultur und Gesellschaft
- Bachelor's Programme Economics and Business Administration (Bachelor) > Studienrichtung Betriebswirtschaftslehre
- Bachelor's Programme Economics and Business Administration (Bachelor) > Studienrichtung Ökologie und Nachhaltigkeit
- Bachelor's Programme Sustainability Economics (Bachelor) > Wahlpflichtbereich
- Master of Education Programme (Vocational and Business Education) Economics and Business Administration (Master of Education) > Mastermodule
- Master's Programme Business Informatics (Master) > Module der Wirtschafts- und Rechtswissenschaften (Master)
- Master's Programme Computing Science (Master) > Nicht Informatik

Zuständige Personen
- Hochmann, Lars (Module counselling)
- Siebenhüner, Bernd (Module responsibility)

Prerequisites
Skills to be acquired in this module
The students:
- understand the goals and concepts of sustainable development;
- discuss the importance of sustainability for companies;
- know basic strategies and instruments that enable companies to achieve sustainable development;
- acquire conceptual and practical skills using case studies, in particular about which instruments can be used to prepare companies for the challenges of sustainable development.

Module contents
The module consists of a lecture and a seminar. While the lecture presents and explains concepts, instruments and strategies for sustainable development, the seminar focuses on the practical relevance of the various instruments, concepts and strategies and discusses these based on case studies.
- Concepts and goals of sustainable development
- Introduction to the current discussion on sustainable development
- Current sustainability instruments and strategies for companies
- Case studies

Literaturrempfehlungen

Links
https://www.uni-oldenburg.de/wire/

Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited

Modullevel / module level: ---
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method: Vorlesung mit begleitendem Seminar

Vorkenntnisse / Previous knowledge
Examination: Prüfungszeiten
Type of examination: HA
Final exam of module: usually around Mid of March
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
wir270 - Resource and Energy Economics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Resource and Energy Economics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>wir270</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bachelor's Programme Economics and Business Administration (Bachelor) > Studienrichtung Ökologie und Nachhaltigkeit</td>
</tr>
<tr>
<td></td>
<td>Bachelor's Programme Economics and Business Administration (Bachelor) > Studienrichtung Volkswirtschaftslehre</td>
</tr>
<tr>
<td></td>
<td>Bachelor's Programme Sustainability Economics (Bachelor) > Vertiefungsmodule</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Computing Science (Master) > Nicht Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Schneider, Jan (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Asane-Otoo, Emmanuel (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Böhringer, Christoph (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Keine</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Die Studierenden sind in der Lage:</td>
</tr>
<tr>
<td></td>
<td>• Ressourcen- und energieökonomische Standardmodelle nachzuvollziehen,</td>
</tr>
<tr>
<td></td>
<td>• Standardmodelle in Hinblick auf weitergehende Fragestellungen anzupassen bzw. zu erweitern,</td>
</tr>
<tr>
<td></td>
<td>• die Funktionsweise von Ressourcen- und Energiemärkten zu verstehen,</td>
</tr>
<tr>
<td></td>
<td>• reale Vorgänge auf Ressourcen- und Energiemärkten anhand der Kriterien Effizienz, Verteilung und Nachhaltigkeit zu bewerten,</td>
</tr>
<tr>
<td></td>
<td>• die institutionell-regulatorischen Rahmenbedingungen von Ressourcen- und Energiemärkten anhand der Kriterien Effizienz, Verteilung und Nachhaltigkeit zu bewerten.</td>
</tr>
<tr>
<td>Module contents</td>
<td>Behandelt werden die Themenlinien nicht regenerierbare Ressourcen (effiziente Nutzung, intertemporale Gerechtigkeit, intertemporales Marktgleichgewicht); regenerierbare Ressourcen (effiziente Nutzung im steady state, Marktgleichgewicht); Nachhaltigkeit; Grundlagen der Energiewirtschaft; Energiennachfrage; Energie und Umwelt; Energieressourcen; Märkte für Primärenergieträger; Strommarkt und Regulierung. Dabei stehen die volkswirtschaftlichen Aspekte im Zentrum, wobei notwendigerweise auch grundlegende technische und betriebswirtschaftliche Aspekte vermittelt werden.</td>
</tr>
<tr>
<td>Links</td>
<td>https://www.uni-oldenburg.de/wire/</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>---</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Mikroökonomik</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Type of examination</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Zum Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Lecture</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Workload Präsentzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
wir360 - Environmental and Sustainability Policies

<table>
<thead>
<tr>
<th>Module label</th>
<th>Environmental and Sustainability Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>wir360</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bachelor's Programme Business Informatics (Bachelor) > Akzentsetzungsbereich Wirtschaftswissenschaften</td>
</tr>
<tr>
<td></td>
<td>• Bachelor's Programme Economics and Business Administration (Bachelor) > Studienrichtung Ökologie und Nachhaltigkeit</td>
</tr>
<tr>
<td></td>
<td>• Bachelor's Programme Sustainability Economics (Bachelor) > Vertiefungsmodule</td>
</tr>
<tr>
<td></td>
<td>• Master's Programme Computing Science (Master) > Nicht Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lehrende, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Bitzer, Jürgen (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Siebenhüner, Bernd (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Siebenhüner, Bernd (Module counselling)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>none</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td></td>
<td>students:</td>
</tr>
<tr>
<td></td>
<td>• have basic information about national and European environmental and sustainability governance</td>
</tr>
<tr>
<td></td>
<td>• describe the history of national and European environmental and sustainability governance</td>
</tr>
<tr>
<td></td>
<td>• reflect upon central principles, instruments, players and strategies in environmental and sustainability governance</td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Development directions of German and European environmental and sustainability governance;</td>
</tr>
<tr>
<td></td>
<td>Analysis of selected topics like energy, agriculture, chemical industry etc.;</td>
</tr>
<tr>
<td></td>
<td>Principles of environmental and sustainability governance;</td>
</tr>
<tr>
<td></td>
<td>Instruments of environmental and sustainability governance compared on international level;</td>
</tr>
<tr>
<td></td>
<td>New mechanisms in governance;</td>
</tr>
<tr>
<td></td>
<td>Relevant actors of environmental and sustainability governance (administration, industry, media, science, NGOs etc.);</td>
</tr>
<tr>
<td></td>
<td>International environmental and sustainability governance</td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aden, Hartmut (2012): Umweltpolitik, Wiesbaden: VS-Verlag</td>
</tr>
<tr>
<td>Links</td>
<td>https://www.uni-oldenburg.de/wire/</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>yearly</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>SPM (Schwerpunktmodul / Main emphasis)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>presentation</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
</tr>
</tbody>
</table>
wir806 - Information Technology Law

<table>
<thead>
<tr>
<th>Module label</th>
<th>Information Technology Law</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>wir806</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Bachelor's Programme Business Informatics (Bachelor) > Wahlbereich Informatik, Kultur und Gesellschaft
- Master of Education Programme (Gymnasium) Computing Science (Master of Education) > Mastermodule
- Master of Education Programme (Vocational and Business Education) Computing Science (Master of Education) > Recht und Gesellschaft
- Master's Programme Business Administration, Economics and Law (Master) > Mantelmodule
- Master's Programme Business Administration, Economics and Law (Master) > Schwerpunkt "Recht der Wirtschaft" (RdW)
- Master's Programme Business Informatics (Master) > Module der Wirtschafts- und Rechtswissenschaften (Master)
- Master's Programme Computing Science (Master) > Nicht Informatik

Zuständige Personen
- Lehrende, Die im Modul (Prüfungsberechtigt)
 - Louven, Sebastian (Module counselling)
 - Taeger, Jürgen (Module responsibility)

Prerequisites
Skills to be acquired in this module
- Upon completion of the module, students will be able to:
 - deal with all legal questions arising from the use of information and communication technology in all sectors of society,
 - identify legal issues arising from the use of information and communication technology,
 - draft solutions for these legal questions.

Module contents
- Internet law; IT contracts law

Literaturempfehlungen
- Köhler, Fetzer, Recht des Internet, 8. Aufl., 2016
- Redeker, IT-Recht, 6. Aufl., 2017

Links
- Language of instruction: German
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Modullevel / module level: ---
- Modular / typ of module: je nach Studiengang Pflicht oder Wahlpflicht

Vorkenntnisse / Previous knowledge
Examination
- Prüfungszeiten
- Type of examination: presentation and handout, written exam or oral exam

Final exam of module
- Form of teaching: during term
- SWS Frequency Workload of compulsory attendance
- Lecture 2 28
- Seminar 2 28

Präsenzzeit Modul insgesamt
- 56 h
wir808 - Multivariate Statistics

Module label: Multivariate Statistics
Modulkürzel: wir808
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master's Programme Business Administration, Economics and Law (Master) > Mantelmodule
- Master's Programme Business Administration, Economics and Law (Master) > Schwerpunkt „Volkswirtschaftslehre“ (VWL)
- Master's Programme Computing Science (Master) > Nicht Informatik
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Sustainability Economics and Management (Master) > Basic and Accentuation Modules

Zuständige Personen
- Stecking, Ralf Werner (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
Skills to be acquired in this module
With successful completion of the course, students shall:
- be aware of and be able to evaluate advanced methods of multivariate data analysis.
- be able to select adequate methods in relevant fields of application, like prediction, classification, and segmentation analysis.
- be able to run computer-aided analyses and to interpret the results properly.

Module contents
Various methods of quantitative data analysis such as:
- Linear Regression,
- Logistic Regression,
- Linear Discriminant Analysis,
- Principal Component Analysis,
- Feature selection and evaluation methods.

Literaturempfehlungen

Links
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Modulelevel / module level: MM-PB (Professionalisierungsbereichsmodul im Master)
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht

Vorkenntnisse / Previous knowledge
Examination: Prüfungszeiten Type of examination
Final exam of module: at the end of the semester written exam or oral exam

Form of teaching Comment SWS Frequency Workload of compulsory attendance
Lecture 2 28 28
Exercises 2 28 28
Präsenzzeit Modul insgesamt 56 h
Module Information

Module Code: wir812
Module Title: Environmental Law
Credit Points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master's Programme Business Administration, Economics and Law (Master) > Mantelmodule
- Master's Programme Business Administration, Economics and Law (Master) > Schwerpunkt "Nachhaltigkeitsmanagement" (NM)
- Master's Programme Business Administration, Economics and Law (Master) > Schwerpunkt "Recht der Wirtschaft" (RdW)
- Master's Programme Business Informatics (Master) > Module der Wirtschafts- und Rechtswissenschaften (Master)
- Master's Programme Computing Science (Master) > Nicht Informatik
- Master's Programme Sustainability Economics and Management (Master) > Basic and Accentuation Modules

Zuständige Personen
- Meyerholt, Ulrich (Module counselling)
- Godt, Christine (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
Building on the existing knowledge of the participants, the course will deepen knowledge of European and international law, whereby emphasis will be laid on those areas in which the dividing line between state intervention (public law) and market rights (private law) has become blurred. Students will be able to analyze contemporary regulatory techniques inherent in the multilevel system of governance and to assess them from an interdisciplinary (economic and legal) perspective.

Module Contents
The module comprises two courses, one of which will be taught by PD Dr. Meyerholt, and the other together with Prof. Godt.

- The first course deals with selected issues in environmental law. With the general structure of environmental law as a point of departure, the course content will be taught in a holistic manner that will also incorporate the leading decisions of the higher courts.
- The second course takes into consideration intra-disciplinary environmental law as situated between public and private economic law, whereby special focus will be laid on the European and international dimensions.

Literature Recommendations

Links
- Language of instruction: German
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Module level / module level: ---
- Modulart / type of module: je nach Studiengang Pflicht oder Wahlpflicht

Vorkenntnisse / Previous knowledge
- Examination: Prüfungszeiten
- Type of examination: oral presentation and written script
- Final exam of module: during term
- Form of teaching: Lecture

SWS
- Frequency: Sose oder WiSe
- Workload Präsenzzeit: 56 h
Module contents

The course offers an overview of advanced concepts and frameworks in the field of Strategic Management. At the beginning, the course will provide a brief introduction into the historical development, goals, and research streams of the field. In this context, important terms, methods, and philosophical approaches of (management) research will be clarified. Subsequently, students form groups to analyze selected scientific articles with regard to their theoretical relevance and practical implications. Theoretical topics that will be covered in depth are:

1. Top Management Teams, Upper Echelons und Corporate Governance
2. Resource- and Capability-based Approaches
4. Institutional Theory, Institutional Work/Entrepreneurship and Social Movements
5. Organizational Cognition, Identity, and Framing
6. Organizational Learning and Ambidexterity
7. Organizational networks and ecosystems

The results of the analysis will be summarized in a seminar thesis, presented in class, and discussed with the other students. The main goal of the course is to equip students with advanced concepts, which allow them to understand organizational dynamics, question established practices in firms, and develop new solutions that go beyond the application of standard instruments.

Literature recommendations

<table>
<thead>
<tr>
<th>Module frequency</th>
<th>jährlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>---</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
</tbody>
</table>

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Zum Ende des Semesters</td>
<td>KL</td>
</tr>
</tbody>
</table>

Form of teaching

<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Präsentzeit Modul insgesamt</td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
wir857 - Law of Media and Telecommunication

<table>
<thead>
<tr>
<th>Module label</th>
<th>Law of Media and Telecommunication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>wir857</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td>Master's Programme Business Administration, Economics and Law (Master) > Schwerpunkt "Recht der Wirtschaft" (RdW)</td>
<td></td>
</tr>
<tr>
<td>Master's Programme Business Administration, Economics and Law (Master) > Schwerpunkt "Unternehmensführung"</td>
<td></td>
</tr>
<tr>
<td>Master's Programme Business Informatics (Master) > Module der Wirtschafts- und Rechtswissenschaften (Master)</td>
<td></td>
</tr>
<tr>
<td>Master's Programme Computing Science (Master) > Nicht Informatik</td>
<td></td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Boehme-Neßler, Volker (Module responsibility)</td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>The students:</td>
<td></td>
</tr>
<tr>
<td>have in-depth insights into the economic conditions of media production, distribution and exploitation.</td>
<td></td>
</tr>
<tr>
<td>know the legal basis and framework conditions of media production, media presentation and mediation (e.g. copyrights, performance rights, distribution of media).</td>
<td></td>
</tr>
<tr>
<td>bring together economic and legal dimensions of media work.</td>
<td></td>
</tr>
<tr>
<td>know the economic and legal framework conditions of media institutions (e.g. television, radio, media mediation).</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td>This module is about making a connection of the theoretical and practical acquired aesthetic competences with the economic and legal framework conditions. In the sense of professionalisation, prospective media producers and mediators should learn to assess their own future activities under economic and legal conditions.</td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td>Current case law and:</td>
</tr>
<tr>
<td></td>
<td>Fechner, Medienrecht, 19.Aufl. 2018</td>
</tr>
<tr>
<td></td>
<td>Petersen, Medienrecht, 2010.</td>
</tr>
<tr>
<td>Links</td>
<td>http://www.integrated-media.de/</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>---</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the term</td>
</tr>
<tr>
<td>Type of examination</td>
<td>Presentation with term paper</td>
</tr>
<tr>
<td>Form of teaching</td>
<td>Lecture</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
wir860 - Data Protection Law

<table>
<thead>
<tr>
<th>Module label</th>
<th>Data Protection Law</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>wir860</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Business Administration, Economics and Law (Master) > Schwerpunkt "Recht der Wirtschaft" (RdW)
- Master's Programme Business Administration, Economics and Law (Master) > Schwerpunkt "Unternehmensführung"
- Master's Programme Business Informatics (Master) > Module der Wirtschafts- und Rechtswissenschaften (Master)
- Master's Programme Computing Science (Master) > Nicht Informatik

Zuständige Personen
- Lehrende, Die im Modul (Prüfungsberechtigt)
 - Louven, Sebastian (Module counselling)
 - Taeger, Jürgen (Module responsibility)

Prerequisites

Skills to be acquired in this module
Upon completion of the module, students will be able to:
- recognize simple data protection incidents.
- apply existing protection mechanisms.
- implement projects in accordance with the law.
- discuss and defend their plans in front of others.

Module contents
The module gives an overview on data protection laws. Basic knowledge of data protection regulations (DSGVO; BDSG) and existing protection mechanisms is imparted. Within the framework of the seminar, the discussed topics will be deepened with the help of seminar papers and individual aspects will be discussed in more detail. The event will highlight the new informational structures in modern society and their effects on data protection and data security. Questions concerning general personal rights, freedom of information, IT security and relevant criminal law regulations will be discussed on the basis of examples and legally provided protection mechanisms as well as the tasks of supervisory authorities will be discussed. In particular, the most important decisions on data protection will be covered in detail during the seminar. At the seminar, students will have the opportunity to prepare in-depth seminar papers on the various topics, which will then be discussed with all participants.

Literaturempfehlungen
Kühling/Klar/Sackmann, Datenschutzrecht. 2018.
Further literature references will be given in the lecture.

Links
http://www.wto.org/

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Vorkenntnisse / Previous knowledge

Examination

Form of teaching

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Seminar</th>
<th>Präsenzzeit Modul insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>28</td>
</tr>
</tbody>
</table>

Prüfungszeiten
Typically 6 weeks after your presentation

Type of examination
Seminar paper and presentation or Term paper or Oral exam

Workload of compulsory attendance
56 h
wir875 - Forecasting Methods

Module label: Forecasting Methods
Module kürzel: wir875
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master Applied Economics and Data Science (Master) > Empirical Methods
- Master's Programme Business Administration, Economics and Law (Master) > Schwerpunkt "Unternehmensführung"
- Master's Programme Business Administration, Economics and Law (Master) > Schwerpunkt "Volkswirtschaftslehre" (VWL)
- Master's Programme Business Informatics (Master) > Module der Wirtschafts- und Rechtswissenschaften (Master)
- Master's Programme Computing Science (Master) > Nicht Informatik

Zuständige Personen:
Stecking, Ralf Werner (Module responsibility)
Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites:
Skills to be acquired in this module:
- With successful completion of the course, students shall:
 - be aware of and be able to evaluate quantitative forecasting methods,
 - be able to select adequate methods in relevant fields of application, like time series and classification analysis.
 - be able to run computer-aided analyses and to interpret the results properly.

Module contents:
Various aspects of quantitative forecasting methods such as:
- Time series components,
- Trend and seasonal methods,
- Stationarity,
- Multivariate forecasting methods,
- Autoregressive and moving average processes,
- Box-Jenkins method.

Literaturempfehlungen:
Thome, H. (2005): Zeitreihenanalyse, München

Links:
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: halbjährlich
Module capacity: unlimited
Modulelevel / module level: ---
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning:

315 / 325
method

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>end of semester</td>
<td>written exam or oral exam or term paper or seminar paper and presentation</td>
</tr>
</tbody>
</table>

Form of teaching

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
wir901 - Environmental Economics

Module label: Environmental Economics

Modulkürzel: wir901

Credit points: 6.0 KP

Workload: 180 h

- Lecture: 3 SWS (42h)
- Exercise: 1 SWS (14h)

Verwendbarkeit des Moduls

- Master Applied Economics and Data Science (Master) > Economics
- Master's Programme Business Administration, Economics and Law (Master) > Schwerpunkt "Nachhaltigkeitsmanagement" (NM)
- Master's Programme Business Administration, Economics and Law (Master) > Schwerpunkt "Volkswirtschaftslehre" (VWL)
- Master's Programme Computing Science (Master) > Nicht Informatik
- Master's Programme Sustainability Economics and Management (Master) > Basic and Accentuation Modules

Zuständige Personen

Helm, Carsten (Module counselling)
Lehrenden, Die im Modul (Prüfungsberechtigt)
Helm, Carsten (Module responsibility)

Prerequisites

Keine

Skills to be acquired in this module

Know and be able to apply fundamental concepts and figures of thought in environmental economics; be able to analyse and evaluate environmental problems and solution approaches; practice scientific methods and the ability to discuss; be able to classify environmental economics in the context of interdisciplinary sustainability research.

Module contents

- Economic analysis of environmental impacts (property rights, external effects, market failure); ethical aspects of environmental economics, instruments of environmental policy (tradable permits, taxes, subsidies, liability law);
- innovation and adaptation of new technologies;
- international environmental problems.

Literaturempfehlungen

Links

Language of instruction: English

Duration (semesters): 1 Semester

Module frequency: Annually

Module capacity: unlimited

Modulart / module level: je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method: Vorlesung und Übung

Vorkenntnisse / Previous knowledge

Examination: Prüfungszahlen

Type of examination: Written exam; bonus through solution of exercises

Form of teaching: At the end of the lecture period

Final exam of module: Written exam; bonus through solution of exercises

<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td></td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td></td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt: 56 h
wir904 - Environmental and Sustainability Policies

Module label
Environmental and Sustainability Policies

Modulkürzel
wir904

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master’s Programme Business Informatics (Master) > Module der Wirtschafts- und Rechtswissenschaften (Master)
- Master’s Programme Computing Science (Master) > Nicht Informatik
- Master’s Programme Sustainability Economics and Management (Master) > Basic and Accentuation Modules

Zuständige Personen
Lehrenden, Die im Modul (Prüfungsberechtigt)
Siebenhüner, Bernd (Module counselling)
Wegner, Alkje (Module counselling)
Müller, Werner Joachim (Module counselling)

Prerequisites
Skills to be acquired in this module
- students:
 - have basic information about national and european environmental and sustainability governance
 - describe the history of national and european environmental and sustainability governance
 - reflect upon central principles, instruments, players and strategies in environmental and sustainability governance
 - analyze selected topics of environmental and sustainability governance based upon central principles, instruments, players and strategies

Module contents
- Introduction to environmental politics - Politics, Political Science, Policy Analysis
- Environment – Terms and Concepts - Historical Foundations of Environmental Politics
- Actors, Institutions and governance structures; Actors in Environmental Policy
- Socio-ecological systems framework
- Environmental Policy in Germany
- Environmental Policy in the European Union
- Steering and principles in environmental policy
- Instruments in environmental policy
- Policy process and environmental policy
- Multilevel and reflexive governance - Multilevel governance
- International environmental governance
- Science-Policy Interface

Literaturempfehlungen
Aden, Hartmut (2012): Umweltpolitik, Wiesbaden: VS-Verlag

Links
https://www.uni-oldenburg.de/wire/

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency
halbjährlich

Module capacity
unlimited

Modullevel / module level
BM (Basismodul / Base)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten
Type of examination
presentation

Final exam of module
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Vorlesung und Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
wir905 - Environmental Sciences

Module label: Environmental Sciences
Module code: wir905
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Nicht Informatik
- Master's Programme Sustainability Economics and Management (Master) > Basic and Accentuation Modules
- Master's Programme Water and Coastal Management (Master) > Science

Zuständige Personen
- Freund, Holger (Module counselling)
- Köster, Jürgen (Module counselling)
- Dozent, Gast (Module counselling)
- Klenke, Thomas (Prüfungsberechtigt)
- Freund, Holger (Prüfungsberechtigt)
- Köster, Jürgen (Prüfungsberechtigt)
- Klenke, Thomas (Module responsibility)

Prerequisites
The Introduction to processes and systems of the dynamic Earth constituting the foundation for sustainable management is presented to produce:
- Knowledge about processes and systems relevant for sustainable management using knowledge and methodologies from all science disciplines in an integrated way.
- Skills in elaborating on complex tasks of environmental management using an interdisciplinary science based approach and to present related findings to non-expert audiences.
- Lecture room presentations and discussions based on slides and black/white board usage.

Short films will be presented to endorse the intended achievements.

Module contents
- Lecture: Understanding the Bioplanet Earth (2 contact hours/week) (Vorlesung, 2 LVS: Aufbau und Entwicklungsgeschichte der Erde; Dynamik der Erde: Kreisläufe und Evolutionsprozesse; Lebensraum Boden; Wasser; Klima; Biodiversität; Lagerstätten und Ressourcenerschließung; Ökosysteme der Erde.)
- Seminar: Cases in Understanding the Bioplanet Earth (2 contact hours/week)

Introduction to key processes and to systems dynamics of the Earth representing a planet being alive driven by external and internal forces interacting with biological activities. Topics of the lecture comprise introductions to the evolution of the universe and solar systems, the differentiation and sub-systems of the Earth’s interior, minerals and rock cycle, soils, ocean and climate, evolution and biodiversity, organisms and physiology, water and element cycling plus insights into ecosystems under different climate conditions. The cases are selected in order to (i) highlight certain principles and theories in geo- and biosciences and (ii) exemplify critical objects and phenomena in modern practice of resource and environmental management.

This module consists of topical programmes of the Master Cluster Environment and Sustainability.

Literatureempfehlungen
A 'foundation material pool' will be made available online for students and lecturers providing paper books, reports and media covering the topics of the lecture and the cases

Links
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Module level / module level: BM (Basismodul / Base)
Module art / type of module: Pflicht / Mandatory

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Examination
Prüfungszeiten: By the end of the lecture period.
Type of examination:
- Presentation/discussion and written report on a case:
 - Scientific quality of presentation (40 %)
 - Clarity of presentation and discussion (20 %)
 - Scientific quality of report (40 %)
<table>
<thead>
<tr>
<th>Form of teaching</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
Module label: Renewable Energy Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Renewable Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>wir915</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | - Master's Programme Computing Science (Master) > Nicht Informatik
 - Master's Programme Sustainability Economics and Management (Master) > Additional Modules |

Zuständige Personen

- Peinke, Joachim (Prüfungsberechtigt)
- Hölling, Michael (Prüfungsberechtigt)
- Golba, Michael (Prüfungsberechtigt)
- Torio, Herena (Prüfungsberechtigt)
- Holtorf, Hans-Gerhard (Prüfungsberechtigt)
- Knecht, Robin (Prüfungsberechtigt)
- Peinke, Joachim (Module responsibility)
- Siebenhüner, Bernd (Module responsibility)
- Hölling, Michael (Module responsibility)

Prerequisites

None.

Skills to be acquired in this module

Students learn details about the wide range of renewable energy sources and renewable energy technology as well as their background story.

Module contents

- Energy basics, energy resources, global energy overview, energy scenarios, techno-economic aspects of energy use (external costs, life cycle analysis, ...), environmental effects of energy use (greenhouse gas emissions, ozone, ...), conventional and advanced power plant technologies, power distribution, advanced storage technologies, solar thermal power plants, geothermal and ocean energies.

Prerequisites

None.

Skills to be acquired in this module

Students learn details about the wide range of renewable energy sources and renewable energy technology as well as their background story.

Module contents

- Energy basics, energy resources, global energy overview, energy scenarios, techno-economic aspects of energy use (external costs, life cycle analysis, ...), environmental effects of energy use (greenhouse gas emissions, ozone, ...), conventional and advanced power plant technologies, power distribution, advanced storage technologies, solar thermal power plants, geothermal and ocean energies.

Literature recommendations

Links

- German, English

Languages of instruction

- German, English

Duration (semesters)

- 1 Semester

Module frequency

- halbjährlich

Module capacity

- unlimited

Module level / module level

- MM-PB (Professionalisierungsbereichsmodul im Master)

Module type / type of module

- je nach Studiengang Pflicht oder Wahlpflicht

Teaching/Learning method

- Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

- Examination
 - Prüfungszeiten
 - Type of examination

Final exam of module

- By the end of the lecture period.
 - Term paper or written exam.

Form of teaching

- Seminar

SWS

- Frequency

Workload Präsenzzeit

- 0 h
Abschlussmodul

mam - Master Thesis and Colloquium

<table>
<thead>
<tr>
<th>Module label</th>
<th>Master Thesis and Colloquium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mam</td>
</tr>
<tr>
<td>Credit points</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master's Programme Computing Science (Master) > Abschlussmodul</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Sonnenschein, Michael (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Hein, Andreas (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Module counselling)</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

The students prove that they are able to process and solve complex computer science tasks based on gained scientific knowledge and applied research methods. The students successfully implement a task especially by using their acquired professional and methodological knowledge and their professional and social competences.

The accompanying seminar is used to discuss the master’s thesis methodically and content-related. During the seminar the exchange of research and practical experience fosters the students' ability to discuss and evaluate their thesis with other students and experts. The master’s thesis is finished by a colloquium.

Professional competence

The students:

- Recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- Design solutions for complex, possibly vaguely defined or unusual computer science tasks/problems and evaluate these with reference to state of the art computer science and technology
- Identify, structure and solve problems/tasks, also in new or developing subject areas
- Apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- Relate knowledge from different disciplines and apply this new knowledge in complex situations
- Develop complex computer systems, processes and datamodels
- Are aware of the current limits and contribute to the development of computer science research and technology
- Discuss and evaluate recent computer science developments

Methodological competence

The students:

- Identify and develop one or more solutions
- Evaluate and apply tools, technology and methods sophisticatedly
- Examine tasks with technical and research literature, write an academic article and present their solutions academically
- Schedule processes and resources
- Apply project management techniques
- Combine new and original approaches and methods creatively
- Evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competence

The students:

- Communicate with users and experts convincingly
- Take reasonable decisions

Self-competence

The students:

- Pursue the overall and special computer science development critically
- Implement innovative professional activities effectively and independently
- Recognise their abilities and extend them purposefully
- Reflect their self-perception and actions with regard to professional, methodological and social aspects
- Develop and reflect self-developed hypotheses to theories independently
• Work in their field independently

<table>
<thead>
<tr>
<th>Module contents</th>
<th>Independently researched scientific work. The research findings will be presented and discussed in a master’s thesis colloquium.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatureempfehlungen</td>
<td>ist entsprechend des konkreten Themas selbst zu recherchieren</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>halbjährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel / module level</td>
<td>Abschlussmodul (Abschlussmodul)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Pflicht</td>
</tr>
</tbody>
</table>
| Lehr-/Lernform / Teaching/Learning method | S (2 SWS)
MA+S |
| Vorkenntnisse / Previous knowledge | |
| Examination | |
| Prüfungszeiten | |
| Type of examination | |
| Final exam of module | Individuell in Absprache mit den GutachterInnen und BetreuerInnen |
| Master’s thesis, presentation and discussion. |
| Form of teaching | Seminar |
| SWS | 2 |
| Frequency | Sose und WiSe |
| Workload Präsenzzeit | 28 h |