Modulhandbuch

Mathematik - Master-Studiengang

im Sommersemester 2024

erstellt am 28.05.2024
mat510 - Fourieranalysis .. 6
mat515 - Funktionalanalysis II .. 8
mat525 - Nichtlineare Funktionalanalysis .. 9
mat530 - Einführung in die Topologie .. 11
mat535 - Globale Analysis I .. 13
mat536 - Globale Analysis II .. 14
mat538 - Singuläre Analysis .. 15
mat540 - Differentialgeometrie .. 16
mat542 - Komplexe Geometrie .. 18
mat543 - Spezielle Themen der Geometrie .. 19
mat545 - Funktionentheorie II .. 20
mat550 - Spektraltheorie von Differentialoperatoren .. 22
mat555 - Elementare Methoden der partiellen Differentialgleichungen .. 23
mat560 - Theorie der partiellen Differentialgleichungen .. 24
mat565 - Nichtlineare partielle Differentialgleichungen .. 25
mat570 - Dynamische Systeme .. 27
mat575 - Modellierung mit partiellen Differentialgleichungen .. 28
mat579 - Spezielle Themen der Analysis .. 30
mat595 - Numerik partieller Differentialgleichungen .. 31
mat597 - Numerische Methoden für partielle Differentialgleichungen mit Unsicherheiten .. 33
mat599 - Spezielle Themen der Numerik ... 35
mat605 - Hauptseminar zur Analysis ... 36
mat610 - Hauptseminar zur Mathematischen Modellierung ... 37
mat615 - Hauptseminar zur Numerik ... 38
mat705 - Algebraische Zahlentheorie ... 39
mat710 - Algorithmische Zahlentheorie ... 41
mat715 - Algebraische Kurven und Funktionen ... 43
mat720 - Elliptische Kurven ... 44
mat725 - Arithmetische Dualität ... 46
mat730 - Codierungstheorie ... 47
mat735 - Komplexe Multiplikation ... 48
mat740 - Mathematische Kryptologie ... 49
mat745 - Modulformen ... 51
mat750 - Kommutative Algebra ... 52
mat755 - Themen der algebraischen Geometrie ... 53
mat760 - Spezielle Themen der Zahlentheorie ... 54
mat765 - Computeralgebra ... 56
mat770 - Hauptseminar in Algebra und Zahlentheorie ... 58
mat775 - Analytische Zahlentheorie ... 59
mat779 - Spezielle Themen der Algebra ... 60
mat785 - Darstellungstheorie ... 61
mat805 - Versicherungsmathematik I ... 63
mat806 - Versicherungsmathematik II ... 65
<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Kursname</th>
<th>Sektion</th>
</tr>
</thead>
<tbody>
<tr>
<td>mat810</td>
<td>Quantitative Risk Management</td>
<td>66</td>
</tr>
<tr>
<td>mat811</td>
<td>Quantitative Risikoanalyse</td>
<td>68</td>
</tr>
<tr>
<td>mat816</td>
<td>Stochastik II</td>
<td>70</td>
</tr>
<tr>
<td>mat819</td>
<td>Spezielle Themen der Stochastik</td>
<td>71</td>
</tr>
<tr>
<td>mat820</td>
<td>Stochastische Analysis und zeitstetige Finanzmathematik</td>
<td>72</td>
</tr>
<tr>
<td>mat825</td>
<td>Stochastic Processes and Finance</td>
<td>73</td>
</tr>
<tr>
<td>mat826</td>
<td>Finanzstatistik</td>
<td>75</td>
</tr>
<tr>
<td>mat827</td>
<td>Aktuarielle Statistik</td>
<td>77</td>
</tr>
<tr>
<td>mat829</td>
<td>Spezielle Themen der Versicherungs- und Finanzmathematik</td>
<td>79</td>
</tr>
<tr>
<td>mat830</td>
<td>Lineare Modelle/Regression</td>
<td>80</td>
</tr>
<tr>
<td>mat837</td>
<td>Extremwertstatistik und Anwendungen</td>
<td>82</td>
</tr>
<tr>
<td>mat839</td>
<td>Zeitreihenanalyse bzw. Zustandsmodelle</td>
<td>84</td>
</tr>
<tr>
<td>mat840</td>
<td>Monte Carlo Methoden</td>
<td>86</td>
</tr>
<tr>
<td>mat843</td>
<td>Elemente Multivariater Statistik</td>
<td>87</td>
</tr>
<tr>
<td>mat845</td>
<td>Räumliche Statistik</td>
<td>89</td>
</tr>
<tr>
<td>mat847</td>
<td>Elemente Explorativer Datenanalyse, Robuster Statistik und Diagnostik</td>
<td>91</td>
</tr>
<tr>
<td>mat849</td>
<td>Statistische Algorithmen</td>
<td>93</td>
</tr>
<tr>
<td>mat850</td>
<td>Asset Liability Management</td>
<td>95</td>
</tr>
<tr>
<td>mat857</td>
<td>Stochastische Finanzmarktmodelle</td>
<td>96</td>
</tr>
<tr>
<td>mat860</td>
<td>Vertiefung zur stochastischen Modellierung</td>
<td>97</td>
</tr>
<tr>
<td>mat865</td>
<td>Vertiefung zur Statistik</td>
<td>98</td>
</tr>
<tr>
<td>mat870</td>
<td>Hauptseminar in Statistik</td>
<td>100</td>
</tr>
</tbody>
</table>
mat875 - Hauptseminar in Versicherungsmathematik/Stochastik .. 102
mat880 - Hauptseminar in Finanzmathematik ... 103
mat905 - Spezielle Themen der Mathematik ... 104
pb - Professionalisierung ... 105
mam - Masterarbeitsmodul .. 106
Mastermodule

mat510 - Fourieranalysis

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Fourieranalysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat510</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Grieser, Daniel (Modulverantwortung)
- Pankrashkin, Konstantin (Modulverantwortung)
- Vertman, Boris (Modulverantwortung)
- Uecker, Hannes (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Beherrschen der Grundbegriffe der Fourieranalyse wie etwa Fourierkoefizient, Fourierreihe, Dirichlet-, Poisson- und Fejerkerne, Fourier-Transformation, Fourierinversion, ...
- Kennenlernen verschiedenster Konvergenzsätze in verschiedenen Funktionenräumen -
- Erkennen inhaltlicher Zusammenhänge zu anderen klassischen Gebieten der Analysis, etwa Funktionalanalysis, Theorie partieller Differentialgleichungen, Wahrscheinlichkeitstheorie, Zahlenrechnung, ...

Modulinhalte
- Grundlegende Definitionen und Techniken, der Satz von Fejer und seine Varianten, Hilbertraum-Methoden, Konvergenz von Fourier-Reihen in Funktionenräumen, die Fourier-Transformation in R^n, abstrakte Konzepte wie etwa: harmonische Analysis oder Banachalgebren

Literaturempfehlungen
- Katznelson, Y.: An Introduction to Harmonic Analysis, Cambridge Math. Library

Links

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unregelmäßig

Aufnahmekapazität Modul
- unbegrenzt

Hinweise
- Studien schwerpunkt: A

Modulart
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Vorlesung + Übung

Vorkenntnisse
- Analysis I-IV
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>nach Ende der Vorlesungszeit</td>
<td>Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>4</td>
<td>--</td>
<td>56</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>--</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt: 84 h
mat515 - Funktionalanalysis II

Modulbezeichnung: Funktionalanalysis II

Modulkürzel: mat515

Kreditpunkte: 9.0 KP

Workload: 270 h

Verwendbarkeit des Moduls: Master Mathematik (Master) > Mastermodule

Zuständige Personen:
- Grieser, Daniel (Modulverantwortung)
- Pankrashkin, Konstantin (Modulverantwortung)
- Uecker, Hannes (Modulverantwortung)
- Vertman, Boris (Modulverantwortung)

Teilnahmevoraussetzungen:
- Kompetenzziele:
 - Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
 - Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
 - Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
 - Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
 - Vertiefung der Funktionalanalyse durch ausgewählte Kapitel
 - Zugewinn an abstrakten analytischer Werkzeugen, die nicht zwingend an eine spezifische Problemstellung geknüpft sind
 - Zugewinn an allgemein anerkannten Abstraktionsvermögen und damit auch ein mehr an Verständnis für die Analysis als Ganzes

Modulinhalte:
- Weiterführende Themen der Funktionalanalyse, z.B.: Spektraltheorie beschränkter und unbeschränkter Operatoren, schwache Topologien, Banachraumtheorie, Theorie lokalkonvexer Räume, Operatorhalbgruppen, Banachalgebren, C*-Algebren, ...

Literaturempfehlungen:
- D. Werner, Funktionalanalysis, Springer Verlag
- M. Reed, B. Simon: Methods of modern mathematical physics-functional analysis, Academic Press
- R. Meise, D. Vogt: Funktionalanalysis, Vieweg Verlag
- G.J. Murphy: C*-Algebras and Operator Theory, Academic Press

Links

Unterrichtsprachen: Deutsch, Englisch

Dauer in Semestern: 1 Semester

Angebotsrhythmus Modul: unregelmäßig

Aufnahmekapazität Modul: unbegrenzt

Hinweise: Studienschwerpunkt: A

Modulart: Wahlpflicht / Elective

Modullevel: MM (Mastermodul / Master module)

Lehr-/Lernform: Vorlesung + Übung

Vorkenntnisse: Funktionalanalyse

Prüfung: Funktionalanalyse

Prüfungszeiten: nach Ende der Vorlesungszeit

Prüfungsform: Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Gesamtmodul: Funktionalanalyse

Lehrveranstaltungsform:
- Vorlesung: 4 SWS, Angebotsrhythmus: --, Workload: 56 h
- Übung: 2 SWS, Angebotsrhythmus: --, Workload: 28 h

Präsenzzeit Modul insgesamt: 84 h
mat525 - Nichtlineare Funktionalanalysis

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Nichtlineare Funktionalanalysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat525</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Grieser, Daniel (Modulverantwortung)
- Pankrashkin, Konstantin (Modulverantwortung)
- Vertman, Boris (Modulverantwortung)
- Uecker, Hannes (Modulverantwortung)

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektscharakter
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Vertrautheit mit topologischen Methoden zum Beweis von Existenzaussagen
- Kennenlernen der Anwendung abstrakter Methoden auf nichtlineare Probleme
- Eng verwandt mit den Modulen Funktionalanalysis, Elementare Methoden der partiellen Differentialgleichungen, Theorie der partiellen Differentialgleichungen, Nichtlineare partielle Differentialgleichungen

Modulinhalte

Literaturempfehlungen
- Appell, J. and Väth, M., Elemente der Funktionalanalysis, Vieweg, 2005
- Drábek, P. und Milota, J., Methods of Nonlinear Analysis, Birkhäuser

Links
- Unterrichtsprachen: Deutsch, Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: unregelmäßig
- Aufnahmekapazität Modul: unbegrenzt
- Hinweise: Studienschwerpunkt: A, C
- Modulart: Wahlpflicht / Elective
- Modullevel: MM (Mastermodul / Master module)
- Lehr-/Lernform: Vorlesung + Übung
- Vorkenntnisse: (Lineare) Funktionalanalysis

Prüfung
- Prüfungszeiten: Gesamtmodul nach Ende der Vorlesungszeit
- Prüfung: Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Gesamtmodul
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus (KMÜ)</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>14</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
<td>SWS</td>
<td>Angebotsrhythmus</td>
<td>Workload Präsenz</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>-----</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
mat530 - Einführung in die Topologie

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Einführung in die Topologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat530</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Grieser, Daniel (Modulverantwortung)
- Heß, Florian (Modulverantwortung)
- Vertman, Boris (Modulverantwortung)
- Pankrashkin, Konstantin (Modulverantwortung)
- Uecker, Hannes (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Kennenlernen grundlegender Strukturen der Mathematik, zum Beispiel initiale und finale Objekte
- Kennenlernen von Invarianten und Verständnis für deren Bedeutung bei Problemlösungen
- Enge Bezüge zur Globalen Analysis und algebraischen Geometrie

Modulinhalte
- Mengentheoretische Topologie: Topologische Räume, stetige Abbildungen, Produkte und Quotienten, Zusammenhang und Kompaktheit
- Algebraische Topologie: Fundamentalgruppe, singuläre und/simpliziale Homologie

Literaturempfehlungen
- B. von Querenburg, Mengentheoretische Topologie, Springer
- N. Bourbaki, General Topology, Springer
- J. J. Rotman, An Introduction to Algebraic Topology

Links

Unterrichtssprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unregelmäßig

Aufnahmekapazität Modul
- unbegrenzt

Hinweise
- Studienschwerpunkt: A/B (In jedem der Studienschwerpunkte A und B werden 3 KP angerechnet.)

Modulart
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Vorlesung + Übung

Vorkenntnisse
- Vorkenntnisse: Analysis I-III, Lineare Algebra, Algebra I

Prüfung
- Prüfungszeiten
- Prüfungsform
- Gesamtmodul
- nach Ende der Vorlesungszeit
- Klausur oder mündliche Prüfung oder Fachpraktische Prüfung (KMÜ)

Lehrveranstaltungsform
- Kommentar
- SWS
- Angebotsrhythmus
- Workload Präsenz

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
- 56 h
mat535 - Globale Analysis I

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Globale Analysis I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat535</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Grieser, Daniel (Modulverantwortung)
- Pankrashkin, Konstantin (Modulverantwortung)
- Vertman, Boris (Modulverantwortung)

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertieftes Kenntnis der Reinen und Angewandten Mathematik
- Kenntnis der Grundbegriffe der Analysis auf Mannigfaltigkeiten wie Tangentialraum, Vektorfelder, Lie-Klammersysteme, Tensorfelder
- Verständnis des Wechselspiels von Analysis, Geometrie und Topologie, z.B. Verständnis für die Rolle von Differentialformen für geometrische und topologische Fragestellungen
- Eingebettete Beziehungen zu Differentialgeometrie, algebraischer Topologie, Beziehungen zu partiellen Differentialgleichungen, komplexer Geometrie

Modulinhalte

Literaturempfehlungen
- Jost, J.: Riemannian Geometry and Geometric Analysis; Springer
- Agricola, I. und Friedrich, T.: Globale Analysis; Vieweg

Links

<table>
<thead>
<tr>
<th>Unterrichtsprachen</th>
<th>Deutsch, Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Hinweise
- Studienschwerpunkt: A

Modulart
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehrveranstaltung
- Vorlesung + Übung

Vorkenntnisse

Prüfung
- Gesamtmodul nach Ende der Vorlesungszeit
 - Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)
- Lehrveranstaltungsform
 - Vorlesung: 4 SWS, Angebotsrhythmus: 56, Workload Präsenz: 38
 - Übung: 2 SWS, Angebotsrhythmus: 28, Workload Präsenz: 16

Präsenzzeit Modul insgesamt
- 84 h
mat536 - Globale Analysis II

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Globale Analysis II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat536</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Grieser, Daniel (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Pankrashkin, Konstantin (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Vertman, Boris (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des matheamatischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Vertieftes Verständnis des Wechselspiels von Analysis, Geometrie und Topologie
- Enge Beziehungen zu Differentialgeometrie, algebraischer Topologie, partiellen Differentialgleichungen, komplexer Geometrie

Modulinhalte
Vertiefende Themen der Globalen Analysis, z.B. Indextheorie, charakteristische Klassen, Dirac-Operatoren, Morse-Theorie

Literaturempfehlungen
- R. Bott, L.W. Tu: Differential Forms in Algebraic Topology
- N. Berline, E. Getzler, M. Vergne: Heat Kernels and Dirac Operators, Springer

Links
- Unterrichtsprachen: Deutsch, Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: unregelmäßig
- Aufnahmekapazität Modul: unbegrenzt
- Hinweise: Studien schwerpunkt: A
- Modulart: Wahlpflicht / Elective
- Modullevel: MM (Mastermodul / Master module)
- Lehr-/Lernform: Vorlesung + Übung
- Vorkenntnisse: Globale Analysis I, Theorie der partiellen Differentialgleichungen
- Prüfung: Gesamtmodul

<table>
<thead>
<tr>
<th>Prüfungsform</th>
<th>Prüfungszeiten</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungsformen

<table>
<thead>
<tr>
<th>Lehrveranstaltungsformen</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>4</td>
<td>--</td>
<td>56</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>--</td>
<td>28</td>
</tr>
</tbody>
</table>

- Präsenzzeit Modul insgesamt: 84 h
mat538 - Singuläre Analysis

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Singuläre Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat538</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Grieser, Daniel (Modulverantwortung); Vertman, Boris (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlerneten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertieft Kenntnis der Reinen und Angewandten Mathematik
- Kennenlernen des Wechselspiels von Geometrie und Analysis in der Behandlung singulärer Probleme
- Verständnis für die Rolle von blow-ups in Problemen, in denen mehrere Skalierungen eine Rolle spielen
- Enge Bezüge zu partiellen Differentialgleichungen, Globaler Analysis, Differentialgeometrie

Modulinhalte

- Grundlegende Methoden der Singulären Analysis: Asymptotik, blow-up, Pushforward Theorem und singular asymptotics Lemma
- weitere Themen, z.B.: b-Kalkül, Laplace Operator auf einem Kegel, das regulär-singuläre Sturm Liouville Problem, limit point und limit circle Fälle, die maximale und minimale abgeschlossene Erweiterung.

Literaturempfehlungen

- R. Melrose, The Atiyah-Patodi Singer Index theorem

Links

- Unterrichtssprachen: Deutsch, Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: unregelmäßig
- Aufnahmekapazität Modul: unbegrenzt
- Hinweise: Studienschwerpunkt: A
- Modulart: Wahlpflicht / Elective
- Modullevel: MM (Mastermodul / Master module)
- Lehr-/Lernform: Vorlesung + Übung
- Vorkenntnisse: Funktionalanalyse; Grundkenntnisse über partielle Differentialgleichungen sind vorteilhaft (mat555 oder mat560)

Prüfung

- Prüfungsform: Gesamtmodul: nach Ende der Vorlesungszeit; Klausur oder mündliche Prüfung oder Lösen von Übungsaufgaben
- Lehrveranstaltungsform: Kommmentar; SWS: Angebotsrhythmus; Workload Präsenz
- Vorlesung: 3 SWS; SoSe oder WiSe; 42 Präsenz
- Übung: 1 SWS; SoSe oder WiSe; 14 Präsenz

Präsenzzzeit Modul insgesamt: 56 h
mat540 - Differentialgeometrie

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Differentialgeometrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat540</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Grieser, Daniel (Modulverantwortung)
- Pankrashkin, Konstantin (Modulverantwortung)
- Vertman, Boris (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Kenntnis der geometrischen Grundbegriffe zu Kurven und Flächen wie erste und zweite Fundamentalform, Krümmungsbegriffe, kovariante Ableitung, Parallelverschiebung, Geodätische
- Kenntnis der Grundbegriffe der Analysis auf Mannigfaltigkeiten wie Tangentialraum, Vektorfelder, Lie-Klammern, Tensoren
- Kenntnis der Grundbegriffe der Riemannschen Geometrie, wie Levi-Civita Zusammenhang, Riemannscher Krümmungstensor
- Kennenlernen und Verstehen des Zusammenspiels von Differentialrechnung und Linearer Algebra in der Untersuchung gekrümmt kurven und Flächen sowie Riemannscher Mannigfaltigkeiten
- Verstehen des Unterschieds von innerer und äußerer Geometrie
- Kenntnis fundamentaler Sätze wie Theorema Egregium, Satz von Gauß-Bonnet
- Fähigkeit zum Rechnen sowohl in lokalen Koordinaten als auch mit invarianzen Größen
- Erkennen inhaltlicher Zusammenhänge zu Themen der Analysis I-III und der Linearen Algebra
- Erkennen inhaltlicher Zusammenhänge zu Themen der Analysis I-III und der Linearen Algebra
- Erkennen inhaltlicher Zusammenhänge zu Themen der Analysis I-III und der Linearen Algebra
- Enge Beziehungen zu komplexer Geometrie, globaler Analysis

Modulinhalte

Literaturempfehlungen
- W. Kühnel, Differentialgeometrie, Springer Spektrum
- M. do Carmo, Differentialgeometrie von Kurven und Flächen, Springer Vieweg
- M. do Carmo, Riemannian Geometry, Birkhäuser
- C. Bär, Elementare Differentialgeometrie, de Gruyter
- B. O'Neill, Semi-Riemannian Geometry, Birkhäuser

Links

Unterrichtssprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
regelmäßig

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Studien schwerpunkt: A

Modulart
Wahlpflicht / Elective

Modullevel
MM (Mastermodul / Master module)
<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>Vorlesung + Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse</td>
<td>Analysis I-III (bzw. Math. Meth. Physik), Lineare Algebra</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td></td>
<td>nach Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
</tr>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
</tr>
<tr>
<td>Präsenzzzeit Modul insgesamt</td>
<td></td>
</tr>
</tbody>
</table>
mat542 - Komplexe Geometrie

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Komplexe Geometrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat542</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Grieser, Daniel (Modulverantwortung)
- Vertman, Boris (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertieft Kenntnis der Reinen und Angewandten Mathematik
- Verständnis für das Zusammenwirken holomerph und differentialgeometrischer Strukturen
- Enge Bezüge zur Differentialgeometrie und zur algebraischen Topologie, Bezüge zu nicht-linearen partiellen Differentialgleichungen

Modulinhalte
- Einführung in komplexe Mannigfaltigkeiten, holomorphe Vektorbündel, Chern und Levi-Civita Zusammenhang, erste Chern Klasse, Kähler Mannigfaltigkeiten, Ricci Krümmung, Calabi-Yau Vermutung, Kähler-Einstein Metriken, Kodaira Einbettungstheorem, Kähler hyperbolische Räume
- Ausblick auf die Chern Weil Theorie und charakteristische Klassen, Ricci Fluss auf Kähler Mannigfaltigkeiten

Literaturempfehlungen
- R.O. Wells, Differential Analysis on Complex Manifolds, Springer
- P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley

Links

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unregelmäßig

Aufnahmekapazität Modul
- unbegrenzt

Hinweise
- Studienschwerpunkt: A

Modulart
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Vorlesung + Übung

Vorkenntnisse
- Differentialgeometrie, Differentialformen, Funktionalanalysis

Prüfung

<table>
<thead>
<tr>
<th>Prüfungszeit</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul nach Ende der Vorlesungszeit</td>
<td>Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>SoSe oder WiSe</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>SoSe oder WiSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzzeit Modul insgesamt
- 56 h
mat543 - Spezielle Themen der Geometrie

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Spezielle Themen der Geometrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat543</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Mathematik (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

- Grieser, Daniel (Modulverantwortung)
- Pankrashkin, Konstantin (Modulverantwortung)
- Vertman, Boris (Modulverantwortung)

Teilnahmeveraussetzungen

Kompetenzziele

- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Kennenlernen von fortgeschrittenen Themen in der aktuellen Forschung der Geometrie

Modulinhalte

Vertiefende Themen der Geometrie

Literaturempfehlungen

wird je nach Thema bekanntgegeben

Links

Unterrichtsprachen

Deutsch, Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

unregelmäßig

Aufnahmekapazität Modul

unbegrenzt

Hinweise

Studienschwerpunkt: A

Modulart

Wahlpflicht / Elective

Modullevel

MM (Mastermodul / Master module)

Lehr-/Lernform

Vorlesung + Übung oder Seminar

Prüfung

Prüfungszeiten	Prüfungsform
Gesamtmodul | nach Ende der Vorlesungszeit | bei Ausgestaltung als 3 VL + 1 Ü: Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ), bei Ausgestaltung als 2 SE: Referat (R)

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3 SWS Vorlesung + 1 SWS Übung oder 2 SWS Seminar</td>
<td>3</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Seminar oder Übung</td>
<td>3 SWS Vorlesung + 1 SWS Übung oder 2 SWS Seminar</td>
<td>1</td>
<td>SoSe oder WiSe</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
mat545 - Funktionentheorie II

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Funktionentheorie II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat545</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Grieser, Daniel (Modulverantwortung)
- Pankrashkin, Konstantin (Modulverantwortung)
- Vertman, Boris (Modulverantwortung)
- Uecker, Hannes (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Bezüge zur komplexen Geometrie und ggf. zur Zahlentheorie

Modulinhalte

Literaturempfehlungen
- W. Rudin: Reelle und Komplexe Analysis, Oldenbourg Verlag
- J. Wermer: Potential Theory, Springer Lecture Notes 408 , 1974
- M. Range: Holomorphic functions and integral representations in several complex variables, graduate text in Math. 1986
- R. Narasimhan: Several complex variables, University of Chicago Press , 1971
- S.G. Krantz: Function theory of several complex variables, Wadsworth & Brooks, 1992
- T. Ohsawa: Analysis of Several Complex Variables, Translation of Math. Monographs, 211, 2002

Links

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unbegrenzt

Hinweise
- Studienschwerpunkt: A

Modulart
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Vorlesung + Übung

Vorkenntnisse
- Funktionentheorie, Funktionalanalysis

Prüfung
- Prüfungszeiten
- Prüfungsform

Gesamtmodul
- nach Ende der Vorlesungszeit
- Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Lehrveranstaltungsform
- Kommentar
- SWS
- Angebotsrhythmus
- Workload Präsenz

Vorlesung
- 4
- --
- 56
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>--</td>
<td>28</td>
</tr>
<tr>
<td>Prüfungszeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>84 h</td>
</tr>
</tbody>
</table>
mat550 - Spektraltheorie von Differentialoperatoren

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Spektraltheorie von Differentialoperatoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat550</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Grieser, Daniel (Modulverantwortung)
- Pankrashkin, Konstantin (Modulverantwortung)
- Shestakov, Ivan (Modulverantwortung)
- Vertman, Boris (Modulverantwortung)
- Uecker, Hannes (Modulverantwortung)

Teilnahmevoraussetzungen
Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennerlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektkarakter
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Verständnis für das Zusammenspiel von Analysis (Spektrum des Laplace-Operators) und Geometrie
- Enge Beziehung zu Globale Analysis I und II

Modulinhalte
Spektralsatz für beschränkte Operatoren; Spektraltheorie linearer elliptischer Operatoren, z.B. Laplace-Operator auf Gebieten im \(\mathbb{R}^n \); diskretes und stetiges Spektrum; Eigenwertausschlag; Eigenwertasymptotik; Abhängigkeit des Spektrums vom Gebiet; inverses Spektralproblem; Bedeutung des Spektrums in Physik und Anwendungen

Literaturempfehlungen

Links

Unterrichtspreachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unregelmäßig

Aufnahmekapazität Modul
- unbegrenzt

Hinweise
- Studienrichtung: A

Modulart
- Wahlpflicht / Elective

Modulkategorie
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Vorlesung + Übung

Vorkenntnisse

Prüfung

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Prüfungseinrichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>nach Ende der Vorlesungszeit</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload</th>
<th>Präsenzzeit Modul insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
- 56 h
mat555 - Elementare Methoden der partiellen Differentialgleichungen

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Elementare Methoden der partiellen Differentialgleichungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat555</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
- Master Mathematik (Master) > Mastermodule

Zuständige Personen:
- Grieser, Daniel (Modulverantwortung)
- Pankrashkin, Konstantin (Modulverantwortung)
- Vertman, Boris (Modulverantwortung)
- Uecker, Hannes (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektscharakter
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Befähigung zur Klassifikation und Verständnis der grundlegenden Eigenschaften einfacher partieller Differentialgleichungen (linear, konstante Koeffizienten)
- Anwendung der Fourierentwicklung und Transformation, elementare Hilbertraummethoden

Modulinhalte

- Methode der Charakteristiken, Laplace-, Wärmeleitungs- und Wellengleichung als Prototypen für elliptische, parabolische und hyperbolische partielle Differentialgleichungen, Randwertprobleme, Separation der Variablen, Fouriertransformation, elementare Hilbertraummethoden

Literaturempfehlungen

- S. Salsa, Partial differential equations in action, Springer 2008
- B. Schweizer, Partielle Differentialgleichungen, Springer, 2013

Links

Unterrichtsprachen: Deutsch, Englisch

Dauer in Semestern: 1 Semester

Angebotsrhythmus Modul: regelmäßig

Aufnahmekapazität Modul: unbegrenzt

Hinweise: Studienschwerpunkt: A, C

Modulart: Wahlpflicht / Elective

Modullevel: MM (Mastermodul / Master module)

Lehr-/Lernform: Vorlesung + Übung

Vorkenntnisse: Analysis I-III, Funktionentheorie, Lineare Algebra, Funktionalanalyse (kann parallel belegt werden)

Prüfung

Gesamtmodul: nach Ende der Vorlesungszeit
- Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Lehrveranstaltungsform: Vorlesung, Übung

Präsenzzeit Modul insgesamt: 84 h
mat560 - Theorie der partiellen Differentialgleichungen

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Theorie der partiellen Differentialgleichungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat560</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Grieser, Daniel (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Vertman, Boris (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Pankrashkin, Konstantin (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Uecker, Hannes (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Teilnahmeveranlassungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Beziehungen zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektkonzept
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Verständnis von Methoden zur Behandlung allgemeiner linearer partieller Differentialgleichungen, inklusive Singularitäten; vertieft Kenntnis funktionalanalytischer Methoden, z.B. Distributionen und Sobolev-Räume

Modulinhalt
- Distributionen, Sobolev-Räume, elliptische Randwertprobleme, Pseudodifferentialoperatoren

Literaturempfehlungen
- S. Salsa, Partial differential equations in action, Springer 2008

Links
- Deutsch, Englisch

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unregelmäßig

Aufnahmekapazität Modul
- unbegrenzt

Hinweise
- Studienabschluss: A

Modulart
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Vorlesung + Übung

Vorkenntnisse
- Funktionalanalyse

Prüfung
- Prüfungszeiten: nach Ende der Vorlesungszeit
- Prüfungsform: Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>4</td>
<td>--</td>
<td>56</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>--</td>
<td>28</td>
</tr>
</tbody>
</table>

| Präsenzzzeit Modul insgesamt | 84 h |

<table>
<thead>
<tr>
<th>Anzahl SWS</th>
<th>Anzahl Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>28</td>
</tr>
</tbody>
</table>
mat565 - Nichtlineare partielle Differentialgleichungen

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Nichtlineare partielle Differentialgleichungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat565</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Grieser, Daniel (Modulverantwortung)
- Pankrashkin, Konstantin (Modulverantwortung)
- Vertman, Boris (Modulverantwortung)
- Uecker, Hannes (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektdynamik
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Grundlegendes Verständnis zu Phänomenen und Theorie nichtlinearer partieller Differentialgleichungen, insbesondere Evolutionsgleichungen, inklusive Grundbegriffen der Dynamik wie Stabilität und Langzeitverhalten

Modulinhalte

Literaturempfehlungen
- J. C. Robinson, Infinite-dimensional dynamical systems, Cambridge University Press 2001
- G. Schneider and H. Uecker, Nonlinear PDE - a dynamical systems perspective, AMS 2017
- B. Schweizer, Partielle Differentialgleichungen, Springer, 2013

Links

Unterrichtsprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
unregelmäßig

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Studienschwerpunkt: A, C

Modulart
Wahlplflicht / Elective

Modullevel
MM (Mastermodul / Master module)

Lehr-/Lernform
Vorlesung + Übung

Vorkenntnisse
Funktionalanalyse

Prüfungszeiten
Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Gesamtmodule
nach Ende der Vorlesungszeit

Lehrveranstaltungsform
Kommentar: Vorlesung 4 SWS, Übung 2 SWS

Angebotsrhythmus

Workload Präsenz
- Vorlesung 56 h
- Übung 28 h

Präsenzzzeit Modul insgesamt
84 h
mat570 - Dynamische Systeme

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Dynamische Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat570</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Grieser, Daniel (Modulverantwortung), Pankrashkin, Konstantin (Modulverantwortung), Vertman, Boris (Modulverantwortung), Uecker, Hannes (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen

Kompetenzziele

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen verfeinerter Anwendungen der Mathematik, auch exemplarisch mit Projektkaracter
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik

Modulinhalte

Literaturrempfehlungen

Links

Unterrichtsprachen Deutsch, Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul unregelmäßig
Aufnahmekapazität Modul unbegrenzt
Hinweise Studienschwerpunkt: A, C
Modulart Wahlpflicht / Elective
Modullevel MM (Mastermodul / Master module)
Lehr-/Lernform Vorlesung + Übung
Vorkenntnisse Analysis I-III, Lineare Algebra
Prüfung

<table>
<thead>
<tr>
<th>Prüfungsform</th>
<th>Prüfungszeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>nach Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
mat575 - Modellierung mit partiellen Differentialgleichungen

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Modellierung mit partiellen Differentialgleichungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat575</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master Mathematik (Master) > Mastermodule

Zuständige Personen

- Grieser, Daniel (Modulverantwortung)
- Pankrashkin, Konstantin (Modulverantwortung)
- Vertman, Boris (Modulverantwortung)
- Uecker, Hannes (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kenntnernlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Kenntnis grundlegend der partiellen Differentialgleichungsmodelle aus der Naturwissenschaft, Fähigkeit zur Modellanalyse (Existenz- und Stabilitätsfragen, Bifurkation, Langzeitverhalten für Evolutionsgleichungen), Fähigkeit zu eigener Modellierung mit partiellen Differentialgleichungen

Modulinhalte

Literaturempfehlungen

- Fowler, A. C., Mathematical models in the applied sciences, Cambridge University Press, 1997
- Murray, J. D., Mathematical biology, Springer, 1989
- Schneider, G. and Uecker, H., Nonlinear PDE - a dynamical systems perspective, AMS 2017
- Schweizer, B., Partielle Differentialgleichungen, Springer, 2013

Links

Unterrichtsprachen

Deutsch, Englisch

Dauer in Semestern

1 Semester

Gesamtmodul

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotssrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
<td>SWS</td>
<td>Angebotsrhythmus</td>
<td>Workload Präsenz</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>-----</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td>56 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
mat579 - Spezielle Themen der Analysis

Modulbezeichnung	Spezielle Themen der Analysis
Modulkürzel | mat579
Kreditpunkte | 6.0 KP
Workload | 180 h

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Grieser, Daniel (Modulverantwortung)
- Pankrashkin, Konstantin (Modulverantwortung)
- Vertman, Boris (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Kennenlernen von fortgeschrittenen Themen in der aktuellen Forschung der Analysis

Modulinhalte
Vertiefende Themen der Analysis

Literaturempfehlungen
Literaturempfehlungen wird je nach Thema bekanntgegeben.

Links

Unterrichtssprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
unregelmäßig

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Studienschwerpunkt: A, C

Modulart
Wahlpflicht / Elective

Modullevel
MM (Mastermodul / Master module)

Lehr-/Lernform
Vorlesung + Übung oder Seminar

Prüfung
Prüfungszeiten
Gesamtmodul
nach Ende der Vorlesungszeit
bei Ausgestaltung als 3 VL + 1 Ü: Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ), bei Ausgestaltung als 2 SE: Referat (R)

Lehrveranstaltungsform
Kommentar
SWS
Angebotsrhythmus
Workload Präsenz
Vorlesung
3 SWS Vorlesung + 1 SWS Übung oder 2 SWS Seminar
3
SoSe oder WiSe
42

Seminar oder Übung
3 SWS Vorlesung + 1 SWS Übung oder 2 SWS Seminar
1
SoSe oder WiSe
14

Präsenzzeit Modul insgesamt
56 h
mat595 - Numerik partieller Differentialgleichungen

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Numerik partieller Differentialgleichungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat595</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Chernov, Alexey (Modulverantwortung)

Teilnahmeverzichtssetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Erwerb vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software
- Beherrschen der Analyse und Komplexität von Algorithmen
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Erwerb von grundlegenden numerischen Methoden zum Lösen partieller Differentialgleichungen
- Verständnis von grundlegenden numerischen Verfahren und ihren Konvergenzverlebenschaften
- Fähigkeit zur Entwicklung und Implementation von Algorithmen zum Lösen partieller Differentialgleichungen
- Erweiterung des im Bachelorstudium erworbenen Wissens durch Vertiefung in einem weiterführenden mathematischen Gebiet
- Vernetzung des eigenen mathematischen Wissens aus den Bereichen der theoretischen Analysis, angewandten Mathematik und des wissenschaftlichen Rechnens
- Querverbindungen zu den Modulen: Einführung in die Numerik, Numerik gewöhnlicher Differentialgleichungen, Elementare Methoden der partiellen Differentialgleichungen, Theorie der partiellen Differentialgleichungen
- Inhaltsliche Querverbindungen: Numerische Approximation von Funktionen, Interpolation und Projektion, Stabilität und Konvergenz von Algorithmen, Partielle Differentialgleichungen, Distributionen, Zeitschrittverfahren

Modulinhalte
- Mathematische Modelle mit partiellen Differentialgleichungen 2. Ordnung
- Finite-Differenzen-Methode für die Poisson Gleichung: Konstruktion, Fehleranalyse und Implementierung
- Analysis abstrakter variationeller Formulierungen, allgemeine Fehleranalyse
- Finite-Elemente-Methode für die Poisson Gleichung: Konstruktion, Datenstrukturen und Implementierung, Fehleranalyse
- Adaptive Finite-Elemente-Methode
- Numerische Verfahren für die Wärmeleitungsgleichung: Linienmethode, Zeitschrittverfahren
- Numerische Verfahren für hyperbolische Probleme

Literaturempfehlungen
- W. Hackbusch: Theorie und Numerik elliptischer Differentialgleichungen, Springer Verlag, 2017
- G. Dziuk: Theorie und Numerik partieller Differentialgleichungen, de Gruyter Verlag, 2010
<table>
<thead>
<tr>
<th>Links</th>
<th>Unterrichtsprachen</th>
<th>Deutsch, Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td></td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td></td>
<td>regelmäßig</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td></td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Hinweise</td>
<td></td>
<td>Studien schwerpunkt: A, C</td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Modullevel</td>
<td></td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td></td>
<td>Vorlesung + Übung</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td></td>
<td>Einführung in die Numerik</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtsmodul</td>
<td></td>
<td>nach Ende der Vorlesungszeit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>4</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>84 h</td>
</tr>
</tbody>
</table>
mat597 - Numerische Methoden für partielle Differentialgleichungen mit Unsicherheiten

Modulbezeichnung: Numerische Methoden für partielle Differentialgleichungen mit Unsicherheiten

Modulkürzel: mat597

Kreditpunkte: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls: Master Mathematik (Master) > Mastermodule

Zuständige Personen: Chernov, Alexey (Modulverantwortung)

Teilnahmevoraussetzungen:

Kompetenzziele:

- Systematise Verfeinerung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software
- Beherrschen der Analyse und Komplexität von Algorithmen
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Kennenlernen eines modernen Forschungsgebiets der Numerik und angewandten Mathematik mit Komponenten der Stochastik
- Verständnis von weiterführenden numerischen Methoden und ihren Konvergenzeigenschaften
- Fähigkeit zur Entwicklung und Implementation von Algorithmen zum Lösen partieller Differentialgleichungen mit stochastischen Parametern
- Erweiterung des im Masterstudium erworbenen Wissens durch Vertiefung in einem weiterführendem mathematischen Gebiet
- Vernetzung des eigenen mathematischen Wissens aus den Bereichen der angewandten Mathematik, des wissenschaftlichen Rechnens und der Stochastik
- Inhaltliche Querverbindungen zu den Modulen: Numerik partieller Differentialgleichungen, Monte Carlo Methoden

Modulinhalte:

- Zufallsfelder
- Monte Carlo Methoden für partielle Differentialgleichungen
- Stochastische Kollokations- und Galerkin-Methoden
- Numerik für hochdimensionale Probleme

Literaturempfehlungen:

Links:

Unterrichtsprachen: Deutsch, Englisch

Dauer in Semestern: 1 Semester

Angebotsrhythmus Modul: unregelmäßig

Aufnahmekapazität Modul: unbegrenzt

Hinweise: Studienschwerpunkt: A, C

Modularit: Wahlpflicht / Elective

Modullevel: MM (Mastermodul / Master module)

Lehr-/Lernform: Vorlesung + Übung oder Seminar

Vorkenntnisse: Einführung in die Numerik
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>nach Ende der Vorlesungszeit</td>
<td>bei Ausgestaltung als 3 VL + 1 Ü: Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ), bei Ausgestaltung als 2 SE: Referat (R)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3 SWS Vorlesung + 1 SWS Übung oder 2 SWS Seminar</td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Seminar oder Übung</td>
<td>3 SWS Vorlesung + 1 SWS Übung oder 2 SWS Seminar</td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
mat599 - Spezielle Themen der Numerik

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Spezielle Themen der Numerik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat599</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>• Chernov, Alexey (Modulverantwortung)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td></td>
</tr>
</tbody>
</table>

Kompetenzziele
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Kennenlernen von fortgeschrittenen Themen in der aktuellen Forschung der Numerik

Modulinhalt
Vertiefende Themen der Numerik

Literaturrempfehlungen
wird je nach Thema bekanntgegeben.

Links
Deutsch, Englisch

Unterrichtsprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
unregelmäßig

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Studienschwerpunkt: A, C

Modulart
Wahlpflicht / Elective

Modullevel
MM (Mastermodul / Master module)

Lehr-/Lernform
Vorlesung + Übung oder Seminar

Prüfung
Prüfungszeiten
Prüfungsform

<table>
<thead>
<tr>
<th>Modul</th>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>nach Ende der Vorlesungszeit</td>
<td>bei Ausgestaltung als 3 VL + 1 Ü: Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ), bei Ausgestaltung als 2 SE: Referat (R)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3 SWS Vorlesung + 1 SWS Übung oder 2 SWS Seminar</td>
<td>3</td>
<td>SoSe oder WiSe</td>
<td>42</td>
</tr>
<tr>
<td>Seminar oder Übung</td>
<td>3 SWS Vorlesung + 1 SWS Übung oder 2 SWS Seminar</td>
<td>1</td>
<td>SoSe oder WiSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzzeit Modul insgesamt
56 h
mat605 - Hauptseminar zur Analysis

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Hauptseminar zur Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat605</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Grieser, Daniel (Modulverantwortung)
- Pankrashkin, Konstantin (Modulverantwortung)
- Vertman, Boris (Modulverantwortung)
- Uecker, Hannes (Modulverantwortung)

Teilnahmevoraussetzungen
Funktionalanalysis sowie je nach Themengebiet Mastermodule aus dem Bereich Analysis und Geometrie (wird jeweils bekanntgegeben)

Kompetenzziele
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Erwerb von sozialen und beruflichen Kompetenzen, Schlüsselqualifikationen und Strategien zur Verhaltensänderung
- Kompetenzen und Fähigkeiten in freier Rede, ausgewählten Gesprächstechniken und ausgewählten Moderations- und Präsentationstechniken
- Vertiefte Kenntnis von und Fähigkeit im Umgang mit Informations-/Kommunikationstechnologien
- Vertiefte Kenntnisse des Schreibens mathematisch-technischer Texte
- Erwerb handlungsorientierter Fähigkeiten für die Kommunikation im beruflichen Alltag bei Präsentation, Vermittlung und Dokumentation von Inhalten
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Fähigkeiten in Zeitmanagement und Organisation
- Befähigung zur selbstständigen Ausarbeitung und angemessenen Präsentation fortgeschrittener Themen der Analysis

Modulinhalte
- ausgewählte fortgeschrittene Themen der Analysis

Literaturempfehlungen
- je nach gewähltem Thema

Links

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- regelmäßig

Aufnahmekapazität Modul
- 14

Hinweise
- Studienschwerpunkt: A

Modular
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Seminar

Prüfung

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R (Referat: Vortrag mit schriftlicher Ausarbeitung)</td>
</tr>
</tbody>
</table>

Gesamtmodul

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Seminar</th>
</tr>
</thead>
</table>

| SWS | 2 |

| Angebotsrhythmus | -- |

| Workload Präsenzzeit | 28 h |
mat610 - Hauptseminar zur Mathematischen Modellierung

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Hauptseminar zur Mathematischen Modellierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat610</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>- Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Uecker, Hannes (Modulverantwortung)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>mat320 (Mathem. Modellierung) oder eine Vorlesung aus mat555 (Elementare Methoden der partiellen Differentialgleichungen), mat560 (Theorie der partiellen Differentialgleichungen), mat565 (Nichtlineare partielle Differentialgleichungen), mat570 (Dynamische Systeme), mat575 (Modellierung mit partiellen Differentialgleichungen)</td>
</tr>
</tbody>
</table>

Kompetenzziele
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Erwerb von sozialen und beruflichen Kompetenzen, Schlüsselqualifikationen und Strategien zur Verhaltensänderung
- Kompetenzen und Fähigkeiten in freier Rede, ausgewählten Gesprächstechniken und ausgewählten Moderations- und Präsentationstechniken
- Vertieftes Kenntnis von und Fähigkeit im Umgang mit Informations-/Kommunikationstechnologien
- Vertiefte Kenntnisse des Schreibens mathematisch-technischer Texte
- Erwerb handlungsorientierter Fähigkeiten für die Kommunikation im beruflichen Alltag bei Präsentation, Vermittlung und Dokumentation von Inhalten
- Erwerb direkter berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Fähigkeiten in Zeitmanagement und Organisation
- Befähigung zur selbstständigen Ausarbeitung und angemessenen Präsentation fortgeschrittener Themen der Mathematischen Modellierung

<table>
<thead>
<tr>
<th>Modulinhalte</th>
<th>ausgewählte fortgeschrittene Themen der mathematischen Modellierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literaturempfehlungen</td>
<td>je nach gewähltem Themenkreis</td>
</tr>
</tbody>
</table>

Links
- Deutsch, Englisch

Unterrichtsprachen
- 1 Semester

Angebotsrhythmus Modul
- unbegrenzt

Hinweise
- Studienbewerber: C

Modulart
- Wahl-/ Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Seminar

Prüfung
- Prüfungsform

Gesamtmodul
- Prüfungszeiten
- R (Referat: Vortrag mit schriftlicher Ausarbeitung)

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Angebotsrhythmus
- --

Workload Präsenzzeit
- 28 h
mat615 - Hauptseminar zur Numerik

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Hauptseminar zur Numerik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat615</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Chernov, Alexey (Modulverantwortung)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>je nach Themengebiet Mastermodule bzw. weiterführende Bachelormodule aus dem Bereich Numerik (wird jeweils bekanntgegeben), z.B. mat340 Numerik gewöhnlicher Differentialgleichungen und/oder mat595 Numerik partieller Differentialgleichungen und/oder mat350 Lineare und nichtlineare Optimierung</td>
</tr>
</tbody>
</table>

Kompetenzziele

- Beherrschen der Analyse und Komplexität von Algorithmen
- Erwerb von sozialen und beruflichen Kompetenzen, Schlüsselqualifikationen und Strategien zur Verhaltensänderung
- Kompetenzen und Fähigkeiten in freier Rede, ausgewählten Gesprächstechniken und ausgewählten Moderations- und Präsentationsstechniken
- Vertiefte Kenntnisse von und Fähigkeit im Umgang mit Informations-/Kommunikationstechnologien
- Vertiefte Kenntnisse des Schreibens mathematisch-technischer Texte
- Erwerb handlungsorientierter Fähigkeiten für die Kommunikation im beruflichen Alltag bei der Präsentation, Vermittlung und Dokumentation von Inhalten
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Fähigkeiten in Zeitmanagement und Organisation
- Erwerb von lesebegleitender und zuvor angelegten Fähigkeiten für die Kommunikation im beruflichen Alltag bei der Präsentation, Vermittlung und Dokumentation von Inhalten

Modulinhalte

Ausgehend von einer Vertiefungsvorlesung im Bereich Numerik behandelt das Seminar weiterführende Themen der numerischen Mathematik.

Literaturempfehlungen

je nach gewähltem Thema

Links

Deutsch, Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

regelmäßig

Aufnahmekapazität Modul

unbegrenzt

Hinweise

Studienschwerpunkt: A, C

Modulart

Wahlpflicht / Elective

Modullevel

MM (Mastermodul / Mastermodule)

Lehr-/Lernform

Seminar

Prüfung

Prüfungszeiten

Prüfungsform

Gesamtdurchnutzung

R (Referat: Vortrag mit schriftlicher Ausarbeitung)

Lehrveranstaltungsform

Seminar

SWS

2

Angebotsrhythmus

--

Workload Präsenzzeit

28 h
mat705 - Algebraische Zahlentheorie

Modulbezeichnung: Algebraische Zahlentheorie
Modulkürzel: mat705
Kreditpunkte: 9.0 KP
Workload: 270 h

Verwendbarkeit des Moduls: Master Mathematik (Master) > Mastermodule

Zuständige Personen:
- Frühbis-Krüger, Anne (Modulverantwortung)
- Heß, Florian (Modulverantwortung)
- Stein, Andreas (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Verständnis von grundlegenden Konzepten der algebraischen Zahlentheorie
- Kenntnis der wichtigsten Strukturaussagen über Ringe von ganzen Zahlen algebraischer Zahlkörper, insbesondere die Kenntnis der Dedekindschen Idealtheorie und des Dirichletschen Einheitensatzes
- Fähigkeit zum Formulieren und Bearbeiten zahlentheoretischer Probleme in Ringen ganzer Zahlen algebraischer Zahlkörper
- Kennenlernen von weiterführenden Themen in der aktuellen Forschung der algebraischen Zahlentheorie und ihrer Anwendungen
- Exemplarisches Kennenlernen von weiterführenden Themen in der algebraischen Zahlentheorie wie zum Beispiel Henselsche Körper und Dedekindsche Zetafunktionen

Modulinhalt

Literaturempfehlungen

Links

Unterrichtsprachen: Deutsch, Englisch
Dauer in Semestern: 2 Semester

Angebotsrhythmus Modul: regelmäßig
Aufnahmekapazität Modul: unbegrenzt

Hinweise:
3 KP dieses Moduls werden als Reading Course erbracht. Studienforschung: B

Modulart: Wahlpflicht / Elective
Modullevel: MM (Mastermodul / Master module)

Lehr-/Lernform: Vorlesung + Übung + Seminar

Prüfung: Prüfungszeiten
Gesamtmodul: nach Ende der Vorlesungszeit
Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ), R

Lehrveranstaltungsform: Kommentar
SWS
Angebotsrhythmus: Workload Präsenz

Vorlesung: -- 42
Übung: 14
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>--</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 84 h
mat710 - Algorithmische Zahlentheorie

Modulbezeichnung: Algorithmische Zahlentheorie
Modulkürzel: mat710
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master Mathematik (Master) > Mastermodule

Zuständige Personen:
- Frühbis-Krüger, Anne (Modulverantwortung)
- Heß, Florian (Modulverantwortung)
- Stein, Andreas (Modulverantwortung)

Teilnahmevoraussetzungen:

Kompetenzziele:
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektkaracter
- Beherrschen wichtiger Verfahren und Algorithmen
- Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software
- Beherrschen der Analyse und Komplexität von Algorithmen
- Stärkung des mathematischen Urteilsvermögens
- Abgrenzung zwischen dem spezifischen Teil einer Theorie und dem allgemeinen mathematischen Standard erkennen
- Beherrschen von vertiefenden und weiterführenden Begriffen in der modernen algorithmischen Zahlentheorie sowie der Computeralgebrasysteme
- Kenntnis zentraler Problemstellungen in der modernen arithmetischen Geometrie wie zum Beispiel der Invariantenberechnung für Zahlkörper und für elliptische Kurven
- Kenntnis fortgeschrittener algorithmischer Verfahren und ihrer Implementierung, sowohl in Computeralgebrasystemen wie zum Beispiel MAGMA und SAGE, als auch in Software-Paketen wie zum Beispiel NTL und FLINT
- Kennenlernen von weiterführenden mathematischen Themen in der aktuellen Forschung der algorithmischen Zahlentheorie und ihrer Anwendungen

Modulinhalte:
- Algorithmische Methoden aus der algebraischen Zahlentheorie und aus der arithmetischen Geometrie, beispielsweise Invariantenberechnung für Zahlkörper und für elliptische Kurven.

Literaturempfehlungen:

Links:
- Unterrichtssprachen: Deutsch, Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: unregelmäßig
- Aufnahmekapazität Modul: unbegrenzt
- Hinweise: Studienschwerpunkt: B
- Modulart: Wahlpflicht / Elective
- Modullevel: MM (Mastermodul / Master module)
<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>Vorlesung + Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>nach Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>3</td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
</tr>
<tr>
<td>Präsenzzelt Modul insgesamt</td>
<td></td>
</tr>
</tbody>
</table>
mat715 - Algebraische Kurven und Funktionen

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Algebraische Kurven und Funktionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat715</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Frühbis-Krüger, Anne (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Hein, Florian (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Stein, Andreas (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen

Kompetenzziele

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Kenntnis der wichtigsten Strukturaussagen über algebraische Funktionenkörper, insbesondere Kenntnis der Riemann-Roch-Theorie, der Verzweigungstheorie und der Theorie der Erweiterungen algebraischer Funktionenkörper
- Fähigkeit der Vernetzung der Theorie algebraischer Funktionenkörper mit der algebraischen Zahlentheorie
- Kennenlernen von weiterführenden Themen in der aktuellen Forschung algebraischer Funktionenkörper und ihrer Anwendungen
- Verständnis von grundlegenden Konzepten algebraischer Kurven, insbesondere Kenntnis von Modellen von Kurven

Modulinhalte

Literaturempfehlungen

- P. Cohn: Algebraic Numbers and Algebraic Integers, Chapman & Hall 1991

Links

Unterrichtsprachen

Deutsch, Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

regelmäßig

Aufnahmekapazität Modul

unbegrenzt

Hinweise

Studienschwerpunkt: B

Modulart

Wahlpflicht / Elective

Modullevel

MM (Mastermodul / Master module)

Lehr-/Lernform

Vorlesung + Übung

Prüfung

Prüfungszeiten

Prüfungsform

Gesamtdauer

nach Ende der Vorlesungszeit

Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Lehrveranstaltungsform

Kommentar

SWS

Angebotsrhythmus

Workload Präsenz

Vorlesung

3

--

42

Übung

1

--

14

Präsenzzeit Modul insgesamt

56 h
mat720 - Elliptische Kurven

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Elliptische Kurven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat720</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
</tbody>
</table>
| Zuständige Personen | Frühbis-Krüger, Anne (Modulverantwortung)
 | Heß, Florian (Modulverantwortung)
 | Stein, Andreas (Modulverantwortung) |

Teilnahmevoraussetzungen

Kompetenzziele

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Abgrenzung zwischen dem spezifischen Teil einer Theorie und dem allgemeinen mathematischen Standard erkennen
- Beherrschen von grundlegenden Konzepten in der Arithmetik elliptischer Kurven, insbesondere Beherrschen der Grundbegriffe elliptischer Kurven über endlichen Körpern, den komplexen Zahlen, lokalen Körpern und globalen Körpern
- Kennenlernen von weiterführenden Themen in der aktuellen Forschung elliptischer Kurven und ihrer Anwendungen
- Verständnis und Beherrschung algorithmischer Verfahren zur Invariantenberechnung elliptischer Kurven und ihrer Implementierung
- Exemplarisches Kennenlernen von fortgeschrittenen Themen in der Theorie elliptischer Kurven, wie zum Beispiel klassische Vermutungen der Arithmetik

Modulinhalte

Literaturempfehlungen

Links

Unterrichtsprachen

Deutsch, Englisch

Dauer in Semestern

2 Semester

Angebotsrhythmus Modul

regelmäßig

Aufnahmekapazität Modul

unbegrenzt

Hinweise

3 KP dieses Moduls werden als Reading Course erbracht. Studienschwerpunkt: B

Modulart

Wahlpflicht / Elective

Modullevel

MM (Mastermodul / Master module)

Lehr-/Lernform

Vorlesung + Übung + Seminar

Prüfung

Prüfungszeiten Prüfungsmöglichkeiten

Gesammodul nach Ende der Vorlesungszeit Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ), R
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>--</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 84 h
mat725 - Arithmetische Dualität

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Arithmetische Dualität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat725</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Frühbis-Krüger, Anne (Modulverantwortung)
- Heß, Florian (Modulverantwortung)
- Stein, Andreas (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Verständnis von grundlegenden Konzepten der arithmetischen Dualitätstheorie, insbesondere Kenntnis der Grundbegriffe der Klassenkörpertheorie globaler Körper sowie der Theorie von Dualitätspaarungen
- Exemplarisches Kennenlernen von fortgeschrittenen Themen in der arithmetischen Dualitätstheorie wie zum Beispiel Galoiskohomologie
- Kennenlernen von weiterführenden Themen in der aktuellen Forschung der arithmetischen Dualitätstheorie und ihrer Anwendungen

Modulinhalte
- Elemente der Klassenkörpertheorie globaler Körper, Dualitätspaarungen, Reziprozitätsgesetz, weitere Themen wie Galoiskohomologie oder Anwendungen in der Kryptographie.

Literaturnpfehlungen
- E. Artin and J. Tate: Class Field Theory, AMS 2009.

Links
- Unterrichtsprachen: Deutsch, Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: unregelmäßig
- Aufnahmekapazität Modul: unbegrenzt
- Hinweise: Studien schwerpunkt: B
- Modulart: Wahlpflicht / Elective
- Modullevel: MM (Mastermodul / Master module)
- Lehr-/Lernform: Vorlesung + Übung

Inhalte der Algebra-Module im Fach-Bachelor werden vorausgesetzt.

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>nach Ende der Vorlesungszeit</td>
<td>Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

56 h
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Codierungstheorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat730</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Frühbis-Krüger, Anne (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Stein, Andreas (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Heß, Florian (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen

Kompetenzziele

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Verständnis von grundlegenden Konzepten der Codierungstheorie, insbesondere Beherrschung von analytischen und algebraischen Methoden in der Signalverarbeitung und in der Codierungstheorie
- Kennenlernen von weiterführenden Themen in der aktuellen Forschung der Codierungstheorie und ihrer Anwendungen in der Informationssicherheit

Modulinhalte

Hamming-Raum, lineare Codes, Gewichtszähler, Dualität, Parameterschranken, Familien optimaler Codes, zyklische Codes, BCH- und RS-Codes, algebraisch-geometrische Codes, Decodierungsmethoden.

Literaturrempfehlungen

W. Willems: Codierungstheorie, de Gruyter 1999.

Links

Unterrichtsprachen

Deutsch, Englisch

Dauer in Semestern

1 Semester

Aufnahmekapazität Modul

unbegrenzt

Hinweise

Studienschwerpunkt: B

Modulart

Wahlpflicht / Elective

Modullevel

MM (Mastermodul / Master module)

Lehr-/Lernform

Vorlesung + Übung

Vorkenntnisse

Algebraische Kurven und Funktionen.

Inhalte der Algebra-Module im Fach-Bachelor werden vorausgesetzt.

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtnotaufgabe</td>
<td>nach Ende der Vorlesungszeit</td>
<td>Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzezeit Modul insgesamt

56 h
mat735 - Komplexe Multiplikation

Modulbezeichnung Komplexe Multiplikation
Modulkürzel mat735
Kreditpunkte 6.0 KP
Workload 180 h

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Frühbis-Krüger, Anne (Modulverantwortung)
- Heß, Florian (Modulverantwortung)
- Stein, Andreas (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Beherrschen von zentralen Aussagen der Theorie der komplexen Multiplikation
- Kennenlernen der wichtigsten algorithmischen Methoden in Anwendungen der komplexen Multiplikation, beispielsweise in der Kryptographie
- Kennenlernen von weiterführen den Themen in der aktuellen Forschung der komplexen Multiplikation

Modulinhalte

Literaturempfehlungen
D. Cox: Primes of the Form x^2 +ny^2 , Wiley 1997.

Links

Unterrichtsprachen Deutsch, Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul unregelmäßig
Aufnahmekapazität Modul unbegrenzt
Hinweise Studienschwerpunkt: B

Modulart Wahlpflicht / Elective
Modullevel MM (Mastermodul / Master module)

Lehr-/Lernform Vorlesung + Übung

Inhalte der Algebra-Module im Fach-Bachelor werden vorausgesetzt.

Prüfung Prüfungszeiten Prüfungsform

Gesamtmodul nach Ende der Vorlesungszeit Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz
Vorlesung 3 -- -- 42
Übung 1 -- -- 14
Präsenzzeit Modul insgesamt 56 h
mat740 - Mathematische Kryptologie

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Mathematische Kryptologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat740</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>• Frühbis-Krüger, Anne (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>• Heß, Florian (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>• Stein, Andreas (Modulverantwortung)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Inhalte der Algebra-Module im Fach-Bachelor</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik</td>
</tr>
<tr>
<td></td>
<td>Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik</td>
</tr>
<tr>
<td></td>
<td>Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter</td>
</tr>
<tr>
<td></td>
<td>Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik</td>
</tr>
<tr>
<td></td>
<td>Abgrenzung zwischen dem spezifischen Teil einer Theorie und dem allgemeinen mathematischen Standard erkennen</td>
</tr>
<tr>
<td></td>
<td>Beherrschung von grundlegenden und weiterführenden Konzepten der mathematischen Kryptologie wie zum Beispiel mathematische Modelle kryptographischer Systeme, Public-Key Kryptographie, digitale Signaturen, Schlüsselaustausch</td>
</tr>
<tr>
<td></td>
<td>Kennenlernen wichtiger Methoden zur Analyse von Kryptosystemen wie zum Beispiel Kennenlernen grundlegender und fortgeschrittener Methoden zum Lösen des diskreten Logarithmusproblems und zur ganzzahligen Faktorisierung</td>
</tr>
<tr>
<td></td>
<td>Kenntnis fortgeschrittener algorithmischer Verfahren in der Kryptologie und ihrer Implementierung, sowohl in Computeralgebrasystemen wie zum Beispiel MAGMA und SAGE, als auch in Software-Paketen wie zum Beispiel NTL und FLINT</td>
</tr>
<tr>
<td></td>
<td>Fähigkeit zur komplexitätstheoretischen Untersuchung fortgeschrittener algorithmischer Verfahren in der Kryptologie</td>
</tr>
<tr>
<td></td>
<td>Kennenlernen von weiterführenden Themen in der Analyse kryptographischer Systeme wie zum Beispiel Kennenlernen von Konzepten der Post-Quantum Kryptographie</td>
</tr>
<tr>
<td></td>
<td>Erkennen der Bedeutung der Public-Key Kryptologie in der Gesellschaft</td>
</tr>
</tbody>
</table>

<p>| Links | Deutsch, Englisch |
| | 1 Semester |
| | unbegrenzt |
| Hinweise | Studien schwerpunkt: B |</p>
<table>
<thead>
<tr>
<th>Modulart</th>
<th>Wahlpflicht / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>Vorlesung + Übung</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>Einführung in die Zahlentheorie und Computeralgebra</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesammodul</td>
<td>nach Ende der Vorlesungszeit</td>
<td>Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
mat745 - Modulformen

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Modulformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat745</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Frühbis-Krüger, Anne (Modulverantwortung)
- Heß, Florian (Modulverantwortung)
- Stein, Andreas (Modulverantwortung)

Teilnahmevoraussetzungen
Inhalte der Algebra-Module im Fach-Bachelor

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Kenntnis der wichtigsten Strukturaussagen über Modulformen, insbesondere Kenntnis der Algebra von Modulformen und der Theorie von Modulformen-Räumen
- Kennenlernen von weiterführenden Themen und Anwendungen von Modulformen wie zum Beispiel Kennenlernen der Hecke-Theorie
- Fähigkeit zur Anwendung der Theorie der Modulformen, beispielsweise auf Thetareihen ganzzahliger Gitter

Modulinhalte
- Stufe 1: Elliptische Modulkurve, Eisensteinreihen, Algebra der Modulformen, die \(j \)-Funktion, elliptische Funktionen, Anwendung auf elliptische Kurven.

Literaturlistung

Links
- Unterrichtsprachen: Deutsch, Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: unregelmäßig
- Aufnahmekapazität Modul: unbegrenzt
- Hinweise: Studienschwerpunkt: B
- Modulart: Wahlpflicht / Elective
- Modullevel: MM (Mastermodul / Master module)
- Lehr-/Lernform: Vorlesung + Übung
- Vorkenntnisse: ggf. Algebraische Kurven und Funktionen

Prüfung
- Prüfungszeiten
- Prüfungsform

Gesamtscore
- nach Ende der Vorlesungszeit
- Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Lehrveranstaltungsform
- Kommentar
- SWS
- Angebotsrhythmus
- Workload Präsenz

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt: 56 h
mat750 - Kommutative Algebra

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Kommutative Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat750</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Frühbis-Krüger, Anne (Modulverantwortung)
- Heß, Florian (Modulverantwortung)
- Stein, Andreas (Modulverantwortung)
- Wrobel, Milena (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und dessen beherrschung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kenntnis von Grundbegriffen und damit verbundenen Beherrschung kommutativer Algebra
- Beherrschung grundlegender Eigenschaften kommutativer Ringe
- Anwendung algebraischer Methoden zur Analyse von kommutativen Ringen
- Verständnis von Konstruktionsmethoden von kommutativen Ringen und ihren Anwendungen

Modulinhalte
Hilbertscher Basissatz, Quotientenringe und -moduln, assoziierte Primideale und Primärzerlegung, Hilbertscher Nullstellensatz, Elemente der homologischen Algebra, Ringe und Moduln endlicher Länge, Dimension und Hilbert-Samuel-Polynom, Gröbnerbasen und Anwendungen.

Literaturempfehlungen

Links
- Unterrichtsprachen: Deutsch, Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: unregelmäßig
- Aufnahmekapazität Modul: unbegrenzt
- Hinweise: Studienablauf und Arbeitskreis: B
- Modulart: Wahl / Elective
- Modullevel: MM (Mastermodul / Master module)
- Lehr-/Lernform: Vorlesung + Übung
- Vorkenntnisse: Inhalte der Algebra-Module im Fach-Bachelor werden vorausgesetzt.

Prüfung

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Prüfungsort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>nach Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Klausur oder mündliche Prüfung oder Fachpraktische Übung (MKU)</td>
<td></td>
</tr>
</tbody>
</table>

Präsenzzzeit Modul insgesamt: 56 h

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>
mat755 - Themen der algebraischen Geometrie

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Themen der algebraischen Geometrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat755</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Frühbis-Krüger, Anne (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Heß, Florian (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Stein, Andreas (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Wrobel, Milena (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen

Kompetenzziele

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen großer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Beherrschung von Themen der algebraischen Geometrie, wie zum Beispiel Grundlagen der Theorie der Varietäten und Schemata, Garbenkohomologie, algebraische Flächen und Schnitttheorie
- Kennenlernen von fortgeschrittenen Themen in der aktuellen Forschung der algebraischen Geometrie und ihrer Anwendungen

Modulinhalte

- Themen der algebraischen Geometrie wie Grundlagen der Theorie der Varietäten und Schemata, affine und projektive Kurven, Garbenkohomologie, algebraische Flächen oder arithmetic Kurven, Riemann-Roch, Schnitttheorie, Desingularisierung Rationale Punkte auf algebraischen Varietäten.

Literaturempfehlungen

Links

Unterrichtsprachen

- Deutsch, Englisch

Dauer in Semestern

- 1 Semester

Angebotsrhythmus Modul

- unregelmäßig

Aufnahmekapazität Modul

- unbegrenzt

Hinweise

- Studien schwerpunkt: B

Modulart

- Wahlpflicht / Elective

Modullevel

- MM (Mastermodul / Master module)

Lehr-/Lernform

- Vorlesung + Übung

Prüfung

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)</td>
</tr>
</tbody>
</table>

Gesamtmodul

- nach Ende der Vorlesungszeit

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotstyp</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

- 56 h
mat760 - Spezielle Themen der Zahlentheorie

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Spezielle Themen der Zahlentheorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat760</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen
- Frühbis-Krüger, Anne (Modulverantwortung)
- Heß, Florian (Modulverantwortung)
- Stein, Andreas (Modulverantwortung)

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Verständnis und Vertiefung weiterführender Konzepte der algebraischen Zahlentheorie wie zum Beispiel Theorie der lokalen Körper, Zetafunktionen und L-Reihen und Kohomologie endlicher Gruppen
- Kennenlernen von fortgeschrittenen Themen in der aktuellen Forschung der algebraischen Zahlentheorie und ihrer Anwendungen

Modulinhalte

Literaturempfehlungen

Links

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unregelmäßig

Aufnahmekapazität Modul
- unbegrenzt

Hinweise
- Studienschwerpunkt: B

Modulart
- Wahlplicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Vorlesung + Übung oder Seminar

Vorkenntnisse
- Algebraische Zahlentheorie wird vorausgesetzt.

Prüfung

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>nach Ende der Vorlesungszeit</td>
<td>bei Ausgestaltung als 3 VL + 1 Ü: Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMU),</td>
</tr>
</tbody>
</table>

Inhalte der Algebra-Module im Fach-Bachelor werden vorausgesetzt.
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3 SWS Vorlesung + 1 SWS Übung oder 2 SWS Seminar</td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Seminar oder Übung</td>
<td>3 SWS Vorlesung + 1 SWS Übung oder 2 SWS Seminar</td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
mat765 - Computeralgebra

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Computeralgebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat765</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Frühbis-Krüger, Anne (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Heß, Florian (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Stein, Andreas (Modulverantwortung)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td></td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik</td>
</tr>
<tr>
<td></td>
<td>Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik</td>
</tr>
<tr>
<td></td>
<td>Beherrschung wichtiger Verfahren und Algorithmen</td>
</tr>
<tr>
<td></td>
<td>Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software</td>
</tr>
<tr>
<td></td>
<td>Beherrschung der Analyse und Komplexität von Algorithmen</td>
</tr>
<tr>
<td></td>
<td>Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik</td>
</tr>
<tr>
<td></td>
<td>Abgrenzung zwischen dem spezifischen Teil einer Theorie und dem allgemeinen mathematischen Standard erkennen</td>
</tr>
<tr>
<td></td>
<td>Verständnis und Vertiefung weiterführender Konzepte der Computeralgebra wie zum Beispiel Gröbnerbasen, Gitteralgorithmen sowie fortgeschrittene Algorithmen in Zahlentheorie und algebraischer Geometrie</td>
</tr>
<tr>
<td></td>
<td>Kenntnis fortgeschrittener algorithmischer Verfahren und ihrer Implementierung, sowohl in Computeralgebrasystemen wie zum Beispiel MAGMA und SAGE, als auch in Software-Paketen wie zum Beispiel NTL und FLINT</td>
</tr>
<tr>
<td></td>
<td>Kennenlernen von weiterführenden Themen in der aktuellen Forschung der modernen Computeralgebra und ihrer Anwendungen</td>
</tr>
</tbody>
</table>

Modulinhalte

Literaturempfehlungen

Links

Unterrichtsprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
unregelmäßig

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Studienschwerpunkt: B

Modulart
Wahlpflicht / Elective

Modullevel
MM (Mastermodul / Master module)

Lehr-/Lernform
Vorlesung + Übung oder Seminar

Vorkenntnisse
Algorithmische Zahlentheorie und Computeralgebra, Kommutative Algebra.

Prüfung
Inhalte der Algebra-Module im Fach-Bachelor werden vorausgesetzt.

Prüfungszeiten
bei Ausgestaltung als 3 VL + 1 Ü: Klausur oder...
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3 SWS Vorlesung + 1 SWS Übung oder 2 SWS Seminar</td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Seminar oder Übung</td>
<td>3 SWS Vorlesung + 1 SWS Übung oder 2 SWS Seminar</td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
mat770 - Hauptseminar in Algebra und Zahlentheorie

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Hauptseminar in Algebra und Zahlentheorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat770</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Frühbis-Krüger, Anne (Modulverantwortung)
- Heß, Florian (Modulverantwortung)
- Stein, Andreas (Modulverantwortung)
- Wrobel, Milena (Modulverantwortung)

Teilnahmeveranlassungen

Kompetenzziele
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Erwerb von sozialen und beruflichen Kompetenzen, Schlüsselqualifikationen und Strategien zur Verhaltensänderung
- Kompetenzen und Fähigkeiten in freier Rede, ausgewählten Gesprächstechniken und ausgewählten Moderations- und Präsentationstechniken
- Vertiefte Kenntnis von und Fähigkeit im Umgang mit Informations-/Kommunikationstechnologien
- Vertiefte Kenntnisse des Schreibens mathematisch-technischer Texte
- Erwerb handlungsorientierter Fähigkeiten für die Kommunikation im beruflichen Alltag bei Präsentation, Vermittlung und Dokumentation von Inhalten
- Erwerb direkter berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Fähigkeiten in Zeitmanagement und Organisation
- Selbständige Beschäftigung mit einem ausgewählten Thema aus Algebra und Zahlentheorie und deren Anwendungen, unter anderem aus den Bereichen arithmetische Geometrie, algebraische Geometrie, Informationssicherheit, Computeralgebra
- Erwerb von vertiefenden bzw. anwendungsorientierten Fähigkeiten in einem Teilbereich der Algebra und Zahlentheorie

Modulinhalt
- ausgewählte aktuelle Themen aus Algebra und Zahlentheorie

Literaturempfehlungen
- je nach gewähltem Thema

Links
- Deutsch, Englisch

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- regelmäßige Angebote

Aufnahmekapazität Modul
- unbegrenzt

Hinweise
- Studienschwerpunkt: B

Modulart
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Seminar

Prüfung

<table>
<thead>
<tr>
<th>Prüfungsform</th>
<th>Prüfungszeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (Referat: Vortrag mit schriftlicher Ausarbeitung)</td>
<td>Seminar</td>
</tr>
</tbody>
</table>

Gesamtmodul

Lehrveranstaltungsform
- Seminar

SWS
- 2

Angebotsrhythmus
- --

Workload Präsenzzeit
- 28 h
mat775 - Analytische Zahlentheorie

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Analytische Zahlentheorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat775</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Frühbis-Krüger, Anne (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Heß, Florian (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Stein, Andreas (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Beherrschen von Grundbegriffen und weiterführender Begriffe im Bereich der analytischen Zahlentheorie, insbesondere Dirichletsche Reihen, Thetareihen sowie verallgemeinerte Zeta- und L-Funktionen
- Kennenlernen von weiterführenden Themen in der aktuellen Forschung der analytischen Zahlentheorie

Modulinhalte

- Dirichletsche Reihen, L-Reihen und Anwendungen (Primzahlen in Restklassen, analytische Klassenzahlformel), Thetareihen, Riemannsche Zetafunktion (Funktionalgleichung, Nullstellen, Primzahlverteilung), andere Zeta- und L-Funktionen

Literaturempfehlungen

- Jörg Brüdern, Einführung in die analytische Zahlentheorie, Springer 1995
- Jean-Pierre Serre, A course in arithmetic (Part II: Analytic methods), Springer 1973
- Don Zagier, Zetafunktionen und quadratische Körper, Springer 1981

Links

- Unterrichtsprachen: Deutsch, Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: regelmäßig
- Aufnahmekapazität Modul: unbegrenzt
- Hinweise: Studienschwerpunkt: B
- Modulart: Wahlpflicht / Elective
- Modullevel: MM (Mastermodul / Master module)
- Lehr-/Lernform: Vorlesung + Übung
- Prüfung: Gesamtmodul nach Ende der Vorlesungszeit
 - Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)
- Lehrveranstaltungsform: Vorlesung 3 SWS, Übung 1 SWS

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt: 56 h
mat779 - Spezielle Themen der Algebra

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Spezielle Themen der Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat779</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Frühbis-Krüger, Anne (Modulverantwortung)
- Heß, Florian (Modulverantwortung)
- Stein, Andreas (Modulverantwortung)
- Wrobel, Milena (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Verständnis und Vertiefung weiterführender Konzepte der Algebra
- Kennenlernen von fortgeschrittenen Themen in der aktuellen Forschung der Algebra und ihrer Anwendungen

Modulinhalte
Vertiefende Themen der Algebra

Literaturempfehlungen
wird je nach Thema bekanntgegeben.

Links

Unterrichtssprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unregelmäßig

Aufnahmekapazität Modul
- unbegrenzt

Hinweise
- Studien schwerpunkt: B

Modulart
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Vorlesung + Übung oder Seminar

Prüfung
Prüfungszeiten
- Gesamtmodul nach Ende der Vorlesungszeit

Prüfungsform
- bei Ausgestaltung als 3 VL + 1 Ü: Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ), bei Ausgestaltung als 2 SE: Referat (R)

Lehrveranstaltungsform
- SWS
- Angebotsrhythmus
- Workload Präsenz

Vorlesung
- 3 SWS Vorlesung + 1 SWS Übung oder 2 SWS Seminar
- 3
- SoSe oder WiSe
- 42

Seminar oder Übung
- 3 SWS Vorlesung + 1 SWS Übung oder 2 SWS Seminar
- 1
- SoSe oder WiSe
- 14

Präsenzzeit Modul insgesamt
- 56 h
mat785 - Darstellungstheorie

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Darstellungstheorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat785</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Frühbis-Krüger, Anne (Modulverantwortung)
- Heß, Florian (Modulverantwortung)
- Stein, Andreas (Modulverantwortung)
- Wrobel, Milena (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Kenntnisse elementarer Konzepte und Methoden aus dem Bereich Darstellungstheorie
- Anwendung von Strukturannahmen und Verständnis von Konstruktionsmethoden von Darstellungen
- Fähigkeit zur Anwendung darstellungstheoretischer Methoden zur Analyse von Gruppen

Modulinhalte
- Schwerpunkt: Darstellungstheorie von Gruppen.
 - Gruppen und Gruppenwirkungen, Darstellungen, Irreduzibilität, Schursches Lemma, Halblinearität.
 - Darstellungen endlicher Gruppen: Satz von Maschke, Charaktere, Orthogonalitätsrelationen, Isotypische Zerlegung, Charaktertäfelchen.

Literaturempfehlungen

Weitere Literaturempfehlungen werden je nach Ausrichtung des Moduls bekannt gegeben.

Links

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unregelmäßig

Aufnahmekapazität Modul
- unbegrenzt

Hinweise
- Studienschwerpunkt: B

Modulart
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Vorlesung + Übung

Prüfung
- Prüfungszeiten
- Prüfungsform

Gesamtmodul
- nach Ende der Vorlesungszeit
- Klausur oder mündliche Prüfung oder
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungseinsätze</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachpraktische Übung (KMÜ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
<td>SWS</td>
</tr>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Prüfungszeit Modul insgesamt</td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
mat805 - Versicherungsmathematik I

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Versicherungsmathematik I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat805</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Christiansen, Marcus (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>May, Angelika (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Ruckdeschel, Peter (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen

Kompetenzziele

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Vermittlung der aktuariellen Methoden der Personen- und Schadenversicherungsmathematik
- Querverbindungen: mat811, mat840

Modulinhalte

Personenversicherungsmathematik: biometrische Risiken in stetiger Zeit, Deckungsrückstellungen, Thiele Gleichungen, Satz von Cantelli, Tarifierungsprinzipien und Überschüsse; Sachversicherungsmathematik: kollektives und individuelles Modell der Risikotheorie, Prämienkalkulationsprinzipien, Panjer-Rekursion; Rückversicherung, Grundzüge der Spätschadenreservierung, Anwendungen Verallgemeinerter Linearer Modelle in der Risikotheorie

Literaturempfehlungen

Links

Sprachen
Deutsch, Englisch

Dauer
1 Semester

Rhythmus
regelmäßig

Kapazität
unbegrenzt

Hinweise
Studienrichtung: C

Modulart
Wahlpflicht / Elective

Modullevel
MM (Mastermodul / Master module)

Lehr-/Lernform
Vorlesung + Übung

Vorkenntnisse
Stochastik I

Prüfung
Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Gesamtmodul
nach Ende der Vorlesungszeit
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>4</td>
<td>--</td>
<td>56</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>--</td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>84 h</td>
</tr>
</tbody>
</table>
mat806 - Versicherungsmathematik II

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Versicherungsmathematik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat806</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Christiansen, Marcus (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>May, Angelika (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Ruckdeschel, Peter (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektkarakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Abgrenzung zwischen dem spezifischen Teil einer Theorie und dem allgemeinen mathematischen Standard erkennen
- Vertiefungen von ausgewählten Themen der Versicherungsmathematik
- Querverbindungen: Versicherungsmathematik I, Quantitatives Risikomanagement

Modulinhalte
Fortgeschrittene Modellierungsansätze: z.B. Semi-Markov-Modelle, stochastische Rechnungsgrundlagen; Fortgeschrittene Methoden der Prämienberechnung und Risikobewertung: z.B. Credibility Theorie, zeitdynamische Risikomaße; Methoden der stochastischen Steuerung: z.B. optimale Versicherungsverträge, optimale Kapitalanlagen

Literaturrempfehlungen

Links

Unterrichtsprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
unregelmäßig

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Studienschwerpunkt: C

Modulart
Wahlpflicht / Elective

Modullevel
MM (Mastermodul / Master module)

Lehr-/Lernform
Vorlesung + Übung

Vorkenntnisse
Versicherungsmathematik I

Prüfung

<table>
<thead>
<tr>
<th>Modulinhale</th>
<th>Literaturrempfehlungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortgeschrittene Modellierungsansätze: z.B. Semi-Markov-Modelle, stochastische Rechnungsgrundlagen; Fortgeschrittene Methoden der Prämienberechnung und Risikobewertung: z.B. Credibility Theorie, zeitdynamische Risikomaße; Methoden der stochastischen Steuerung: z.B. optimale Versicherungsverträge, optimale Kapitalanlagen</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungszeiten

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>nach Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Klausur</td>
<td>mündliche Prüfung</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
mat810 - Quantitative Risk Management

Modulbezeichnung: Quantitative Risk Management
Modulkürzel: mat810
Kreditpunkte: 9.0 KP
Workload: 270 h
Verwendbarkeit des Moduls: Master Mathematik (Master) > Mastermodule
Zuständige Personen: Christiansen, Marcus (Modulverantwortung); May, Angelika (Modulverantwortung); Ruckdeschel, Peter (Modulverantwortung)

Teilnehmervoraussetzungen

Kompetenzziele

Modulinhalte
Risikomaße, Copulas, Grundzüge der Extremwertstatistik, die POT-Methode, Prinzipien der Risiko-Kapitalallokation, Kreditrisikomodelle, Grundlagen von Solvency II und Basel III

Literaturempfehlungen
P. CADONI: Internal Models and Solvency II. From Regulation to Implementation. RISK Books, London 2014

Links

Unterrichtsprachen
Englisch, Deutsch
<table>
<thead>
<tr>
<th>Dauer in Semestern</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Hinweise</td>
<td>Studienschwerpunkt: C</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>Vorlesung + Übung</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>nach Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>4</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
</tr>
<tr>
<td>Präsenzzzeit Modul insgesamt</td>
<td>84 h</td>
</tr>
</tbody>
</table>
mat811 - Quantitative Risikoanalyse

Modulkürzel mat811
Kreditpunkte 6.0 KP
Workload 180 h

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Christiansen, Marcus (Modulverantwortung)
- May, Angelika (Modulverantwortung)
- Rückdeschel, Peter (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Abgrenzung zwischen dem spezifischen Teil einer Theorie und dem allgemeinen mathematischen Standard erkennen
- Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Stochastische Risiken quantifizieren und mit Abhängigkeiten in den Daten umgehen können. Grundzüge des quantitativen Risikomanagements in Versicherungsunternehmen und Banken kennen und mathematisch einordnen können
- Die Studierenden lernen ein- und mehrdimensionale Risikomodelle kennen und bewerten diese, u.a. vor dem Hintergrund der aktuellen Aufsichtsregimes Solvency und Basel.
- Querverbindungen: mat805, mat806, mat826, mat850

Modulinhalte

Grundlagen der Risikomessung für Finanztitel und Schadenvariablen, Value-at-Risk, verteilungsbasierte Risikomaße für Einzelrisiken und Abhängigkeitsmodelle für Portfoliorisiken, Copulafamilien, semiparametrische Schätzverfahren

Literaturempfehlungen
- S. KORYCIORZ: Sicherheitskapitalbestimmung und ? allokaton in der

Links
Unterrichtsprachen Deutsch, Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul unregelmäßig
Aufnahmekapazität Modul unbegrenzt
Hinweise Studienschwerpunkt: C
Modulart Wahlpflicht / Elective
Modullevel MM (Mastermodul / Master module)
Lehr-/Lernform Vorlesung + Übung
Vorkenntnisse Stochastik, Statistik
Prüfung Prüfungszeiten Prüfungsform
Gesamtmodul nach Ende der Vorlesungszeit Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)
Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz
Vorlesung 3 SoSe und WiSe 42
Übung 1 SoSe oder WiSe 14
Präsenzzeit Modul insgesamt 56 h
mat816 - Stochastik II

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Stochastik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat816</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>Master Mathematik (Master) > Mastermodule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuständige Personen</td>
<td>Christiansen, Marcus (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>May, Angelika (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Ruckdeschel, Peter (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Teilnahmvoraussetzungen

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektkarakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Die Vorlesung vermittelt die Grundlagen der Theorie der stochastischen Prozesse.
- Querverbindungen: Stochastische Finanzmarktmodelle, Versicherungsmathematik II, Stochastische Analysis

Modulinhalte

Literaturempfehlungen

Links

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotssrhythmus Modul
- unregelmäßig

Aufnahmekapazität Modul
- unbegrenzt

Hinweise
- Studienschwerpunkt: C

Modulart
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Vorlesung + Übung

Vorkenntnisse
- Stochastik I

Prüfung

Gesamtnote
- nach Ende der Vorlesungszeit
- Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3</td>
<td>SoSe oder WiSe</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
<td>SoSe oder WiSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
- 56 h
mat819 - Spezielle Themen der Stochastik

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Spezielle Themen der Stochastik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat819</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>• Christiansen, Marcus (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>• May, Angelika (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>• Ruckdeschel, Peter (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen

Kompetenzziele

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- In dieser Vorlesung wird ein aktuelles, fortgeschrittenes Themengebiet der Stochastik behandelt. Die Studierenden erwerben damit über den üblichen Kanon der Stochastik hinausgehendes Spezialwissen sowie die Fähigkeit, sich solches Wissen anzueignen und in praktischen Analysen einzusetzen.

Modulinhalte

Es handelt sich um ein Modul, innerhalb dessen kurzfristig verschiedene, aktuelle Themen aus der Stochastik angeboten werden können, immer jeweils im Rahmen der Modulvorgaben von 6KP/180h Workload.

Literaturempfehlungen

Links

Unterrichtssprachen: Deutsch, Englisch

Dauer in Semestern: 1 Semester

Angebotsrhythmus Modul: unregelmäßig

Aufnahmekapazität Modul: unbegrenzt

Hinweise: Studienschwerpunkt: C

Modulart: Wahlpflicht / Elective

Modullevel: MM (Mastermodul / Master module)

Lehr-/Lernform: Vorlesung + Übung

Vorkenntnisse: je nach Themenwahl

Prüfung

Prüfungsform: Gesamtmodul

Gesamtmodul: nach Ende der Vorlesungszeit

Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>SoSe oder WiSe</td>
<td>0</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>SoSe oder WiSe</td>
<td>0</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

0 h
mat820 - Stochastische Analysis und zeitstetige Finanzmathematik

Modulbezeichnung: Stochastische Analysis und zeitstetige Finanzmathematik

Modulkürzel: mat820

Kreditpunkte: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls: Master Mathematik (Master) > Mastermodule

Zuständige Personen: Ruckdeschel, Peter (Modulverantwortung), Christiansen, Marcus (Modulverantwortung), May, Angelika (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Abgrenzung zwischen dem spezifischen Teil einer Theorie und dem allgemeinen mathematischen Standard erkennen
- Stochastische Integration in allgemeinem Kontext verstehen und anwenden können
- Querverbindungen: mat816, mat857

Modulinhalte

Diffusionprozesse, Ito Kalkül, Sprungdiffusionsmodelle, Semimartingale und Darstellungssätze, Hedgingstrategien

Literaturempfehlungen

Kallsen: Semimartingale Modelling in Finance

Links

Unterrichtsprachen: Deutsch, Englisch
Dauer in Semestern: 1 Semester
Angebotsrhythmus Modul: unregelmäßig
Aufnahmekapazität Modul: unbegrenzt
Hinweise: Studienschwerpunkt: C
Modulart: Wahlpflicht / Elective
Modullevel: MM (Mastermodul / Master module)
Lehr-/Lernform: Vorlesung + Übung
Vorkenntnisse: Stochastik I

Prüfung

Gesamtmodul

Prüfungszeiten: nach Ende der Vorlesungszeit
Prüfungsf orm: Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Lehrveranstaltungsform

Kommentar

SWS
Angebotsrhythmus
Workload Präsenz

Vorlesung

3
--
42

Übung

1
--
14

Präsenzzeit Modul insgesamt

56 h
mat825 - Stochastic Processes and Finance

Modulbezeichnung	Stochastic Processes and Finance
Modulkürzel | mat825
Kreditpunkte | 9.0 KP
Workload | 270 h

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Christiansen, Marcus (Modulverantwortung)
- May, Angelika (Modulverantwortung)
- Ruckdeschel, Peter (Modulverantwortung)

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Abgrenzung zwischen dem spezifischen Teil einer Theorie und dem allgemeinen mathematischen Standard erkennen
- Finanzmathematik in stetiger Zeit über stochastische Prozesse verstehen und modellieren können
- Querverbindungen: mat805, mat850, mat857

Modulinhalte
Interest rates, zero coupon bonds, price formula, numeraire, financial instruments, term structure, underlyings and financial derivatives, financial market, no free lunch condition, options of European and American type, binomial model by Cox, Ross and Rubinstein, price formula for simple options; Conditional expectation, martingales in discrete time, Brownian motion; stochastic interest rate models, Black-Scholes model, Black-Scholes formula and PDE; Affine term structures, Forward rates, Futures and Forwards

Literaturrempfehlungen
- Albrecher, Binder, Mayer: Einführung in die Finanzmathematik, Birkhäuser, 2009
- Kellerhals, Asset Pricing, Springer, 2004
- Brzezniak, Zastawniak: Basic Stochastic Processes, Springer SUMS, 1999
- Etheridge, A Course in Financial Calculus, Cambridge Univ. Press, 2002

Links
Unterrichtsprachen | Englisch, Deutsch
Dauer in Semestern | 1 Semester
Angebotsrhythmus Modul | unregelmäßig
Aufnahmekapazität Modul | unbegrenzt
Hinweise | Studienschwerpunkt: C
Modulart | Wahlpflicht / Elective
Modullevel | MM (Mastermodul / Master module)
Lehr-/Lernform | Vorlesung + Übung
Vorkenntnisse | Stochastik I
Prüfung | Prüfungszeiten | Prüfungsform
Gesamtmodul | nach Ende der Vorlesungszeit | Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ), Referat (R)
Lehrveranstaltungsform | Kommentar | SWS | Angebotsrhythmus | Workload Präsenz
Vorlesung | 3 | -- | 42
Übung | 1 | -- | 14
Seminar | 2 | -- | 28
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>84 h</td>
</tr>
</tbody>
</table>
mat826 - Finanzstatistik

Modulbezeichnung: Finanzstatistik
Modulkürzel: mat826
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Christiansen, Marcus (Modulverantwortung)
- May, Angelika (Modulverantwortung)
- Ruckdeschel, Peter (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Die Studierenden lernen Zeitreihenmodelle kennen, wenden diese auf Finanzdaten an und können verschiedenen Risiken statistisch modellieren und quantifizieren.
- Querverbindungen: mat810, mat820, mat839, mat843
digitale Souveränität
- reflektierter Einsatz digitaler Werkzeuge bei:
 - Präsentation in Übungen
 - bei der Lösung von Übungsaufgaben,
- alltäglicher Umgang mit
 - digitalen Kommunikationswerkzeugen (Mail, BBB, …)
 - Web als Datenquelle:
 - Recherche und Bezug von realen Finanzdaten
 - Recherche und Bezug von R Ergänzungspaketen
 - Fragen der Abbildung unterschiedlicher Domänen in die digitale Welt: in Übungsaufgaben Umgang mit zeitindizierten Daten (Verschneidung, Plots, Zusammenführung, fehlende Werte)

mathematikspezifische Aspekte von Digitalisierung
- mathematiknahe Programmierung in R
- Strategien für ein explizites Mitführen/Kontrollieren von Fehlern/Unsicherheit
- stochastische Simulation

Modulinhalte
als Obermenge zu verstehen; Akzentuierung durch Dozent möglich
- EDA (auch für Zeitreihen);
- zeitdiskrete Modelle: CAPM; Irrfahrt;
- Grundmodelle der Zeitreihenanalyse: ARMA und GARCH;
- Stationaritätstests
- Berechnungsverfahren zu VaR: historische Simulation und Wurzel-T-Regel; Delta-Methode und VaR für Optionen mit glattem Payoff
- Volatilitätsmessung; Volatilitätsrisiko;
- Kreditrisiko; Rating

Literaturempfehlungen
Franke, J., Härdle, W., Hafner, C.M. Einführung in die Statistik der Finanzmärkte.
Alexander, C. Market models: a guide to financial data analysis, Wiley.
Ruppert, D. Statistics and data analysis for financial engineering, Springer.
Tukey, J.W. Exploratory data analysis.
<table>
<thead>
<tr>
<th>Links</th>
<th>Deutsch, Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unterrichtsprachen</td>
<td></td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Hinweise</td>
<td>Studienschwerpunkt: C</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>Vorlesung + Übung</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>Stochastik I, Statistik I, Grundlagen der Versicherungs- und Finanzmathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsf orm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtnmodul</td>
<td>nach Ende der Vorlesungszeit</td>
<td>Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |

Werkansspruch: 3 -- 42
Übungsanspruch: 1 -- 14
mat827 - Aktuarielle Statistik

Modulbezeichnung: Aktuarielle Statistik
Modulkürzel: mat827
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master Mathematik (Master) > Mastermodule

Zuständige Personen:
- Ruckdeschel, Peter (Modulverantwortung)

Teilnahmevoraussetzungen:

Kompetenzziele:
- Systematische Vertiefung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch sowohl breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Stochastische Risiken quantifizieren und mit Abhängigkeiten in den Daten umgehen können, wesentliche Beträge der aktuariellen Statistik in Versicherungsunternehmen kennen und mathematisch einordnen können

Modulinhalte:
1. IT-Infrastruktur für Aktuarielle Statistik
2. Umgang mit Daten im Bereich Aktuarielle Statistik
3. Eingesetzte Verfahren der Statistik
4. Statistische Prädiktive Modelle
5. Anwendungs-Use-Cases:
 - Tarifierung: Anwendung von Modellwahl, GLM(Ms), Boosting, regularisierter Regressionsfitterung von Compound-Verteilungen im kollektiven Modell
 - Experience-Rating: Anwendung von Panel-Regression und GLMMs
 - Statistik der Reservierung Chain-Ladder und darüber hinaus Berechnung von Unsicherheiten in Ultimates mit Bootstrap
 - Prospektive Sterbetafeln/Langlebigkeitsrisiko: Anwendungen von Vorhersage-Modellen
 - Portfolio-Optimierung und Risikomanagement im ALM: Anwendung von ARMA-GARCH-Modellen
 - Exposureberechnung in der Schadenversicherung: Anwendung von Räumlicher Statistik
 - Pricing in Rückversicherung: Anwendung von Extremwertstatistik

Literaturempfehlungen:
Links

Unterrichtsprachen

Deutsch, Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

plannmäßig alle 3 Jahre (im Wechsel mit den LVs Finanzstatistik, Robuste Statistik, Extremwertstatistik, Multivariate Statistik, Zeitreihenanalyse)

Aufnahmekapazität Modul

unbegrenzt

Hinweise

Studienschwerpunkt: C

Modulart

Wahlpflicht / Elective

Modullevel

MM (Mastermodul / Master module)

Lehr-/Lernform

Vorlesung + Übung

Vorkenntnisse

Statistik I, Einführung in die Versicherungsmathematik

Prüfung

Prüfungszeiten

Prüfungsform

Gesamtmodul

nach Ende der Vorlesungszeit

Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Lehrveranstaltungsform

Kommentar

SWS

Angebotsrhythmus

Workload Präsenz

Vorlesung

3

SoSe oder WiSe

0

Übung

1

SoSe oder WiSe

0

Präsenzzeit Modul insgesamt

0 h

mat829 - Spezielle Themen der Versicherungs- und Finanzmathematik

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Spezielle Themen der Versicherungs- und Finanzmathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat829</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Christiansen, Marcus (Modulverantwortung)
- May, Angelika (Modulverantwortung)
- Ruckdeschel, Peter (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- In dieser Vorlesung wird ein aktuelles, fortgeschrittenes Themengebiet der Versicherungs- und Finanzmathematik behandelt. Die Studierenden erwerben damit über den üblichen Kanon der Versicherungs- und Finanzmathematik hinausgehendes Spezialwissen sowie die Fähigkeit, sich solches Wissen anzueignen und in praktischen Analysen einzusetzen.

Modulinhalte
Es handelt sich um ein Modul, innerhalb dessen kurzfristig verschiedene, aktuelle Themen aus der Versicherungs- und Finanzmathematik angeboten werden können, immer jeweils im Rahmen der Modulvorgaben von 6KP/180h Workload.

Literaturempfehlungen

Links

Unterrichtssprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
unregelmäßig

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Studienschwerpunkt: C

Modulart
Wahlpflicht / Elective

Modullevel
MM (Mastermodul / Master module)

Lehr-/Lernform
Vorlesung + Übung

Vorkenntnisse
je nach Themenwahl

Prüfung
Prüfungszeiten
Prüfungsform

Gesammodul
Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Lehrveranstaltungsform
Kommentar
SWS
Angebotsrhythmus
Workload Präsenz

| Vorlesung | 3 | SoSe oder WiSe | 0 |
| Übung | 1 | SoSe oder WiSe | 0 |

Präsenzzeit Modul insgesamt
0 h
mat830 - Lineare Modelle/Regression

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Lineare Modelle/Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat830</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Christiansen, Marcus (Modulverantwortung)
- May, Angelika (Modulverantwortung)
- Ruckdeschel, Peter (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Die Studierenden lernen grundlegende Konzepte für lineare Modelle kennen, können diese auf verschiedene statistische Fragen anwenden, die zugrundeliegenden Annahmen kritisch überprüfen oder geeignete Korrekturverfahren anwenden.
- Querverbindungen: mat839, mat843, mat835, maschinelles Lernen

Modulinhalte
- Lineare Einfachregression, multiple Regression, Kleinste-Quadrate-Schätzung, Eigenschaften des KQ-Schätzers, Modellierung kategorialer und metrischer Einflussgrößen, Modelldiagnose, Modellwahl, Variablenauwahl, allgemeine lineare Modelle, generalisierte lineare Modelle

Literaturempfehlungen

Links

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- regelmäßig (in Kooperation mit Universität Bremen)

Aufnahmekapazität Modul
- unbegrenzt ()

Hiwensi
- Studienschwerpunkt: C

Dieses Modul wird regelmäßig in Bremen angeboten, und die Studierenden können im Rahmen des Kooperationsabkommens der Unis Oldenburg und Bremen die Veranstaltung dort belegen und in Oldenburg anrechnen. Im ZSob (Zentrum für Statistik in Bremen und Oldenburg) haben die Professoren aus der Statistik in Bremen und aus der Stochastik in Oldenburg ihre Aktivitäten gebündelt. In diesem Rahmen informieren wir die Studierenden regelmäßig zum Semesterende über die in Bremen im nächsten Semester angebotenen Masterveranstaltungen.

Modulart
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Vorlesung + Übung

Vorkenntnisse
- Stochastik I, Statistik I, Statistik II

Prüfung
- Prüfungszeiten
- Prüfungsform
- Gesamtmodul
- nach Ende der Vorlesungszeit
- Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

80 / 107
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
mat837 - Extremwertstatistik und Anwendungen

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Extremwertstatistik und Anwendungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat837</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6,0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | • Master Mathematik (Master) > Mastermodule
| | • Master Umweltmodellierung (Master) > Mastermodule |
| Zuständige Personen | • Christiansen, Marcus (Modulverantwortung)
| | • May, Angelika (Modulverantwortung)
| | • Rückdeschel, Peter (Modulverantwortung) |
| Teilnahmevoraussetzungen | |
| Kompetenzziele | • Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
| | • Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
| | • Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
| | • Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektscharakter
| | • Beherrschen wichtiger Verfahren und Algorithmen
| | • Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software
| | • Die Studierenden lernen die Grenzwertsätze der Extremwertstatistik und die dazu gehörigen statistischen Verfahren kennen und können diese in realen Datensituationen anwenden.
| | • Querverbindungen: mat315, mat826, mat843, mat805 (bzw. Versicherungsmathematik I im neuen System) |
| | |
| mathematikspezifische Aspekte von Digitalisierung | |
| | • matematiknahe Programmierung in R
| | • Strategien für ein explizites Mitführen/Kontrollieren von Fehlern/Unsicherheit
| | • stochastische Simulation |
| Modulinhalte | als Obermenge zu verstehen; Akzentuierung durch Dozent möglich:
| | • Maxima: GEVD und Eigenschaften, Fisher-Tippet-Gnedenko-Thm / Attraktionsbereiche, BlockMaxima
| | • Schwelleüberschreitungen: GPD und Eigenschaften; Pickands-Balkema-deHaan Thm; Hill Schätzer
| | • Punktprozesse: der Poissonprozess; Verbindung zur Exponentialvlg; Relevanz in EVT
| | • Diagnostik: Mean-Excess Plot, Return Level Plot, Extremal-Index |
| | Embrechts, P., Klüppelberg, C., Mikosch, T. Modelling extremal events: for insurance and finance, Springer.
<p>| | Reiss, R-D., Thomas, M. Statistical analysis of extreme values, Birkhäuser. |
| Links | |
| Unterrichtsprachen | Deutsch, Englisch |
| Dauer in Semestern | 1 Semester |
| Angebotsrhythmus Modul | unregelmäßig |
| Aufnahmekapazität Modul | unbegrenzt |
| Hinweise | Studienschwerpunkt: C |
| Modulart | Wahlpflicht / Elective |
| Modullevel | MM (Mastermodul / Master module) |</p>
<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>Vorlesung + Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse</td>
<td>Stochastik I, Statistik I</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungsform</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>nach Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td>Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
<tr>
<td>Präsenzzzeit Modul insgesamt</td>
<td></td>
<td>56 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
mat839 - Zeitreihenanalyse bzw. Zustandsmodelle

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Zeitreihenanalyse bzw. Zustandsmodelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat839</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule
- Master Umweltmodellierung (Master) > Mastermodule

Zuständige Personen
- Christiansen, Marcus (Modulverantwortung)
- May, Angelika (Modulverantwortung)
- Ruckdeschel, Peter (Modulverantwortung)

Einleitung

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektkontext
- Beherrschen wichtiger Verfahren und Algorithmen
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Die Studierenden lernen Grundbegriffe der Zeitreihenanalyse kennen, kennen wichtige Modelle und können diese an Daten anpassen.
- Querverbindungen: mat315, mat826

Mathematik spezifische Aspekte von Digitalisierung
- mathematiknahe Programmierung in R
- Strategien für ein explizites Mitführen/Kontrollieren von Fehlern/Unsicherheit
- stochastische Simulation

Modulinhalte
- als Obermenge zu verstehen; Akzentuierung durch Dozent möglich:
 - Autokovarianz und partielle Autokovarianz – Stationarität und Ergodizität;
 - Sätze von Herglotz und Bochner; Spektralmaß eines stationären Prozesses;
 - ARIMA Modelle; Zustandsraummodelle; GARCH Modelle
 - Schätzung und Inference
 - Kalman Filter und Glätte; EM-Algorithmus

Literaturempfehlungen
- Brockwell, P.J., Davis, R.A.: Introduction to time series and forecasting.
- Schlittgen, R., Streitberg, B.: Zeitreihenanalyse, Oldenbourg.

Links

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unregelmäßig

Aufnahmekapazität Modul
- unbegrenzt

Hinweise
- Studienabschlusspunkt: C

Modulart
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Vorlesung + Übung

Vorkenntnisse
- Stochastik I, Statistik I

Prüfung

Gesamtmodul
- nach Ende der Vorlesungszeit
- Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
<tr>
<td>Prüfungszeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
mat840 - Monte Carlo Methoden

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Monte Carlo Methoden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat840</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Christiansen, Marcus (Modulverantwortung)
- Ruckdeschel, Peter (Modulverantwortung)
- May, Angelika (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektkarakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Die Studierenden erlernen mathematische Techniken zur virtuellen Simulation von Vorgängen mit stochastischem Charakter, vor allem an praxisnahen Anwendungsbeispielen aus der Versicherungs- und Finanzmathematik.
- Querverbindungen: mat810, mat849

Modulinhalte

Literaturliste

Links
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unregelmäßig

Aufnahmekapazität Modul
- unbegrenzt

Hinweise
- Studienschwerpunkt: C

Modulart
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Vorlesung + Übung

Vorkenntnisse
- Stochastik I

Prüfung
- Gesamtmodul nach Ende der Vorlesungszeit
 - Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Präsenzzeit Modul insgesamt
- 56 h

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unregelmäßig

Aufnahmekapazität Modul
- unbegrenzt

Hinweise
- Studienschwerpunkt: C

Modulart
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Vorlesung + Übung

Vorkenntnisse
- Stochastik I

Prüfung
- Gesamtmodul nach Ende der Vorlesungszeit
 - Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
mat843 - Elemente Multivariater Statistik

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Elemente Multivariater Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat843</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule
- Master Umweltmodellierung (Master) > Mastermodule

Zuständige Personen
- May, Angelika (Modulverantwortung)
- Christiansen, Marcus (Modulverantwortung)
- Ruckdeschel, Peter (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vielfältiger Anwendungen der Mathematik, auch exemplarisch mit Projektscharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Die Studierenden beherrschen die multivariate Normalverteilung, lernen andere multivariate Verteilungen kennen und können Hauptkomponenten- und Faktoranalyse auf Daten anwenden und interpretieren.
- Querverbindungen: mat315, mat810

mathematikspezifische Aspekte von Digitalisierung
- mathematisch nahe Programmierung in R
- Strategien für ein explizites Mitführen/Kontrollieren von Fehlern/Uncertainty
- Strategien zum Umgang mit Ausreißern / Datenrobustheit
- stochastic simulation

Modulinhalte
als Obermenge zu verstehen; Akzentuierung durch Dozent möglich:
- Wiederholung: Eigenwertzerlegung, Singulärwertzerlegung;
- Operationen für Multivariate Daten: Selektion und Projektion
- die multivariate Normalverteilung; Eigenschaften
- Verteilungen: Wishart, Wilks Lambda, Hotelling T
- klassische Modelle: Hauptkomponentenanalyse, Faktoranalyse, Diskriminanzanalyse, Clusterung, Korrespondenzanalyse, Kanonische Korrelation, Multidimensional Scaling, Conjoint Analyse

Literaturrempfehlungen
Jolliffe, I.: Principal component analysis, Wiley.

Links

Unterrichtsprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
umregelmäßig

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Studienschwerpunkt: C

Modulart
Wahlpflicht / Elective

Modullevel
MM (Mastermodul / Master module)

Lehr-/Lernform
Vorlesung + Übung

Prüfung

<table>
<thead>
<tr>
<th>Gesamtmodul</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>nach Ende der Vorlesungszeit</td>
<td>Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform
Kommentar

<table>
<thead>
<tr>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>87</td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
<td>SWS</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
mat845 - Räumliche Statistik

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Räumliche Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat845</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Christiansen, Marcus (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>May, Angelika (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Ruckdeschel, Peter (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software
- Abgrenzung zwischen dem spezifischen Teil einer Theorie und dem allgemeinen mathematischen Standard erkennen
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Die Studierenden lernen grundlegende räumliche stochastische Prozesse kennen und können mit diesen statistisch umgehen und sie auf konkrete Probleme anwenden.
- Querverbindungen: mat315, mat 843, mat830

Modulinhalte

- Räumliche stochastische Prozesse, Gauß-Prozesse, Variogramm, Korrelogramm, Stationarität, Isotropie, Kriging, Oberflächenschätzung, Markov-Zufallsfelder, Räumliche Punktprozesse, Intensitätsfunktion, Poisson-Prozesse, Cox-Prozesse, zufällige Mengen, stochastische Geometrie

Literaturempfehlungen

Links

- Unterrichtsprachen: Deutsch, Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: unregelmäßig
- Aufnahmekapazität Modul: unbegrenzt
- Hinweise: Studien schwerpunkt: C
- Modulart: Wahlpflicht / Elective
- Modullevel: MM (Mastermodul / Master module)
- Lehr-/Lernform: Vorlesung + Übung
- Vorkenntnisse: Stochastik I, Statistik I
- Prüfung: Stochastik, Statistik, Stochastik, Statistik
- Prüfungszeiten: nach Ende der Vorlesungszeit
- Prüfungsform: Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)
- Lehrveranstaltungsform: Kommentar
- SWS: 89 / 107
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
mat847 - Elemente Explorativer Datenanalyse, Robuster Statistik und Diagnostik

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Elemente Explorativer Datenanalyse, Robuster Statistik und Diagnostik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat847</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master Umweltmodellierung (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Christiansen, Marcus (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>May, Angelika (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Ruckdeschel, Peter (Modulverantwortung)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik</td>
</tr>
<tr>
<td></td>
<td>Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter</td>
</tr>
<tr>
<td></td>
<td>Beherrschen wichtiger Verfahren und Algorithmen</td>
</tr>
<tr>
<td></td>
<td>Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software</td>
</tr>
<tr>
<td></td>
<td>Beherrschen der Analyse und Komplexität von Algorithmen</td>
</tr>
<tr>
<td></td>
<td>Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden lernen die zentralen Konzepte, Argumente und Verfahren der explorativen Datenanalyse und der robusten Statistik kennen und können diese in R anwenden.</td>
</tr>
<tr>
<td></td>
<td>Querverbindungen: mat315, mat330, mat350, mat525, mat530</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik</td>
</tr>
<tr>
<td></td>
<td>Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter</td>
</tr>
<tr>
<td></td>
<td>Beherrschen wichtiger Verfahren und Algorithmen</td>
</tr>
<tr>
<td></td>
<td>Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software</td>
</tr>
<tr>
<td></td>
<td>Beherrschen der Analyse und Komplexität von Algorithmen</td>
</tr>
<tr>
<td></td>
<td>Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden lernen die zentralen Konzepte, Argumente und Verfahren der explorativen Datenanalyse und der robusten Statistik kennen und können diese in R anwenden.</td>
</tr>
<tr>
<td></td>
<td>Querverbindungen: mat315, mat330, mat350, mat525, mat530</td>
</tr>
<tr>
<td>mathematikspezifische Aspekte von Digitalisierung</td>
<td>Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik</td>
</tr>
<tr>
<td></td>
<td>Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter</td>
</tr>
<tr>
<td></td>
<td>Beherrschen wichtiger Verfahren und Algorithmen</td>
</tr>
<tr>
<td></td>
<td>Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software</td>
</tr>
<tr>
<td></td>
<td>Beherrschen der Analyse und Komplexität von Algorithmen</td>
</tr>
<tr>
<td></td>
<td>Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden lernen die zentralen Konzepte, Argumente und Verfahren der explorativen Datenanalyse und der robusten Statistik kennen und können diese in R anwenden.</td>
</tr>
<tr>
<td></td>
<td>Querverbindungen: mat315, mat330, mat350, mat525, mat530</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>Konzepte der graphischen Datenanalyse</td>
</tr>
<tr>
<td></td>
<td>Konzepte der interaktiven Datenanalyse</td>
</tr>
<tr>
<td></td>
<td>Begriffe, Werkzeuge und Schlussweisen der robusten Statistik</td>
</tr>
<tr>
<td></td>
<td>Umgebungen, Influenzkurve, Maxbiaskurve, Gross Error Sensitivity</td>
</tr>
<tr>
<td></td>
<td>Bruchpunkt, Minimax-Ansätze, Robuste Optimalität</td>
</tr>
<tr>
<td></td>
<td>Beispiele robuster Verfahren für Lokation, Skala, Kovarianzen, Regression</td>
</tr>
<tr>
<td></td>
<td>auf robusten Verfahren basierende Diagnostik</td>
</tr>
<tr>
<td></td>
<td>Rousseeuw, P.J., Leroy A.M.: Robust regression and outlier detection, Wiley.</td>
</tr>
<tr>
<td>Links</td>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Unterrichtsprachen</td>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Hinweise</td>
<td>Studien schwerpunkt: C</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>Vorlesung + Übung</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>Stochastik I, Statistik I</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesammodul</td>
<td>nach Ende der Vorlesungszeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

| Präsenzzzeit Modul insgesamt | 56 h |
mat849 - Statistische Algorithmen

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Statistische Algorithmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat849</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule
- Master Umweltmodelierung (Master) > Mastermodule

Zuständige Personen
- Christiansen, Marcus (Modulverantwortung)
- May, Angelika (Modulverantwortung)
- Ruckdeschel, Peter (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens sowohl durch breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Die Studierenden lernen wichtige Algorithmen und deren Implementation in Standard-Software kennen und können diese anwenden.
- Querverbindungen: mat840, mat705, mat730, mat843

Modulinhalte
als Obermenge zu verstehen; Akzentuierung durch Dozent möglich:
- Prinzipien zur Zufallszahlenerzeugung
- Monte-Carlo Techniken: antithetische/Kontrollvariate, Rejection Sampling, Multilevel
- Projection Pursuite
- MCMC, Gibbs Sampling
- Simulated Annealing
- verschiedene Varianten des Bootstrap/subsampling
- Regressionsbäume/CART
- MARS
- Ensemble Methoden: Bagging, Boosting

Literaturempfehlungen
- Efron, B, Tibshirani, R.J.: An introduction to the bootstrap.
- Hall, P.: The bootstrap and Edgeworth expansion.
- Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning.
- Ripley, B.D.: Stochastic Simulation.

Links

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unregelmäßig

Aufnahmekapazität Modul
- unbegrenzt

Hinweise
- Studienschwerpunkt: C

Modulart
- Wahlpflicht / Elective

Modullevel
- MM (Mastermodul / Master module)

Lehr-/Lernform
- Vorlesung + Übung

Vorkenntnisse
- Stochastik I, Statistik I, Statistik II

Prüfung
<table>
<thead>
<tr>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesammodul</td>
</tr>
<tr>
<td>nach Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform
<table>
<thead>
<tr>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
</tr>
</tbody>
</table>

Angebotsrhythmus

Workload Präsenz

93 / 107
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
mat850 - Asset Liability Management

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Asset Liability Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat850</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Christiansen, Marcus (Modulverantwortung)
- May, Angelika (Modulverantwortung)
- Ruckdeschel, Peter (Modulverantwortung)

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Beherrschung wichtiger Verfahren und Algorithmen
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Grundlagen der integrierten quantitativen Behandlung von Aktiv- und Passivseite im Versicherungsunternehmen verstehen und Standardmodelle kennenlernen
- Querverbindungen: mat825, mat857, mat810

Modulinhalte
ALM als Prozess im Unternehmen, Anforderungen aus Aufsichtsrecht, Gesamtverband, Aktuarvereinigung: Grund- und Standardmodelle für Versicherungen; Modelle, Kennzahlen, Stresstests, Szenarien, Projektionsrechnung, Valuation Portfolio

Literaturempfehlungen

Links
- Deutsch, Englisch

Dauer in Semestern
1 Semester

Unterrichtsprachen
Deutsch, Englisch

Angebotsrhythmus Modul
unregelmäßig

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Studienschwerpunkt: C

Modulart
Wahlpflicht / Elective

Modullevel
MM (Mastermodul / Master module)

Lehr-/Lernform
Vorlesung + Seminar

Vorkenntnisse
Stochastik I, Versicherungsmathematik I

Prüfung
Prüfungszeiten
Prüfungsform

Gesamtmodul
KM: nach Ende der Vorlesungszeit
Klausur oder mündliche Prüfung (KM), Referat (R)

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>--</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>--</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
mat857 - Stochastische Finanzmarktmodelle

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Stochastische Finanzmarktmodelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat857</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Christiansen, Marcus (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>May, Angelika (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Ruckdeschel, Peter (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Grundzüge der fairen Bepreisung im arbitragefreien Markt für derivative Finanzinstrumente kennen und anwenden können
- Querverbindungen: mat811, mat816, mat815, mat820

Modulinhalt
Zeitstetige Finanzmathematik (arbitragefreie Preise für Finanzderivaten):
- Einführung in stochastische Differenzie und Integrale; zeitstetiges Marktmmodell und Black Scholes Modell, arbitragefreie Preise: äquivalentes Martingalmaß und bedingte Erwartung, vollständige Märkte, stochastische Zinsmodelle (Vasicek, Cox Ross Rubinstein), Zinsderivate; optional: allgemeine Hedgingstrategien, Ausblick auf Levy Prozesse

Literaturempfehlungen

Links
- Deutsch, Englisch

Dauer in Semestern
1 Semester

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Studienschwerpunkt: C

Modulart
Wahlpflicht / Elective

Modullevel
MM (Mastermodul / Master module)

Lehr-/Lernform
Vorlesung + Übung

Vorkenntnisse
Stochastik I

Prüfung
- Gesamtmodul: am Ende der Vorlesungszeit
 - Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Lehrveranstaltungsform
- Vorlesung: 3 SWS
 - SoSe oder WiSe: 42
- Übung: 1 SWS
 - SoSe oder WiSe: 14

Präsenzzzeit Modul insgesamt
56 h
mat860 - Vertiefung zur stochastischen Modellierung

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Vertiefung zur stochastischen Modellierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat860</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Christiansen, Marcus (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>May, Angelika (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Ruckdeschel, Peter (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen
Kompetenzziele

- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Die Studierenden lernen spezialisierte Teilgebiete der Stochastik/Statistik kennen, die im Rahmen der mathematischen Modellierung moderne Anwendungsbezüge aufweisen.

Modulinhalte
Literaturempfehlungen
Links

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
unregelmäßig

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Studienschwerpunkt: C

Modulart
Wahlplicht / Elective

Modullevel
MM (Mastermodul / Master module)

Lern-/Lernform
Vorlesung + Übung

Prüfung
Prüfungszeiten
Prüfungsform

Gesamtmodul
nach Ende der Vorlesungszeit
Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ)

Lehrveranstaltungsform
Kommentar
SWS
Angebotsrhythmus
Workload Präsenz

Vorlesung
3
--
42

Übung
1
--
14

Präsenzzeit Modul insgesamt
56 h
mat865 - Vertiefung zur Statistik

Modulbezeichnung: Vertiefung zur Statistik
Modulkürzel: mat865
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Fach-Bachelor Nachhaltigkeitsökonomik (Bachelor) > Wahlpflichtbereich
- Master Betriebswirtschaftslehre: Management und Recht (Master) > Schwerpunktmodule AFT - Methoden
- Master Betriebswirtschaftslehre: Management und Recht (Master) > Schwerpunktmodule UF - Methoden
- Master Mathematik (Master) > Mastermodule

Zuständige Personen
- Christiansen, Marcus (Modulverantwortung)
- May, Angelika (Modulverantwortung)
- Ruckdeschel, Peter (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektkarakter
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- In dieser Vorlesung wird ein aktuelles, fortgeschrittenes Themengebiet der Angewandten Statistik behandelt. Die Studierenden erwerben damit über den üblichen Kanon statistischer Verfahren hinausgehendes Spezialwissen sowie die Fähigkeit, sich solches Wissen aneignen und in praktischen Analysen einzusetzen.

Modulinhalte
Es handelt sich um ein Modul, innerhalb dessen kurzfristig verschiedene, aktuelle Themen aus der Statistik angeboten werden können, immer jeweils im Rahmen der Modulvorgaben von 6KP/180h Workload mögliche solche Themen sind
- Angewandte Statistische Methoden in der Ökologie mit R (zuletzt SoSe 2017)
- Statistisches Lernen (zuletzt SoSe 2019)

Spezifikation eines konkreten Themas spätestens im Rahmen der rollierenden Vorlesungsplanung

Beispielhaft seien hier die Inhalte zu "Statistisches Lernen" genannt:
- Prädictionsverfahren: lineare Regression, GLM in hochdimensionalen Modellen, regularisierte Regression, Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Regression
- Klassifikationsverfahren und Clustering: lineare und quadratische Diskriminanzanalyse (LDA/QD), Support Vector Classification, Klassifikationsbäume (CART), verschiedene Clusterverfahren
- Vapnik-Chervonenkis Komplexität von Problemen
- Resampling Verfahren/Ensemble Methoden: Bagging, Boosting, Random Forests, verschiedene Kreuzvalidierungsstrategien
- Ausblick auf Ranking-Verfahren und Online-Learning

Literaturempfehlungen

natürlich spezifisch für das jeweilige Thema

hier beispielhaft für "Statistisches Lernen":
- Bühlmann, P., van de Geer, S.: Statistics for high-dimensional data:

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unterrichtsprachen</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
</tr>
<tr>
<td>Hinweise</td>
</tr>
<tr>
<td>Modulart</td>
</tr>
<tr>
<td>Modullevel</td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
</tr>
<tr>
<td>Prüfung</td>
</tr>
<tr>
<td>Gesamtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
</tr>
<tr>
<td>Vorlesung</td>
</tr>
<tr>
<td>Übung</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
</tr>
</tbody>
</table>
mat870 - Hauptseminar in Statistik

Modulbezeichnung: Hauptseminar in Statistik
Modulkürzel: mat870
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master Mathematik (Master) > Mastermodule

Zuständige Personen:
- Christiansen, Marcus (Modulverantwortung)
- May, Angelika (Modulverantwortung)
- Ruckdeschel, Peter (Modulverantwortung)

Partnahmevoraussetzungen:

Kompetenzziele:
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Kompetenzen und Fähigkeiten in freier Rede, ausgewählten Gesprächstechniken und ausgewählten Moderations- und Präsentationstechniken
- Vertiefte Kenntnisse des Schreibens mathematisch-technischer Texte
- Befähigung zur selbständigen Erschließung eines fortgeschrittene
- statistischen Teilgebiets durch Ausarbeitung und angemessene Präsentation. Die Studierenden erlernen auch die praktische Anwendung des Erarbeiteten.

digitale Souveränität
- reflektierter Einsatz digitaler Werkzeuge bei:
 - Präsentation in Seminaren
 - der wissenschaftlichen Recherche
- allfälliger Umgang mit
 - digitalen Kommunikationswerkzeugen (Mail, BBB, ...)
 - Sicherungskonzepten/Backups
 - Nutzung von (Uni-)Cloud-Diensten zum Austausch und zur Kollaboration
 - Versionskontrolle beim Verfassen von wissenschaftlichen Texten und Code (git, svn)
- mathematikspezifische Aspekte von Digitalisierung je nach Seminar-Thema:
 - mathematiknahe Programmierung in R
 - Strategien für ein explizites Mitführen/Kontrollieren von Fehlern/ Unsicherheit
 - Strategien zum Umgang mit Ausreißern/Datenrobustheit
 - stochastische Simulation
 - erste Erfahrungen mit Client-Server-Architekturen/Compute Clustern/Cloud-Rechnern zum Lösung großer Probleme
 - Umgang mit großen Datenbanken

Modulinhalte:
Seminarthemen zu aktuellen Fragestellungen aus der angewandten Statistik anhand von Originalarbeiten in Abstimmung mit den Studierenden.

Literaturempfehlungen:
wird in einer entsprechenden Vorbesprechung vereinbart

Links:

Unterrichtssprachen: Deutsch, Englisch
Dauer in Semestern: 1 Semester
Angebotsrhythmus Modul: regelmäßig
Aufnahmekapazität Modul: unbegrenzt
Hinweise:
- Studienschwerpunkt: C
- Modulart: Wahlpflicht / Elective
- Modullevel:
 - MM (Mastermodul / Master module)
Lehr-/Lernform:
- Seminar

Prüfung:

Prüfungszeiten:
Prüfungsform:

100 / 107
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td></td>
<td>Seminar-Vortrag und Präsentation einer Anwendung</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>
mat875 - Hauptseminar in Versicherungsmathematik/Stochastik

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Hauptseminar in Versicherungsmathematik/Stochastik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat875</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>▪ Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>▪ Christiansen, Marcus (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>▪ May, Angelika (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>▪ Ruckdeschel, Peter (Modulverantwortung)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td></td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>▪ Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik</td>
</tr>
<tr>
<td></td>
<td>▪ Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter</td>
</tr>
<tr>
<td></td>
<td>▪ Kompetenzen und Fähigkeiten in freier Rede, ausgewählten Gesprächstechniken und ausgewählten Moderations- und Präsentationstechniken</td>
</tr>
<tr>
<td></td>
<td>▪ Vertiefe Kenntnisse des Schreibens mathematisch-technischer Texte</td>
</tr>
<tr>
<td></td>
<td>▪ Befähigung zur selbständigen Erschließung eines Themengebietes der Stochastik/Versicherungsmathematik durch Ausarbeitung und angemessene Präsentation. Die Studierenden vertiefen damit ihre Kompetenz, sich ein für sie neues mathematisches Teilgebiet zu erschließen und dieses in einem Vortrag zu vermitteln.</td>
</tr>
</tbody>
</table>

Modulinhalte

ausgewählte Themen aus Stochastik und Versicherungsmathematik

Literaturrempfehlungen

je nach gewähltem Thema

Links

Deutsch, Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

regelmäßig

Aufnahmekapazität Modul

unbegrenzt

Hinweise

Studienschwerpunkt: C

Modulart

Wahlpflicht / Elective

Modullevel

MM (Mastermodul / Master module)

Lehr-/Lernform

Seminar

Prüfung

Prüfungszeiten

Prüfungsform

Gesamtmodul

R (Referat: Vortrag mit schriftlicher Ausarbeitung)

Lehrveranstaltungsform

Seminar

SWS

2

Angebotsrhythmus

--

Workload Präsenzzeit

28 h
mat880 - Hauptseminar in Finanzmathematik

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Hauptseminar in Finanzmathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat880</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>• Christiansen, Marcus (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>• May, Angelika (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>• Ruckdeschel, Peter (Modulverantwortung)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td></td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>• Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik</td>
</tr>
<tr>
<td></td>
<td>• Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektkonzept</td>
</tr>
<tr>
<td></td>
<td>• Kompetenzen und Fähigkeiten in freier Rede, ausgewählten Gesprächstechniken und ausgewählten Moderations- und Präsentationstechniken</td>
</tr>
<tr>
<td></td>
<td>• Vertiefte Kenntnisse des Schreibens mathematisch-technischer Texte</td>
</tr>
<tr>
<td></td>
<td>• Befähigung zur selbständigen Erschließung eines anwendungsbezogenen Teilgebiets aus der stochastischen Finanzmathematik oder der quantitativen Risikoanalyse durch Ausarbeitung und angemessene Präsentation sowie eigene Simulation. Die Studierenden vertiefen dadurch ihre Kompetenz zur schriftlichen und mündlichen Darstellung von Mathematik.</td>
</tr>
</tbody>
</table>

Modulinhalte	ausgewählte Themen aus Finanzmathematik, Asset Liability Management oder quantitativer Risikoanalyse
Literaturempfehlungen	je nach gewähltem Thema
Links	Deutsch, Englisch
Unterrichtsprachen	Deutsch, Englisch
Dauer in Semestern	1 Semester
Angebotsrhythmus Modul	regelmäßig
Aufnahmekapazität Modul	unbegrenzt
Hinweise	Studienschwerpunkt: C
Modulart	Wahlpflicht / Elective
Modullevel	MM (Mastermodul / Master module)
Lehr-/Lernform	Seminar
Prüfung	Prüfungszeiten
Gesamtmodul	Prüfungsform
Lehrveranstaltungsform	Seminar
SWS	2
Angebotsrhythmus	--
Workload Präsenzzeit	28 h
mat905 - Spezielle Themen der Mathematik

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Spezielle Themen der Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mat905</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>der Mathematik, Lehrende (Modulverantwortung)</td>
</tr>
</tbody>
</table>

Kompetenzziele

- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens sowohl durch breite als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik
- Verständnis und Vertiefung weiterführender Konzepte eines speziellen Themenbereiches der Mathematik und ihrer Anwendungen
- Kennenlernen von fortgeschrittenen Themen in einem ausgewählten Kapitel in der aktuellen Forschung eines speziellen Themenbereiches der Mathematik und ihrer Anwendungen

Modulinhalte

Die Inhalte werden je nach Wahl des Themenbereiches festgelegt und vor Veranstaltungsbeginn zur Verfügung gestellt.

Literaturempfehlungen

Links

Unterrichtssprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
unregelmäßig

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Studienschwerpunkt: A, B, C

Modulart
Wahlpflicht / Elective

Modullevel
MM (Mastermodul / Master module)

Lehr-/Lernform
Vorlesung + Übung oder Seminar

Prüfung
Prüfungszeiten
Prüfungsform

Gesamtmodul
nach Ende der Vorlesungszeit
bei Ausgestaltung als VL + Ü: Klausur oder mündliche Prüfung oder Fachpraktische Übung (KMÜ),
bei Ausgestaltung als SE: Referat (R)

Lehrveranstaltungsform
VA-Auswahl
(Vorlesung und Übung oder Seminar)

SWS
6

Angebotsrhythmus
--

Workload Präsenzzeit
56 h
pb - Professionalisierung

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Professionalisierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pb</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td></td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td></td>
</tr>
<tr>
<td>Modulinhalte</td>
<td></td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Unterrichtsprachen</td>
<td></td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td></td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszügele</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Seminar</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td></td>
</tr>
</tbody>
</table>
Abschlussmodul

mam - Masterarbeitsmodul

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Masterarbeitsmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mam</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Mathematik (Master) > Abschlussmodul</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Chernov, Alexey (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Christiansen, Marcus (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Frühbis-Krüger, Anne (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Ruckdeschel, Peter (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Grieser, Daniel (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Heß, Florian (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>May, Angelika (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Pankrashkin, Konstantin (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Stein, Andreas (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Uecker, Hannes (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Vertman, Boris (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Wrobel, Milena (Modulverantwortung)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>- Fähigkeit zu Wissenstransfer von einem Kontext zu einem anderen</td>
</tr>
<tr>
<td></td>
<td>- Selbstständige Erarbeitung eines grundlegenden für die Mathematik relevanten Themas</td>
</tr>
<tr>
<td></td>
<td>- Fähigkeit zu Analyse und Synthese vertiefter mathematischer Resultate</td>
</tr>
<tr>
<td></td>
<td>- Erarbeitung und Anwendung geeigneter mathematischer Prozesse zur Lösung von Problemen</td>
</tr>
<tr>
<td></td>
<td>- Zusammenfassung und mathematische Formulierung komplexer Probleme</td>
</tr>
<tr>
<td></td>
<td>- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch breite, als auch vertiefte Kenntnis der Reinen und Angewandten Mathematik</td>
</tr>
<tr>
<td></td>
<td>- Fähigkeiten in Zeitmanagement und Organisation</td>
</tr>
<tr>
<td></td>
<td>- Wissenschaftlich-methodische Bearbeitung mathematischer Themenbereiche der Forschung</td>
</tr>
<tr>
<td></td>
<td>- Fähigkeit, mathematische Argumente und deren Schlussfolgerungen klar und präzise vorzutragen</td>
</tr>
<tr>
<td></td>
<td>- Management eines eigenen Projekts, Präsentationstechniken und Vertiefung rhetorischer Fähigkeiten</td>
</tr>
</tbody>
</table>

Modulinhalte

Anleitung zur wissenschaftlichen Arbeit, Einarbeitung in den Kontext des zu behandelnden Problems.

Literaturempfehlungen

Links

Unterrichtsprachen

Deutsch, Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

halbjährlich

Aufnahmekapazität Modul

unbegrenzt

Modulart

Pflicht / Mandatory

Modullevel

Abschlussmodul (Abschlussmodul / Conclude)

Lehr-/Lernform

Seminar + Selbstlernphase während der Anfertigung der Masterarbeit

Prüfungszeiten: 6 Monate nach Ausgabe des Themas

Gesamtmodul

Prüfungsform: Masterarbeit

Lehrveranstaltungsform

Seminar

SWS

2

Angebotsrhythmus

SoSe und WiSe

Workload Präsenzzeit

28 h