<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre311</td>
<td>Renewable Energy Basics</td>
<td>6</td>
</tr>
<tr>
<td>pre314</td>
<td>Energy Meteorology & Storage Technologies</td>
<td>8</td>
</tr>
<tr>
<td>pre315</td>
<td>Energy Systems & Society</td>
<td>10</td>
</tr>
<tr>
<td>pre325</td>
<td>Wind Potential, Aerodynamics & Loading of Wind Turbines</td>
<td>12</td>
</tr>
<tr>
<td>pre326</td>
<td>Wind Turbine Design, Electrical & Control Issues,</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Certification</td>
<td></td>
</tr>
<tr>
<td>pre327</td>
<td>Wind Farm Technology, Economics & Environmental Issues</td>
<td>16</td>
</tr>
<tr>
<td>pre328</td>
<td>Mini Project & Wind Farm Study</td>
<td>18</td>
</tr>
<tr>
<td>pre331</td>
<td>Ocean Energy Resources</td>
<td>20</td>
</tr>
<tr>
<td>pre332</td>
<td>Modelling and Control of Ocean Energy Systems</td>
<td>21</td>
</tr>
<tr>
<td>pre333</td>
<td>Ocean Energy Systems Technologies</td>
<td>22</td>
</tr>
<tr>
<td>pre334</td>
<td>Economics, Policy and Environment</td>
<td>24</td>
</tr>
<tr>
<td>pre335</td>
<td>Project</td>
<td>25</td>
</tr>
<tr>
<td>pre351</td>
<td>Photovoltaic Cell Technology</td>
<td>26</td>
</tr>
<tr>
<td>pre352</td>
<td>Advanced Photovoltaic Cell Design</td>
<td>28</td>
</tr>
<tr>
<td>pre353</td>
<td>Photovoltaics: Economics, Policy and Environment</td>
<td>29</td>
</tr>
<tr>
<td>pre354</td>
<td>Photovoltaic System Technology</td>
<td>30</td>
</tr>
<tr>
<td>pre364</td>
<td>Thermal Energy Storage</td>
<td>32</td>
</tr>
<tr>
<td>pre365</td>
<td>Fundamentals</td>
<td>34</td>
</tr>
<tr>
<td>pre366</td>
<td>Solar Low Temperature</td>
<td>36</td>
</tr>
<tr>
<td>pre367</td>
<td>Solar High Temperature</td>
<td>37</td>
</tr>
<tr>
<td>pre371</td>
<td>Distributed Generation</td>
<td>39</td>
</tr>
</tbody>
</table>
pre372 - Generation and Storing Technologies ... 40
pre373 - Control Techniques and Renewable Energy Integration Systems ... 41
pre374 - Power Grid Analysis and Studies ... 43
pre375 - Smart Grids ... 45
pre376 - Standards and Electric Markets ... 47
pre377 - Project ... 48
pre381 - Processes, models & modelling ... 49
pre382 - Biochemical conversion ... 50
pre383 - Thermochemical conversion ... 51
pre384 - New Business ... 52
pre355 - Development and Implementation ... 53
pre385 - Sustainable Fuel Supply Chains ... 54
pre386 - Bio Energy Conversion ... 55
pre387 - Power-to-Hydrogen ... 56
pre400 - Fundamentals for Renewable Energy ... 57
pre405 - Energy Resources and Systems ... 58
pre410 - Renewable Energy Technologies I ... 59
pre420 - Fundamentals ... 64
pre421 - Simulation and System Optimization ... 65
pre422 - Energy ... 66
pre423 - Materials ... 67
pre424 - Project, case study and innovation ... 68
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre430</td>
<td>Introduction to Electric Power Systems and power electronics</td>
<td>69</td>
</tr>
<tr>
<td>pre431</td>
<td>Distributed energy resources (DER)</td>
<td>70</td>
</tr>
<tr>
<td>pre432</td>
<td>Renewable Energy Integration</td>
<td>71</td>
</tr>
<tr>
<td>pre433</td>
<td>DER Impact on EPS</td>
<td>72</td>
</tr>
<tr>
<td>pre434</td>
<td>Smart Grids solutions</td>
<td>73</td>
</tr>
<tr>
<td>pre435</td>
<td>Energetic Markets</td>
<td>74</td>
</tr>
<tr>
<td>phy641</td>
<td>Energy Resources & Systems</td>
<td>75</td>
</tr>
<tr>
<td>pre014</td>
<td>Fundamentals for Renewable Energy</td>
<td>77</td>
</tr>
<tr>
<td>pre017</td>
<td>Renewable Energy Laboratories</td>
<td>79</td>
</tr>
<tr>
<td>pre336</td>
<td>Project</td>
<td>81</td>
</tr>
<tr>
<td>pre337</td>
<td>Offshore Wind Energy - Research and Technologies</td>
<td>82</td>
</tr>
<tr>
<td>pre425</td>
<td>Renewable Storage</td>
<td>83</td>
</tr>
<tr>
<td>pre388</td>
<td>Physics and Fuels</td>
<td>84</td>
</tr>
<tr>
<td>pre389</td>
<td>Sustainable Fuel System Design</td>
<td>85</td>
</tr>
<tr>
<td>pre338</td>
<td>Marine Current & Tidal Energy</td>
<td>86</td>
</tr>
<tr>
<td>pre339</td>
<td>Project in Marine Renewable Energies</td>
<td>87</td>
</tr>
<tr>
<td>pre735</td>
<td>Elective</td>
<td>88</td>
</tr>
<tr>
<td>pre345</td>
<td>Offshore Wind Energy</td>
<td>89</td>
</tr>
<tr>
<td>pre346</td>
<td>Wave Energy</td>
<td>90</td>
</tr>
<tr>
<td>pre436</td>
<td>Power Generation and Control in Wind Energy Systems</td>
<td>91</td>
</tr>
<tr>
<td>pre437</td>
<td>Smartgrids and electric Mobility</td>
<td>92</td>
</tr>
<tr>
<td>pre438</td>
<td>Protection Systems in Smartgrids</td>
<td>93</td>
</tr>
</tbody>
</table>
pre440 - Optimization of Hybrid Generation Systems with Renewable Sources ... 95
pre441 - Energy Markets ... 96
mam - Master´s Thesis Module .. 97
Mastermodule

pre311 - Renewable Energy Basics

Module label: Renewable Energy Basics
Modulkürzel: pre311
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen:
- Agert, Carsten (module responsibility)
- Peinke, Joachim (module responsibility)
- Behrendt, Tanja (Module counselling)
- Knecht, Robin (Module counselling)
- Holtorf, Hans-Gerhard (Module counselling)
- Ohland, Jörg (Module counselling)
- Ziethe, Paul (Module counselling)

Prerequisites:
Skills to be acquired in this module:
- After completing the module, the student will
 - have a good understanding of the physical principles of Renewable Energy Technologies
 - be able to apply principal mathematics related with the underlying physical laws and rules to measure and solve problems during their further studies
 - have a good understanding of the fundamentals of electrical circuits and related physical laws
 - have a good understanding of the fundamentals of electrical machines and the interaction of electrical components of the electric grid
 - have a good understanding of the basic concepts of the photovoltaic effect in semi-conductors
 - be familiar with the measurement procedures needed for the winter lab experiments in the subject related modules
 - be familiar with working and studying in intercultural teams
 - be familiar with the experimental set-ups of the PPRE lab
 - understand to relate physical, engineering, and mathematical laws to models of energy supply technologies.
 - be able to establish simple models and measurement strategies to investigate the behaviour of the respective models.
 - be familiar with the principles of scientific working

Module contents:
- Renewable Energy Basics
 - Thermodynamics
 - Hydrodynamics
 - Black and Grey Body Radiation
 - Property of (humid) air
 - Heat Transfer
 - Economic Evaluation of Investments
 - Winter Introductory Laboratory
 - Simple electrical circuits
 - Inner resistance of power sources
 - Measurement of time depending signals
 - Measurement of temperature and radiation
 - Introduction of standard sensors in radiation and temperature measurement
 - Introduction of measurement devices: multimeter, oscilloscope, x-t-writer

- Electrical Power Systems
 - Fundamentals in AC/DC
 - Fundamentals of magnetic fields
 - Transformers
 - DC machines
 - Asynchronous-machines
 - Synchronous machines
 - Semi-Conductor Physics
 - Definition of semi-conductor
 - Crystal Lattice
 - Atom models
 - Chemical bonding
 - Quantum mechanics
 - Photoelectric effect
 - pn-Junction
 - Solar cell

Literaturempfehlungen:
Borgnakke, Claus, Sonntag, Richard E. Fundamentals of Thermodynamics,
| Merz, Hermann, 2002: Electric machines and drives, fundamentals and calculation examples for beginners; VDE-Verlag. |
| Oelert, Gerhard, Economic issues of renewable energy systems: a guide to project planning; ISBN, Roßdorf TZ Verlag |
| Sørensen, Bent, 2003: Renewable energy. Its physics, engineering, use, environmental impacts, economy and planning aspects; 2nd ed., Acad.Press. |
| General books on experimental laboratory work and report writing: |
| Kirkup, Les, 1994: Experimental methods: an introduction to the analysis and presentation of data; Brisbane, Wiley. |
| Kulschewski, Udo, Knecht, Robin and colleagues, update 2013: Reader for the Introductory Lab Course: AC/DC principles, fast signals, power, measurement strategies, sensors in RE and measurement devices |

Links

Language of instruction	English
Duration (semesters)	1 Semester
Module frequency	jährlich
Module capacity	unlimited

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE Basics Physics: After end of lectures (end of October)</td>
<td>RE Basics Physics (25%): Oral exercise (1 hour)</td>
<td></td>
</tr>
<tr>
<td>Semiconductor Physics: After end of lectures (mid-December)</td>
<td>Semiconductor Physics (25%): Written exam (0.5 hours)</td>
<td></td>
</tr>
<tr>
<td>Electrical Power Systems: After end of lectures (mid-January)</td>
<td>Electrical Power Systems (25%): Written exam (0.5 hours)</td>
<td></td>
</tr>
<tr>
<td>Solar Spectrum Lab: During Semester</td>
<td>Solar Spectrum Lab (25%): Written report (10 - 20 pages)</td>
<td></td>
</tr>
</tbody>
</table>

Form of instruction

| Seminar |

Frequency
pre314 - Energy Meteorology & Storage Technologies

<table>
<thead>
<tr>
<th>Module label</th>
<th>Energy Meteorology & Storage Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre314</td>
</tr>
<tr>
<td>Credit points</td>
<td>7.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>210 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen
- Heinemann, Detlev (module responsibility)
- Agert, Carsten (Module counselling)
- Knecht, Robin (Module counselling)
- Steinberger-Wilckens, Robert (Module counselling)

Prerequisites
Skills to be acquired in this module
- After completing this module, students will
 - have a critical understanding of the conditions concerning the availability of solar radiation
 - have a good understanding of fundamental atmospheric processes
 - understand the close interaction of radiation with the atmosphere and the constraints on wind flows relevant for wind power generation
 - be able to apply basic radiation laws and to practically perform simple wind power assessments
 - have a good understanding of various concepts of electrical storage systems and state of the art technical developments
 - be able to critically understand the efficiency of conversion steps in storing and activation of energy
 - have an overview of the electrochemical, thermodynamic, engineering, and materials science basics of Fuel Cell and Hydrogen technologies, their development status, and their applications areas
 - have learned about the sensitivity of sensors
 - have understood the performance of a battery/load system and are able to perform state of charge measurements to express the performance of a battery

Module contents
- Solar Energy Meteorology:
 - Radiation laws
 - Solar geometry
 - Interaction of solar radiation with the atmosphere
 - Climatology of solar radiation
 - Solar radiation modelling and measurements
- Wind Energy Meteorology:
 - Origin of atmospheric air flow, energy balance of the atmosphere
 - Basic physics of atmospheric motion
 - Wind climatology: Atmospheric circulation, local wind systems
 - Wind in the atmospheric boundary layer (characteristics, vertical profile)
 - Wind energy resource assessment and measurements
- Electrical Energy Storage Technologies:
 - Primary and secondary batteries
 - redoxflow batteries
 - super-capacitors
- Non-electrical storage concepts:
 - fly wheels
 - adiabatic-compressed air storage
 - superconductors
 - pumped storage systems
 - „Bridging technologies“ to heat storage:
 - Heat pumps and Combined heat and power systems (CHP’s)
- Fuel Cells and Hydrogen:
 - Introduction and technology overview
 - Hydrogen generation, handling and storage
 - hydrogen applications and markets
 - Low Temperature Fuel Cells
 - High Temperature Fuel Cells
 - Fuel Cells Market Introduction
 - Lab Work:
 - Solar Spectrum
 - Lead-Acid Battery

Literatureempfehlungen
IEA: World Energy Outlook, release 2013 (http://www.worldenergyoutlook.org/); last access: May 2014

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
</tbody>
</table>

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Meteorology: At the end of lecture period (end of January)</td>
<td></td>
<td>Energy Meteorology (35%): Written exam (1.5 hours)</td>
</tr>
<tr>
<td>Energy Storage: At the end of lecture period (end of January)</td>
<td></td>
<td>Energy Storage (35%): Written exam (1.5 hours)</td>
</tr>
<tr>
<td>Hydrogen & Fuel Cells: After end of lectures (mid-January)</td>
<td></td>
<td>Hydrogen & Fuel Cells (15%): Written exam (0.5 hours)</td>
</tr>
<tr>
<td>Battery Lab: During Semester</td>
<td></td>
<td>Battery Lab (15%): Written report (10 - 20 pages)</td>
</tr>
</tbody>
</table>

Form of instruction

Seminar

Frequency

Module label
Energy Systems & Society

Module kurz
pre315

Credit points
4.0 KP

Workload
120 h

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen
- Agert, Carsten (module responsibility)
- Heinemann, Detlev (module responsibility)
- Golba, Michael (Module counselling)
- Malz, Simone (Module counselling)

Prerequisites
Skills to be acquired in this module
- After the completion of this module the students will
 - have a critical understanding of political decision making processes, lobby groups and administrative hurdles in realisation of energy policy
 - have a good understanding of factors other than technical influencing future energy scenarios depending on regional and national conditions
 - have a good understanding of the structure of the global energy system
 - be able to critically interpret energy statistics and to identify different stages of energy conversion
 - be familiar with all available energy resources and their future role in the global energy system
 - be familiar with the instrument of energy scenarios and able to interpret their results
 - be able to critically follow scientific discussions in the physical background and impacts of global climate change
 - understand basic economic concepts
 - understand the organization of a market economy
 - know the relevance of competition and monopoly
 - understand the role of regulation for energy markets
 - be able to undertake a desk-top research on a complex topic
 - be able to give a presentation on an individual country (or region), focusing on renewable energy
 - know about several other countries’ and regions’ situation
 - to perform team research
 - be able to present in front of an audience and to moderate a discussion

Module contents
Energy Systems
- basic terminology on energy units
- definition and discussion of various forms of energy
- overview of energy resources and reserves
- the global energy situation (energy consumption, energy balances, noncommercial uses of energy)
- energy scenarios (methodologies, main results for possible energy futures)
- techno-economic methods and aspects of energy use (energy and exergy analyses, life cycle analysis, external costs, etc.)
- human-made greenhouse effect

Energy Economics
- the ten principles of economics
- the role of costs for decision making
- markets, competition, monopoly
- regulation and environmental policy
- investment decision, finance and risk management

Country Report
- analysis and presentation of an individual country or region
- geographic, climatic, historic, economic and political situation
- focus on (renewable) energy matters
- team research and presentation, followed by a discussion (moderated by team)

Literatureempfehlungen
Blok, Kornelis, 2007: Introduction to Energy Analysis, Techne Press, Amsterdam
<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Energy Systems: At the end of lecture period (end of January)</td>
</tr>
<tr>
<td></td>
<td>Energy Economics: After end of lectures (mid-December)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Seminar</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
</tbody>
</table>
pre325 - Wind Potential, Aerodynamics & Loading of Wind Turbines

<table>
<thead>
<tr>
<th>Module label</th>
<th>Wind Potential, Aerodynamics & Loading of Wind Turbines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre325</td>
</tr>
<tr>
<td>Credit points</td>
<td>7.5 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>225 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module
- possess advanced knowledge on wind potential, aerodynamics and loading of wind turbines
- be skilled in simulation programs for design and control of Wind Turbines (GH Bladed), practical experience
- be skilled in wind potential evaluation, wind farm design and environmental impacts using simulation programs (GH WindFarmer),
- have an understanding of economic parameters for a successful project realisation

Module contents
1. Introduction
 - Status of Wind Energy
 - Status of European Wind Energy and R&D
2. Advanced Wind Structure and Statistics
 - Gusts and gust probability distributions
 - Effects of topography
3. Evaluation of Wind Energy Potential
 - Wind modelling in flat and complex terrain
 - Wind energy siting approaches
4. Wind Turbine Aerodynamics
 - Advanced methods
 - Aerodynamic stall
 - Unsteady aerodynamics
 - Vortex wake structure
 - Advanced wake models
 - Optimum design of wind turbine blades
5. Static and Dynamic Loading of Wind Turbines
 - Aerodynamic and gravity loading
 - Inertial and structural loads
 - Aeroelastic modelling
 - Fatigue of wind turbine blades

Literatureempfehlungen

Links

Language of instruction
- English

Duration (semesters)
- 1 Semester

Module frequency
- jährlich

Module capacity
- unlimited
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Exam week (end of May)</td>
<td>Written exam (3 hours)</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Seminar</td>
<td></td>
</tr>
</tbody>
</table>

| Frequency |
Module label: Wind Turbine Design, Electrical & Control Issues, Certification

Modulkürzel: pre326

Credit points: 7.5 KP

Workload: 225 h

Verwendbarkeit des Moduls: Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen:

Prerequisites:
At the completion of this module, the student will:
- possess advanced knowledge on wind turbine design, electrical and control issues
- be skilled in Wind potential evaluation, Wind farm design and environmental impacts using simulation programs (GH WindFarmer), practical experience
- be skilled in performance testing and modelling of wind turbines

Module contents:
1. Electrical Conversion Systems
 - Synchronous and induction generators
 - Direct drive generators
 - Constant and variable speed systems
2. Wind turbines control
 - Aerodynamic power control (stall, pitch, yaw)
 - Electromagnetic torque control
 - Control – dynamic analysis and stability
 - Control strategies
3. Design of wind turbines
 - Important factors
 - Design options
 - Design parameters
 - Design of components
 - System design
 - Megawatt scale design
 - Offshore design
4. Performance Testing and Modelling
 - Measurements under controlled conditions
 - Field testing instrumentation
5. Measurements - anemometers - calibration
6. Electrical Integration
 - Weak grids
 - Power quality
 - Network costs and benefits
7. Large scale integration
 - Technical, economical and policy issues
 - Grid connection requirements, infrastructure
 - Economic aspects
8. Standards and Certification
 - WT certification
 - International standards

Literaturempfehlungen:

Links:
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Exam week (end of May)</td>
<td>Written exam (3 hours)</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Skills to be acquired in this module

At the completion of this module, the student will:
- possess advanced knowledge on wind farm design
- possess advanced knowledge on economics and environmental issues
- be skilled in wind farm design and environmental impacts using simulation programs (GH WindFarmer), practical experience
- have an understanding of economical parameters to successful project realisation

Module contents

1. Wind Farm Technology Issues
 - Wind exploitation in wind farms
 - Energy predictions and optimization
 - Balance of plant
 - Wind farms electrical design
 - Wind Farm design, wake effect (simple and advanced wake models, numerical methods - CFD approach)

2. Economics of WT and Externalities
 - Calculation methods
 - Current plant costs
 - Wind energy prices
 - The value of wind energy
 - External costs
 - Future price trends

3. Environmental Issues
 - Environmental benefits
 - Environmental effects
 - Amenity (land use, visual impact)
 - Technical analysis of noise and electromagnetic interference
 - Ecology (birds)
 - Consumption of energy and materials

4. Market development and status of industry
 - Characteristics of the EU industry
 - Present status of wind power
 - Market description
 - Market predictions
 - Wind energy targets
 - Wind energy market incentives in Europe

5. Offshore
 - Turbine modelling
 - Support structures – foundation
 - Wind farms aspects
 - Grid connections

6. Wind energy in urban areas

7. Wind forecast
 - Introduction to Coupled Ocean / Atmosphere Mesoscale Prediction System (COAMPS)

Literaturempfehlungen

<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Exam week (end of May)</td>
</tr>
<tr>
<td>Written exam (3 hours)</td>
<td></td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Seminar</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
</tbody>
</table>
This module is split in two parts. The first one is the Mini Project and the second is the Wind Farm Study. During the mini-project students are skilled in preparation, writing and presentation of a scientific project, of their choice. They learn how to make a bibliographic research, organise their references, focus on a special topic, describe the problem, collect data, and draw conclusions. Finally, they gain experience on presentations. Students are encouraged to connect their mini-project topic with their internship. In parallel, during the wind farm study, students make their own study on the design of a wind farm. Individual data are provided, together with the necessary computational tools to be used in the various steps of the study (Wind data, wind turbine, energy calculations, Wind farm layout, Integration issues and financial evaluation).

1. Mini Project Students are encouraged to realize a mini project in a subject of their interest. Through this project, students are focus on a special topic of wind energy: - Aerodynamics / Aero-elasticity / Aero-acoustics / Loads, - Wind forecasting / capacity credit (short term – long term), - Hybrid solutions for isolated systems, - Wind farms design / wake effect, - Small scale wind turbines for rural/urban applications - Financial issues / External costs / Green certificates / CO2 Emissions taxes - Control - Analysis of market development - Off shore (design, development, wind assessment) - Measuring methods and monitoring - Grid integration / electrical issues - Operation and damages - Environmental issues The typical form of the mini-project’s report submitted is: - Abstract – key words - Introduction / scope /objectives - Bibliographic research - Methodology - Computational part - Results - Discussion / conclusions

2. Wind Farm study The steps of the wind farm study is consists of: - Wind data analysis (statistics, wind rose design), - Wind turbine design for the specific site using Blade Element Momentum theory - Energy calculations for the specific wind turbine and wind data, using a cost model for the minimization of the LCOE - Wind farm’s layout and wake effect calculation - Integration issues for specific autonomous power system (wind energy curtailment, capacity credit) - Financial evaluation (IRR, NPV, PBP)

Literaturempfehlungen

Pre331 - Ocean Energy Resources

Module label: Ocean Energy Resources
Modulkürzel: pre331
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module
- have an understanding of the physical mechanisms in the ocean which are on the basis of the generation of surface waves, tides and currents, and their effects, as well as the biological processes that may affect or be affected by ocean energy devices.
- be familiar with the statistic description of waves and currents
- be able to use the statistical information in order to make evaluation of the energy resource
- be able to use GIS for site selection characterization.

Module contents
- Introduction to the ocean environment: ocean water and geology; ocean circulation and stratification; ocean habitat; ocean economy.
- Ocean surface waves: linear wave theory (regular and random waves); wave spectrum; wave energy resource: parametrical characterisation of ocean waves, nearshore wave transformation, wave measurement and modelling.
- Other sources of ocean energy: ocean tidal currents (current measurement; current turbulence; current energy resource); ocean thermal energy conversion; ocean salinity gradient energy resource.
- Site selection and characterization for ocean energy systems: criteria on energy resource, expected cost levels, water depth, seabed geology and ecology, distance to shore, ports, O&M bases and electrical grid, marine environmental issues.

Literaturempfehlungen

Links

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam: end of lecture period (early June)</td>
<td>Written exam (60%): 2.5 hours</td>
</tr>
<tr>
<td>Report: deadline end of May</td>
<td>Written report (40%): essay on a chosen topic, 10-20 pages</td>
</tr>
</tbody>
</table>

Form of instruction: Seminar

Frequency
pre332 - Modelling and Control of Ocean Energy Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Modelling and Control of Ocean Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre332</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master’s Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

At the completion of this module, the student will:

- be familiar with the linear hydrodynamic theory of wave energy systems
- be familiar with the hydrodynamic theory of marine current turbines (BEM)
- be introduced to advanced numerical hydrodynamic modelling of wave and current systems and control simulation
- be familiar with experimental testing and monitoring of OE systems
- acquire basic knowledge of other forms of ocean energy and their systems as OTEC and salinity gradients.

Module contents

- Other types of energy systems: Ocean Thermal Energy Conversion (OTEC). Energy from salinity gradients.

Laboratory

- Wave Flume of the Civil Engineering Department of IST: Characterization of systems of regular and irregular 2D waves. Energy spectra. (Duration 3 h).
- Wave Flume of the Civil Engineering Department of IST: Characterization of a floating body response RAO in a system of regular 2D waves. (Duration 3 h).

Literaturempfehlungen

- Lecture Notes. To be produced.

Links

- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Examination: Prüfungszeiten
- Type of examination

Final exam of module

- Written exam (Wave Energy): early April
- Written exam (Marine Current Turbines): early June
- Written report (Lab): mid-May

Written exam (40%): Wave Energy, 2.5 hours

- Written exam (50%; Marine Current Turbines, 2.5 hours
- Written report (10%): Lab report, 10 - 20 pages

Form of instruction

- Seminar

Frequency
Module label
Ocean Energy Systems Technologies

Module contents
- Principle of operation and components of air turbines, water turbines, high-pressure hydraulic systems, linear and rotating electrical generators, and energy storage in ocean energy.
- Classification of offshore structures; loads, cost and materials of mooring and anchoring systems; description of anchoring and foundations systems; taut and slack-mooring systems; and mooring configurations in arrays.
- Principles of interference of WEC arrays and layout optimization methods.
- Analysis of tidal turbines arrays.
- Offshore electrical grid structure and components, cable technologies, electrical designs (HVDC vs AC), interaction with the local electricity network, integration into the National grid, examples/case studies.
- Routine and non-routine offshore operations; management systems; maintenance procedures, risk assessment and inspection plans; and case studies.
- Introduction to offshore operations; vessels, equipment and personnel; method planning and permitting; principles, legislation and standards of safety management.

Laboratory:
- Fluid Mechanics Laboratory of the Mechanical Engineering Department of IST: Testing of an air turbine for use in OWC systems. (Duration 3 h).
- Electrical Machinery Laboratory of the Electrical and Computer Engineering Department of IST: laboratory practice on electrical generators. (Duration 3 h).

Literature recommendations
- Carbon Trust: Guidelines on design and operation of wave energy converters, 2005.
- R. E. Harris et al: Mooring systems for wave energy converters: A review of design issues and choices.
- B. Child: On the configuration of arrays of floating wave energy converters.
At the completion of this module, the student will:
- be familiar with the basic economic analysis of ocean energy systems including the cost, financing and economic evaluation
- acquire basic knowledge on the general policy issues regarding ocean energy systems and more detailed knowledge on the licensing and permitting procedures for installation of OE systems and enabling mechanisms as funding, feed-in tariffs and tax incentives
- be able to perform simple environmental impact studies for OE systems.

- Marine spatial planning, concession regimes of marine areas; consenting and licensing of marine farms, feed-in tariffs, green certificates, tax incentives and other financial support mechanics.
- Economic analysis of a marine farm: present and future cost of energy (LCOE, externalities) - the role of offshore energy; characterization of offshore renewable costs (CAPEX and OPEX); project financing: principles (equity, debt ratio), parameters (discount rate, return period, NPV, IRR), tools (Retscreen, etc.) and risk assessment.
- Environmental and socio economic impact assessment and monitoring: EIA objectives, process and requirements; public consultation and conflict of uses management; environmental monitoring; life-cycle assessment.

Literaturempfehlungen
- Ernst & Young and DECC (UK): Cost of and financial support for offshore wind, 2009.
pre35 - Project

<table>
<thead>
<tr>
<th>Module label</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre35</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
</tbody>
</table>

Skills to be acquired in this module

With the completion of this module, the student will bring into practice the knowledge acquired through a case study in the form of a specific small project.

Module contents

This course integrates the knowledge previously acquired by the students regarding the resource evaluation, and the conversion processes. At the end of the course each student should deliver an outline project to explore wave energy in a given site and with a given technology.

Literaturempfehlungen

Literature of the other modules

Links

Language of instruction: English

Duration (semesters)

1 Semester

Module frequency

jährlich

Module capacity

unlimited

Examination

Prüfungszeiten

Type of examination

Deadline: End of June

Written report & Presentation: 30 pages written report; 20 min presentation plus 40 min discussion

Form of instruction

Seminar

Frequency

Module label Photovoltaic Cell Technology

Modulkürzel pre351

Credit points 10.0 KP

Workload 300 h

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module
- After completing the module, the student will have a critical understanding of the physical principles relating to the operation and design of photovoltaic cells.
- be able to compare and analyse the design and operation of the main types of photovoltaic cells.
- have a critical understanding of the effect of material purity and crystallinity on the device performance.
- be able to compare and evaluate different methods for the fabrication of photovoltaic cells in terms of device properties and manufacturing issues.
- have a critical understanding of the principles of operation and design of photovoltaic modules.
- be able to compare and evaluate methods for the fabrication of photovoltaic modules, including performance and manufacturing issues.

Module contents

1. Physics of Solar Cell Devices:
 - Solar spectrum, solar constant and air mass.
 - Important semiconductors. Important solar cell devices. - Drude theory. Breakdown of classical theory. Quantum theories of conduction: E-k curves, energy bandgap and effective masses, direct and indirect transitions.
 - Current density and continuity equations, examples of solutions. - Optical and thermal properties of semiconductors. Antireflection coatings. p-n junction in equilibrium: built in voltage, depletion region and depletion capacitance. Derivation of I-V characteristics in the dark.
 - Variations of photocurrent and open circuit voltage with incident light intensity. Optimum energy bandgap of a solar cell.
 - Loss mechanisms. Introduction to tandem/multijunction concepts.
 - Effects of temperature and radiation on solar cell performance. 2. Solar Cell Fabrication Technologies:
 - Introduction: Important semiconductors and solar cell devices.
 - Important semiconductor parameters. Effects of lattice vibrations, impurity atoms and other crystal imperfections on these parameters.
 - Advanced epitaxial growth methods: MBE, MOCVD, LPE AND VPE.
 - Low cost thin film deposition methods: thermal evaporation methods, sputtering methods and wet chemical methods, e.g electrodeposition, autocatalytic deposition, spray pyrolysis and screen printing.
 - Compensation doping: alloying, solid state diffusion and ion implantation. Dielectric deposition - thermal oxidation of silicon, LPCVD and PECVD silicon oxide and nitrides.
 - Photolithography. Etching - wet and dry methods. - Overview of characterisation techniques for semiconductor materials and cells.

Literaturempfehlungen

Links

Language of instruction English

Duration (semesters) 1 Semester

Module frequency jährlich

Module capacity unlimited

Type of module Wahlpflicht / Elective
<table>
<thead>
<tr>
<th>Module level</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the semester.</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Seminar</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
</tbody>
</table>
pre352 - Advanced Photovoltaic Cell Design

<table>
<thead>
<tr>
<th>Module label</th>
<th>Advanced Photovoltaic Cell Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre352</td>
</tr>
<tr>
<td>Credit points</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module

- After completing the module, the student will be able to
 - Critically appraise the choice of semiconductors used and the design and fabrication methods used to produce an advanced PV device.
 - Critically appraise the characterisation methods used with semiconductor materials and with PV devices.
 - Perform a literature review on advanced PV devices to a professional standard.
 - Present data and information both verbally and in the written form to a professional standard.

Module contents

1. Introduction
 - Flat plate modules. Concentrator solar cells. Multijunction concepts.
 - Overview of types of solar cell developed - status of the technologies.
2. Advanced Devices
 - Polycrystalline silicon.
 - Space applications. Physics of multijunction cells. Quantum well devices.
 - Thermophotovoltaic devices.
3. Advanced Characterisation Methods
 - Material characterisation: X-ray diffraction, electron and ion beam characterisation methods, optical characterisation, Van der Pauw length.
 - Device Characterisation: DLTS, photoluminescence and PAS.
 - Solar simulators.
 - Measurement of fill-factor, solar conversion efficiency and spectral response.
 - I-V-T and C-V-f measurements. Radiation damage
4. Literature Review

This will be undertaken for one of the following topics: crystalline silicon devices, III-V devices or thin film devices.

Literatureempfehlungen

Links

Language of instruction

English

Duration (semesters)

1 Semester

Module frequency

jährlich

Module capacity

unlimited

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the end of the semester</td>
<td>Written report (literature review): The module assessment is in the form of a review of approximately 3,000 words, chosen by the student from a list of PV device categories.</td>
</tr>
</tbody>
</table>

Form of instruction

Seminar

Frequency
Module: Photovoltaics: Economics, Policy and Environment

<table>
<thead>
<tr>
<th>Module label</th>
<th>Photovoltaics: Economics, Policy and Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre353</td>
</tr>
<tr>
<td>Credit points</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

- Critically analyse the international policies relating to photovoltaics and other energy technologies focusing on the strategic, environmental and economic implications of these policies
- Perform an economic and/or environmental analysis of a photovoltaic system.

Module contents

1. Economic Analysis
 - Economic theory - net present value, effect of interest rates, definition of capital and recurrent costs
 - Production economics - definition of production costs, economies of scale, projected manufacturing costs
 - Subsidies and tariff issues - effect of electricity supply costs on system viability
 - Financing mechanisms - review of international financing mechanisms for purchase and operation of systems
2. Policy issues
 - Market development and projections
 - Review and appraisal of government policies and market development schemes
 - Security of supply
 - Climate change issues
 - Energy for development - role of photovoltaics
3. Environmental Impact Assessment
 - Process definition for module production
 - Hazard assessment
 - EC environmental directives
 - Embodied energy calculations
 - Energy payback times and ratios
 - Calculation of associated CO2 and other emissions

Literatureempfehlungen

- Journal of "Progress in Photovoltaics"
- Proceedings of European Photovoltaic Solar Energy Conferences
- Proceedings of IEEE Photovoltaic Specialist Conferences
- IEEEXplor database
- Environmental data sources
- Government literature (including European Commission and international) on renewable energy promotion
- IEA Photovoltaic Power Systems Programme reports

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the semester</td>
<td>Written report (essay, approximately 3,000 words) and Presentation (10 minutes)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
</tr>
</tbody>
</table>
Module contents

1. Basic systems design
 - Photovoltaic (PV) arrays, support structures
 - Electrical Connections and wiring issues
 - BOS components
 - Stand alone and grid connected systems
 - System sizing
2. Stand-alone systems
 - Applications
 - Performance assessment and sizing
 - Standards and regulations
3. Grid connected systems - electrical
 - Inverter systems and electrical supply issues
 - Grid connection regulations
 - Harmonic content, reactive power, and wiring issues
4. Grid connected systems - large scale
 - Design of large scale systems
 - Case studies
5. Grid connected systems - building integrated
 - System design and sizing
 - Energy in buildings and building components
 - Installation and operation
 - Case studies
6. Concentrator systems
 - Design of concentrator systems
 - Operation and maintenance
7. Monitoring and performance analysis
 - Monitoring specifications
 - Yield and performance ratio, and MTBF
 - Operational issues and maintenance
8. Standards and regulations
 - Standards for construction and operation
 - Regulations governing system design and operation
 - Health and safety issues
9. Space systems
 - Array configurations
 - Quality control and assessment
 - Design of systems
 - BOL and EOL design tradeoffs

Literature recommendations

- Journals:
 - Progress in Photovoltaics
 - Renewable Energy
 - Various IEEE journals relating to electrical engineering
- Databases and Websites
 - IEA PV Power Systems Programme (www.iea-pvps.org)
 - European Photovoltaic Industries Association (http://www.epia.org/home/)
 - PVGIS web site (http://re.jrc.ec.europa.eu/pvGIS/)
- Other Resources
 - Measurement data from system trials
 - PVSyst software
<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the semester</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Seminar</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
</tbody>
</table>

- **Type of examination**
 - Written exam (60%, 3 hours)
 - Written report (40%, design assignment): Feasibility report, maximum of 10 pages plus technical appendices
Module contents

1. Overview on Thermal Energy Storage (TES)
 - TES definitions
 - TES functionalities
 - TES basic principles
 - TES technologies
 - ES hybridations
 - ES bottlenecks and current research areas
2. Needs of TES in solar applications
 - Resource/demand shift management
 - Thermal protection
 - Thermal regulation
 - Production optimisation
 - Process design optimisation
 - Process management
3. Available technologies (sensible, latent heat, thermochemical)
 - Sensible heat based TES, direct mode.
 - Sensible heat based TES, indirect mode.
 - Latent heat based TES (organic, inorganic)
 - Thermochemical based TES
4. Related materials
 - Low temperature TES materials (sensible heat, latent heat, thermochemical, classifications and properties, characterizations)
 - High temperature TES materials (sensible heat, latent heat, thermochemical, classifications and properties, characterizations)
5. Heat transfer interfaces and fluids
 - Envelops for TES units
 - Insulating materials for TES units
 - Heat transfer fluids for TES
6. Implementation of TS
 - TES integration
 - TES instrumentation
 - TES charge/discharge assessments
7. Management and strategy of TS
 - TES management
 - TES strategy
 - LTA of TES in Solar Applications
8. Related companies and products
 - Companies and products for sensible heat based TES
 - Companies and products for latent heat based TES
Literaturempfehlungen

Links

- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Examination: Prüfungszeiten
 - Type of examination: End of the Semester
 - Written exam: 2 hours
- Form of instruction: Seminar
- Frequency
pre365 - Fundamentals

<table>
<thead>
<tr>
<th>Modulkürzel</th>
<th>pre365</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points</td>
<td>7.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>210 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

- After the completion of the module the student will
 - understand the theoretical basis of radiation models to be used in solar engineering processes.
 - understand the principles and the modelling approaches of combined heat and mass transfer in solar processes.
 - understand the effect of radiation in a solar process.
 - understand the radiative heat transfer methods of resolution to be used in solar applications.
 - understand the various assumptions and computing efficiency of radiation models.
 - understand the models’ limitations to practical uses.
 - acquire the knowledge of the main radiative properties of materials used in solar processes.
 - be aware of the important development in radiation measurement.
 - acquire knowledge of the optical measurement issues.
 - have a critical understanding of the effect of radiation on fluid flows.
 - have a critical understanding of radiation modelling in solar processes.
 - have a critical understanding of the methodology that should be used in a practical situation where radiative heat transfer is to be solved, and coupled with other transfer modes.
 - be able to compare and evaluate radiation simulation results from different models.
 - have a critical understanding of optical properties and their influences on radiation heat transfer.
 - will have a critical understanding of optical measurements.

Module contents

1. Radiative heat transfer
 - Fundamentals of Thermal Radiation
 - Radiative Exchange between Surfaces
 - Radiative properties of opaque surfaces
 - View factors
 - Radiative exchange between grey and diffuse surfaces
 - Equation of Radiative Transfer in Participating Media
 - Equation of radiative transfer
 - Formal solutions
 - Boundary conditions
 - Radiative Properties of Participating Media
 - Radiative properties of molecular gases
 - Radiative properties of particulate media
 - Radiative Transfer through Participating Media
 - Collimated irradiation
 - The Two-Flux method
 - The method of Discrete Ordinates
 - The Monte Carlo method
 - The Rosseland approximation
 - The Diffusion approximation
 - High temperature measurements
 - Pyrometry
 - Infrared thermography
2. Combined heat and mass
 - Conduction
 - Fundamental Equations
 - Balance equations
 - Examples
 - Convection
 - Fundamental Equations
 - Forced Convection (resolution of the Couette flow with temperature)
 - Natural Convection (approximation of Boussinesq)
 - Adimensional equations
 - CFD softwares

Literatureempfehlungen

<table>
<thead>
<tr>
<th>Links</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>English</td>
<td></td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Written exam : End of the Semester / end of May</td>
<td>Written exam (50%): 2 hours</td>
</tr>
<tr>
<td></td>
<td>Written report : during the semester / February to May</td>
<td>Written report (50%): extended laboratory report, 10-20 pages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Seminar</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th></th>
<th></th>
</tr>
</thead>
</table>
Module: Solar Low Temperature

Module label: Solar Low Temperature

Modulkürzel: pre366

Credit points: 7.0 KP

Workload: 210 h

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

At the end of the module the student will
- understand the principles of operation, design and methods of low temperature solar energy use: building heating and cooling, microgeneration systems.
- be aware of the potentialities of solar resource for energy saving in building
- be aware of the solar heating and cooling technologies
- understand the different solar collector technologies
- understand the thermodynamics of energy conversion systems
- be familiar with the utilisation of different numeric tools for heating systems design, performance evaluation and techno-economic viability
- have a critical understanding of the physical principles relating to the operation and design of solar collectors.
- be able to compare the design and operation of solar heating and/or cooling systems in buildings
- will have a critical understanding of the complete system efficiency on the basis of sub-systems efficiency limitation.

Module contents

1. Solar Collectors theory and technologies
 - The solar resource
 - Direct and indirect irradiance
 - Mask effects
 - Solar collectors theory
 - Plate collectors
 - evacuated collectors
 - Low concentrated collectors
 - Solar collectors technologies and application
 - Design software for implantation in buildings.
2. Solar Conversion (solar heating/cooling, microgeneration)
 - Thermodynamics optimisation: exergy analysis
 - Potentialities of low temperature solar energy for cooling
 - Potentialities of low temperature solar energy for electricity production
 - Heat driven cooling system theory and technologies
 - Liquid absorption system
 - Solid sorption systems
 - Microgeneration: ORC and Stirling systems

Literaturempfehlungen

Links

Language of instruction: English

Duration (semesters): 1 Semester

Module frequency: jährlich

Module capacity: unlimited

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written exam: End of the Semester / end of May</td>
<td>Written exam (50%): 2 hours</td>
</tr>
<tr>
<td>Written report: during the semester / February to May</td>
<td>Written report (50%): extended laboratory report, 10-20 pages</td>
</tr>
</tbody>
</table>

Form of instruction: Seminar

Frequency

36 / 98
pre367 - Solar High Temperature

Module label: Solar High Temperature
Modulkürzel: pre367
Credit points: 12.0 KP
Workload: 360 h

Verwendbarkeit des Moduls: Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module
- understand the principles of operation, design and methods of production of concentrated solar plants and the principles of thermochemistry and process engineering to produce either gaseous or liquid fuels using concentrated solar energy and resource of C, H, O elements.
- be aware of the potentialities of concentrated solar resource for energy vectors production (mechanical, electricity, fuels)
- will understand the different solar concentrating systems: linear concentration, point concentration, high concentration systems
- understand the thermodynamics of chemical reactions that lead to fuels production from solar heat.
- be familiar with the utilisation of different numeric tools for CSP design, performance evaluation and techno-economic viability
- have a critical understanding of the physical principles relating to the operation and design of concentrating systems, solar receivers and concentrated solar plants.
- be able to compare the design and operation of concentrating systems, solar receivers and concentrated solar plants.
- have a critical understanding on the influence of the design and performance of concentrating systems on solar receivers.
- have a critical understanding of the thermodynamic limitation of solar fuels production
- have a critical understanding of the complete system efficiency on the basis of sub-systems efficiency limitation.
- be able to compare and evaluate different chemical pathways with respect to solar energy stored in the chemicals and to CO2 mitigation impact.
- have a critical understanding of the principles of solar thermochemical reactor design and modelling.
- be able to compare and evaluate various solar thermochemical and thermodynamic processes.

Module contents

1. Solar concentrating systems and receiver
 - The solar resource for concentrating systems
 - Introduction to concentration optics
 - Linear concentration: trough and linear Fresnel
 - Point concentration: Dish and Tower (Central receiver systems)
 - High concentration systems: solar furnace and compound parabolic concentrator (CPC)
 - Selective surfaces for solar receiver
 - Solar receivers (absorbers) for linear concentrators
2. Solar concentrating systems and receiver
 - Introduction to Concentrating Solar Power (CSP): various options, plants in operation, industry
 - Tools for CSP design and performance evaluation
 - Techno-economics of CSP
 - Case study: Parabolic trough plant
 - Case study: Central receiver plant
 - Case study: Dish-engine plant
 - Cogeneration systems: electricity and heat, electricity and water
3. Solar fuels
 - Thermodynamics of chemical reactions
 - Chemical pathways to hydrogen, methanol and hydrocarbons from water, carbon dioxide and carbonaceous materials
 - Energy and exergy balances
 - Energy and material balances when using natural gas, coal and biomass as Carbon resource
 - Principle of Redox reaction to split H2O and CO2
 - Various options for redox reactions
 - Material and separation issues of the various options
 - Thermodynamics and kinetics of the various redox reactions
 - Principles of solar reactors
 - Material issues in solar reactors
 - Concentrating systems for high temperature solar thermochemistry
- Efficiency of a solar thermochemical process
- Case study as a function of the reaction temperature
- Lab-scale and pilot scale development, state of the art
- Solar thermo-chemistry for industry

Literaturempfehlungen

| Journal of Solar Energy Engineering |
| Proceedings of SolarPACES |

Links

Language of instruction	English
Duration (semesters)	1 Semester
Module frequency	jährlich
Module capacity	unlimited
Examination	Prüfungszeiten
Type of examination	Written exam (33%): 2 hours
Written report (33%): extended laboratory report, 10 pages	
Written report (33%): project report, 30 pages	

| Final exam of module | Written exam: End of the semester / end of May |
| Written reports: during the semester / February to May |
| Form of instruction | Seminar |
| Frequency | |
pre371 - Distributed Generation

<table>
<thead>
<tr>
<th>Module label</th>
<th>Distributed Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre371</td>
</tr>
<tr>
<td>Credit points</td>
<td>2.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>60 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

<table>
<thead>
<tr>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skills to be acquired in this module</td>
</tr>
<tr>
<td>By the end of this module, the student will</td>
</tr>
<tr>
<td>- be able to manage theoretical aspects related to power distribution, stability and quality</td>
</tr>
<tr>
<td>- The students will:</td>
</tr>
<tr>
<td>- become familiar with the basic theory and practical knowledge about the electric energy</td>
</tr>
<tr>
<td>- get basic knowledge on supply guarantee and power quality topics</td>
</tr>
<tr>
<td>- get basic knowledge on stability issues</td>
</tr>
<tr>
<td>- know the main effects of the introduction of Renewable Energies into the electric grid</td>
</tr>
<tr>
<td>- become familiar with the substations principles</td>
</tr>
<tr>
<td>- get knowledge about the concept of distributed generation and its implications</td>
</tr>
<tr>
<td>- will be able to demonstrate in-depth knowledge of Power Systems operations and Distributed Generation integration in existing grids</td>
</tr>
<tr>
<td>- be able to work effectively as professionals and as team members in order to solve technical problems</td>
</tr>
<tr>
<td>- be able to demonstrate their abilities to communicate effectively in multinational teams</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Introduction to electric grid</td>
</tr>
<tr>
<td>- Security of supply and grid quality</td>
</tr>
<tr>
<td>- Stability</td>
</tr>
<tr>
<td>- Electric circuits analysis</td>
</tr>
<tr>
<td>- Renewable energy impact on the grid</td>
</tr>
<tr>
<td>- Laboratory classes (three-phase systems)</td>
</tr>
<tr>
<td>- Laboratory classes (reactive energy compensation)</td>
</tr>
<tr>
<td>- Models or patterns of consumption. Response / Demand Management</td>
</tr>
<tr>
<td>- Basic concepts of power electronics</td>
</tr>
</tbody>
</table>

Literaturempfehlungen

- M.Paz Comech, M. Garcia-Gracia: Tecnología eléctrica.

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>After end of lectures of module</td>
</tr>
<tr>
<td>Type of examination</td>
<td>Written exam (95%): 2 hours</td>
</tr>
<tr>
<td></td>
<td>Subject’s work (5%): approx. 4 hours</td>
</tr>
<tr>
<td></td>
<td>(Subject’s work refers to the different assignments that students are asked to finish after a preliminary session during the lessons)</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Seminar</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
</tbody>
</table>
By the end of this subject, students should be able to display a clear understanding of the state of the art of RE power generation technologies, the theoretical aspects of storage technologies and the impact of electric vehicles in the electric grid. The student will get a suitable knowledge about the following topics:
- Distributed Generation main concepts
- New generation technologies
- Wind power generation
- Biomass power
- Hydraulic Power
- Storage
- Electric vehicle regarding grid integration

Engineering analysis:
Graduates will be able to demonstrate a clear understanding of the state of the art of RE power generation technologies and related aspects as storage or impact in the electric grid.

Transferable skills:
Graduates will be able to work effectively as a professional and as team member in the resolution of technical problems. Also, graduates will demonstrate their abilities to communicate effectively in multinational groups.

1. Basics aspects of Distributed Generation
- Challenges of the SEP operation due to the high penetration of RES
- Advantages and disadvantages of distributed generation
- Optimization of the integration of distributed generation
- Marine and offshore technology generation and market
- Visit to PV system facility
- Applications of hydrogen and visit to the Hydrogen Foundation
- Visit to a hydroelectric plant
- Electric Vehicle
- Wind prediction techniques

2. Storage
- State of the art storage
- Batteries
- Flywheel
- Storage systems based on ultra-capacitors

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Examination: Prüfungszeiten
Type of examination: Written exam (42.5%): 2 hours
Subject’s work (7.5%): approx. 4 hours (Subject’s work refers to the different assignments that students are asked to finish after a preliminary session during the lessons)
Presentation (50%): 20 minutes (developed topic)

Form of instruction: Seminar
Frequency
Pre373 - Control Techniques and Renewable Energy Integration Systems

Module label: Control Techniques and Renewable Energy Integration Systems

Module Kurzelle: pre373

Credit points: 5.5 KP

Workload: 165 h

Verwendbarkeit des Moduls:
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module:

- By the end of this module, students should be able to manage the theoretical and practical aspects related to power electronics, with an emphasis in the analysis of the operation of specific devices used to integrate RE. They should also be able to evaluate the requirements, design and optimise Micro Grids.
- At the completion of this module, the student will:
 - Become familiar with the AC/DC Drives control systems (multilevel converters, PWM, etc.)
 - Get basic knowledge on the technological aspects of power electronic systems connection
 - Get knowledge about reactive power compensation
 - Be introduced to FACTS Technology

Engineering analysis:

Graduates will be able to formulate and solve engineering problems related to the control of power systems connected to the grid. Also, they will be able to design and optimise Micro Grids.

Investigations:

Graduates will be able to evaluate the requirements to implement Micro Grids.

Transferable skills:

Graduates will be able to work effectively as professionals and as team members to solve technical problems related to the integration of RE in electric grids. Also, graduates will demonstrate their abilities to communicate effectively in multinational teams.

Module contents

1. Control of AC/DC drives
 - Necessity of power electronics: solar and wind generation, storage, dip and reactive power compensation, DC transport...
 - Modelling and simulation of power electronics systems
 - Conversion DC/DC (Solar): topology, operation and current control
 - Vectorial modelling of three phase systems
 - Control of permanent magnets wind turbines
 - Conversion DC/AC three phase
 - Control of active and reactive power of three phase systems connected to grid
 - Dip and interruptions compensation: DVR
 - Characterization techniques: harmonics, THD, power factor...
 - Overview of other power systems
2. Active network devices and control
 - Control system for small wind turbines
 - Power inverter design
 - Microgrids
 - Theory and operation principles of FACTS
 - FACTS implementation and technology (Series / Shunt compensation)
 - Applications and simulation of power electronics systems using PSCAD/EMTDC
 - Modelling of thyristor-based static Var compensator
 - Modelling of GTO-Based STATCOM - Modelling of VSC-Based HVD link
 - Modelling and performance of SSCC in wind energy application

Literaturempfehlungen

Links

Language of instruction: English

Duration (semesters): 1 Semester
<table>
<thead>
<tr>
<th>Module frequency</th>
<th>jährlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>After end of lectures of module</td>
</tr>
<tr>
<td></td>
<td>Written exam (40%): 2 hours</td>
</tr>
<tr>
<td></td>
<td>Subject’s work (20%): approx. 8 hours (Subject’s work refers to the different assignments that students are asked to finish after a preliminary session during the lessons)</td>
</tr>
<tr>
<td></td>
<td>Presentation (40%): 20 minutes (developed topic)</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Seminar</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
</tbody>
</table>
pre374 - Power Grid Analysis and Studies

Module label
Power Grid Analysis and Studies

Modulkürzel
pre374

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module
By the end of this module students should be able to acquire relevant data to evaluate grid power quality, to model permanent and dynamic transient regimes of electric grid elements and to plan and optimise grid design.
Specifically, the student will
- be able to perform different studies (permanent, dynamic or transitional regimes) to undertake in electric grids to ensure correct planning and operation
- get basic knowledge on grid modelling (static and dynamic)
- be able to perform stability studies
- get to know different aspects about power supply quality
- be able to perform an optimal sizing of renewable energies installations

Engineering analysis:
Graduates will be able to formulate and solve engineering problems related to Power Supply Quality.

Investigations:
Graduates will be able to acquire relevant data to evaluate grid power quality.

Engineering design:
Graduates will be able to model permanent and dynamic transient regimes of electric grid elements, also to plan and optimise grid design.

Transferable skills:
Graduates will be able to work effectively as a professional and as team member in the resolution of technical problems related to integration of RE in electric grids. Also, graduates will demonstrate their abilities to communicate effectively in multinational groups.

Module contents
1. Electric system modelling
 - Introduction to the modelling and simulation of electric systems
 - Per unit system
 - Permanent regime simulation studies: load flows, short-circuits, sequence networks
 - Transient regime modelling: lines, transformer, SEP stability, generation
 - Modelado de sistemas eléctricos en régimen transitorio.
 - RE integration analysis
2. Quality of supply
 - Wind and solar farms verification procedures
 - Grid Codes and dynamic models for different wind turbines
 - Variable frequency drive
 - Slow voltage variations
 - Voltage fluctuations Flicker
 - Voids voltage and short cuts
 - Voltage pulses
 - Harmonic distortion
 - Voltage Imbalances
 - Network quality and renewable energy
 - Power quality analysers

Literaturempfehlungen

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Examination

Prüfungszeiten

Type of examination
Written exam (50%): 2 hours
Subject’s work (10%): approx. 8 hours (Subject’s work refers to the different assignments that students are asked to finish after a preliminary session during the lessons)

Final exam of module
After end of lectures of module
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Presentation (40%): 20 minutes (developed topic)</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Seminar</td>
<td></td>
</tr>
</tbody>
</table>

Frequency
Pre375 - Smart Grids

Skills to be acquired in this module
By the end of this module, students should be able to program and protect smart grids. Students will get a suitable knowledge on:

- Smart Grids concept and development
- Protection system in electrical power systems
- Telecommunication infrastructure in smart grids

Engineering design:
Graduates will be able to design engineering solutions to the challenge of programming smart-grids. They will be able to do the complex task of coordinating protective devices for RE, integrate mini and micro generation in distribution grids or plan and optimise primary-secondary distribution systems.

Transferable skills:
Graduates will be able to work effectively as a professional and as team member in the resolution of technical problems related to integration of RE in electric grids. Also, graduates will demonstrate their abilities to communicate effectively in multinational groups.

Module contents
1. Programming of intelligent networks
 - Smart Grids from the point of view of the network operator (Demand Management, Electric Vehicle, Storage, ...)
 - Operation and network planning with quality criteria distribution
 - Optimization Techniques
 - Practice microgrids
2. Protections
 - Introduction
 - Overcurrent protection
 - Distance protection
 - Differential protection
 - Protection coordination
 - Problematic of distributed generation
3. Smart Grids
 - IEC 61850 communications
 - Visit to Red Eléctrica de España control center
 - Visit to UFD facilities: Smart grids projects
 - PLC communications: Malaga Smart city experience
 - Visit to ERZ control center: smart meters

Literaturempfehlungen

Links
Language of instruction English
Duration (semesters) 1 Semester
Module frequency jährlich
Module capacity unlimited

Examination Prüfungszeiten Type of examination
Final exam of module After end of lectures of module Written exam (50%): 2 hours
Subject’s work (10%): approx. 4 hours (Subject’s work refers to the different assignments that students are asked to finish after a preliminary session during the lessons)
Presentation (40%): 20 minutes (developed topic)
Form of instruction Seminar
Frequency
Module label
Standards and Electric Markets

Modulkürzel
pre376

Credit points
2.5 KP

Workload
75 h

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständig Personen

Prerequisites

Skills to be acquired in this module
By the end of this module, students should be able to display a clear understanding of the different laws and economic regulations ruling distributed generation in liberalised electric markets. Also, they should be able to identify boundaries and opportunities in those markets. At the completion of this module, the student will:
- become familiar with the basic rules of electric markets
- get know the standards for RE
- know the smart grid installations from the economical point of view

Engineering practice:
Graduates will possess a comprehensive understanding of the structure and regulations of local and international electric markets. The economics of distributed generation systems. The state of the art in standards and regulations ruling distributed generation in liberalised electric markets.

Transferable skills:
Graduates will be able to work effectively as a professional and team member in the resolution of technical problems related to integration of RE in electric grids. Also, graduates will demonstrate their abilities to communicate effectively with the engineering community in national and international contexts. They are able to demonstrate awareness of the legal issues and responsibilities of the engineering practice.

Module contents
- The electricity sector: structures and models
- Cost-benefit analysis of investment in RES
- Calculation of tariffs considering quality costs
- Socio-economic impact of Smart Grids
- Impact of high penetration of RES in the electricity market
- Specific regulations for renewable energy

Literaturempfehlungen

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Examination
Prüfungszeiten
- Type of examination
 - Written exam (50%): 2 hours
 - Presentation (50%): 20 minutes (developed topic)

Final exam of module
- After end of lectures of module

Form of instruction
- Seminar

Frequency
pre377 - Project

<table>
<thead>
<tr>
<th>Module label</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre377</td>
</tr>
<tr>
<td>Credit points</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Investigations: Graduates will be able to search and organise the required information for the report. Transferable skills: To evaluate students learning process through the development of a subject related to any of the modules in the specialization. Graduates will demonstrate their ability to investigate and recognise the need for lifelong learning.</td>
</tr>
<tr>
<td>Module contents</td>
<td>Students develop a project on any subject, related to any of the modules in the specialization. The issue is approved by a professor who directs and guides the student. Any module coordinator can be director of the project. For evaluation, the student submits a report of the work.</td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td>Recommended literature of other modules</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>After end of modules</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Seminar</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
</tbody>
</table>
pre381 - Processes, models & modelling

<table>
<thead>
<tr>
<th>Module label</th>
<th>Processes, models & modelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre381</td>
</tr>
<tr>
<td>Credit points</td>
<td>10.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>300 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of Instruction</td>
<td></td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Type of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Module level</td>
<td>---</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>KL</td>
</tr>
<tr>
<td>Form of Instruction</td>
<td>Seminar</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
</tbody>
</table>
pre382 - Biochemical conversion

<table>
<thead>
<tr>
<th>Module label</th>
<th>Biochemical conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre382</td>
</tr>
<tr>
<td>Credit points</td>
<td>10.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>300 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Languages of instruction

Duration (semesters)

1 Semester

Module frequency

Module capacity

unlimited

Type of module

je nach Studiengang Pflicht oder Wahlpflicht

Module level

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KL</td>
</tr>
</tbody>
</table>

Final exam of module

<table>
<thead>
<tr>
<th>Seminar</th>
</tr>
</thead>
</table>

Form of instruction

Frequency
pre383 - Thermochemical conversion

<table>
<thead>
<tr>
<th>Module label</th>
<th>Thermochemical conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre383</td>
</tr>
<tr>
<td>Credit points</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of Instruction</td>
<td></td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>KL</td>
</tr>
<tr>
<td>Form of Instruction</td>
<td>Seminar</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
</tbody>
</table>
pre384 - New Business

<table>
<thead>
<tr>
<th>Module label</th>
<th>New Business</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre384</td>
</tr>
<tr>
<td>Credit points</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction

Duration (semesters) 1 Semester

Module frequency

Module capacity unlimited

Type of module Wahlpflicht / Elective

Module level MM (Mastermodul / Master module)

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Prüfungszeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 Prüfungsleistungen:</td>
</tr>
<tr>
<td></td>
<td>Referat 1 (Präsentation max. 20 min + Bericht max. 15 Seiten; Gewicht: 20%)</td>
</tr>
<tr>
<td></td>
<td>Referat 2 (Präsentation max. 20 min + Bericht max. 15 Seiten; Gewicht: 40%)</td>
</tr>
<tr>
<td></td>
<td>Präsentation (max. 20 min; Gewicht: 40%)</td>
</tr>
</tbody>
</table>

Form of instruction Seminar

Frequency
pre355 - Development and Implementation

<table>
<thead>
<tr>
<th>Module label</th>
<th>Development and Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre355</td>
</tr>
<tr>
<td>Credit points</td>
<td>10.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>300 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction

German, English

Duration (semesters)

1 Semester

Module frequency

unlimited

Type of module

je nach Studiengang Pflicht oder Wahlpflicht

Module level

Examination

Form of instruction | Comment | SWS | Frequency | Workload of compulsory attendance |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>4</td>
<td>SoSe und WiSe</td>
<td>56</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

84 h
Sustainable Fuel Supply Chains

Module label
Sustainable Fuel Supply Chains

Modulkürzel
pre385

Credit points
10.0 KP

Workload
300 h

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction
German, English

Duration (semesters)
1 Semester

Module frequency

Module capacity
unlimited

Type of module
Wahlpflicht / Elective

Module level
MM (Mastermodul / Master module)

Examination

Prüfungszeiten

Type of examination
5 Prüfungsleistungen: 2 Klausuren zu je (1,5h, Gewicht: 20%), 3 Referate zu je (Präsentation max. 20 min + Bericht max. 15 Seiten, Gewicht: 20%)

Form of instruction

Comment

SWS

Frequency

Workload of compulsory attendance

<table>
<thead>
<tr>
<th>Lecture</th>
<th>2</th>
<th>SoSe und WiSe</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>4</td>
<td>SoSe und WiSe</td>
<td>56</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
84 h
pre386 - Bio Energy Conversion

<table>
<thead>
<tr>
<th>Module label</th>
<th>Bio Energy Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre386</td>
</tr>
<tr>
<td>Credit points</td>
<td>10.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>300 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency
- unlimited

Type of module
- Wahlpflicht / Elective

Module level
- MM (Mastermodul / Master module)

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Prüfungsleistungen: Klausur 1 (1,5h, Gewicht: 20%), Klausur 2 (1,5h, Gewicht: 30%), Referat 1 (Präsentation max. 20 min + Bericht max. 15 Seiten, Gewicht: 20%) und Fachpraktische Übung (Gewicht: 30%)</td>
<td></td>
</tr>
</tbody>
</table>

Form of instruction

<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td>4</td>
<td>SoSe und WiSe</td>
<td>56</td>
</tr>
</tbody>
</table>

Präsenzzzeit Modul insgesamt
- 84 h
Module Information:

Pre387 - Power-to-Hydrogen

<table>
<thead>
<tr>
<th>Module Label</th>
<th>Power-to-Hydrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre387</td>
</tr>
<tr>
<td>Credit points</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module Contents

Literaturempfehlungen

Links

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module Frequency
- Unlimited

Type of Module
- Wahlpflicht / Elective

Module Level
- MM (Mastermodul / Master module)

Examination

Final exam of module
- 2 Prüfungsleistungen: Präsentation (max. 20 min, Gewicht 40%), Fachpraktische Übung (Gewicht 60%)

Form of instruction

<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
- 56 h
pre400 - Fundamentals for Renewable Energy

<table>
<thead>
<tr>
<th>Module label</th>
<th>Fundamentals for Renewable Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre400</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>
| Zuständige Personen | • Agert, Carsten (Prüfungsberechtigt)
 • Günther, Andreas (Prüfungsberechtigt)
 • Holtorf, Hans-Gerhard (Prüfungsberechtigt)
 • Jimenez Martinez, Cuauhtemoc Adrian (Prüfungsberechtigt)
 • Knecht, Robin (Prüfungsberechtigt)
 • Torio, Herena (Prüfungsberechtigt)
 • Maiz, Simone (Prüfungsberechtigt)
 • Ziethe, Paul (Prüfungsberechtigt) |

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

 damit in this module

Module contents

Language of instruction

German, English

Duration (semesters)

1 Semester

Module frequency

Type of module

Wahlpflicht / Elective

Module level

MM (Mastermodul / Master module)

Examination

<table>
<thead>
<tr>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistungen: Fachpraktische Übungen (Versuchsprotokolle und Übungsaufgaben, Gewicht: 75%) und entweder Hausarbeit (10-15 Seiten) oder Präsentation (15-20 min, Gewicht: 25%)</td>
</tr>
</tbody>
</table>

Form of instruction

<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Werkstatt/Labor</td>
<td>4</td>
<td>SoSe und WiSe</td>
<td>56</td>
</tr>
</tbody>
</table>

Präsenzzzeit Modul insgesamt

112 h
Module Overview

pre405 - Energy Resources and Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Energy Resources and Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre405</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen
- Torio, Herena (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency
- unlimited

Type of module
- Wahlpflicht / Elective

Module level
- MM (Mastermodul / Master module)

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 Prüfungsleistung: Klausur (2h)</td>
</tr>
</tbody>
</table>

Form of Instruction
- Lecture

SWS
- 4

Frequency
- SoSe und WiSe

Workload Präsenzzeit
- 56 h
Renewable Energy Technologies I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Renewable Energy Technologies I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre410</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen
- Hölling, Michael (Prüfungsberechtigt)
- Holtorf, Hans-Gerhard (Prüfungsberechtigt)
- Torio, Herena (Prüfungsberechtigt)
- Wark, Michael (Prüfungsberechtigt)
- Pehlken, Alexandra (Prüfungsberechtigt)
- Steinberger-Wickens, Robert (Prüfungsberechtigt)
- Knipper, Martin (Prüfungsberechtigt)
- Torio, Herena (module responsibility)
- Agert, Carsten (module responsibility)

Prerequisites

Skills to be acquired in this module

After successful completion of the module students should be able to:

- critically evaluate and compare three major Renewable Energy conversion processes and technologies: photovoltaics, wind energy and one out of the following three: solar thermal energy, biomass energy or hydro power.
- critically appraise various electrochemical storage processes and the respective storage techniques
- analyse various system components and their interconnections within a complex Renewable Energy supply system.
- evaluate the Renewable Energy supply systems' operational size and efficiency.
- critically evaluate non-technical impact and side effects when implementing renewable energy supply systems

Depending on the selected area, students should be able to:

- **Photovoltaics**
 - understand, describe and compare major technologies for photovoltaic solar energy use
 - critically appraise and assess various technologies for PV solar energy use and components involved in such solar systems.
 - size and evaluate the performance of solar systems as a function of their operation conditions, components and system layout

- **Basics of Wind Energy**
 - Understand the physical principal of wind energy conversion
 - Understand wind turbine aerodynamics
 - Critically evaluate and describe basic characteristics and functioning of wind energy converters

- **Fuel Cells & Energy Storage**
 - Understand the operation principles and main variables influencing different fuel cell technologies
 - Understand principles and variables governing the behaviour of electrical storage systems
 - Critically evaluate and describe electrochemical storage systems with a focus on batteries as well as hydrogen storage systems (electrolyser, gas storage and fuel cells)

- **Solar Thermal Energy**
 - understand, describe and compare major technologies for solar thermal energy use
 - analyse various system components and their interconnections within a solar energy system.
 - critically appraise and assess various technologies for solar thermal energy use and components involved in such solar systems.
 - size and evaluate the performance of solar systems as a function of their operation conditions, components and system layout

- **Biomass Energy**
 - understand the basic chemical background of bioenergy-related
understand different technology concepts for bioenergy usage
- Understand the links between biomass sources and other production processes (different substrats, different deployment processes)
- Get to know main economical and legal constraints for biomass energy use

Hydro & Marine Power
- Understand main technologies for hydro and marine power use (different turbine types, their different sizes and uses as well as main variables influencing the performance of the systems in each case
- Understand principles and methods to assess the hydro and marine-power resource potential of a site
- Appraise the links between different components in a water-based energy system to assess its overall performance
- Identify critical points in the implementation and use of such systems

Module contents

This module will give an overview over a selection of the major renewable energy technologies and some possibilities of their storage. The focus lies on the scientific principles and the technical description of the components. Main aspects of the integration of components to form energy supply systems are also regarded.

Photovoltaics (Lecture - 90 h workload)

Physics of PV:
- Basic and most important properties of solar radiation related to photovoltaic
- PV cells basics: Fundamental physical processes in photovoltaic materials
- Characterisation and basic modelling of solar cells

Component Description:
- PV generator
- Charge controller
- Inverter
- Balance of system components

System Description
- Grid Connected System
- Stand Alone System

Basics of Wind Energy (Lecture - 90 h workload)
- Wind characterization and anemometers
- Aerodynamic aspects of wind energy conversion
- Wind turbine performance
- Design of wind turbines
- Dimensional analysis and pi-theorem

Fuel Cells & Energy Storage (Lecture - 90 h workload)
- Fundamentals of electrochemistry and thermodynamics, energy and environmental balances
- Basics of hydrogen production - starting materials, processes, efficiencies, environmental impacts
- Basics of fuel cells function, materials, construction, systems, applications
- Fundamental setup of most common battery types
- Fundamental chemical reactions in these batteries
- Operational characteristics, wear processes and service lives of these batteries.
Solar Thermal Energy (Seminar & Exercises - 90 h workload)
- Assessment of solar thermal ambient parameters: regional global, diffuse, reflected solar radiation on horizontal and on tilted plane, ambient temperature
- Solar thermal collectors
- Solar thermal heat exchangers
- Solar thermal storages
- Solar thermal systems and their operation
- Characterization of solar thermal systems

Biomass Energy (Lecture - 90 h workload)
- Energy mix overview: gas, heat, electricity, Pros & Cons of biomass
- Chemical composition of biomass: sugar, cellulose, starch, fats, Oils, proteins, lignin
- Natural photosynthesis in plants: chemical storage of solar energy; general mechanisms
- Chemistry & Biology (microorganism) of Biogas Technology
- Conversion processes of biomass: classification, main pathways
- Introduction to catalysis used in biomass conversion
- Chemical fuels (chemical energy storage) from biomass, routes to platform chemicals and separation processes
- Technology concepts for bioenergy usage
- Introduction into economical and legal constraints

Hydro & Marine Power (Seminar & Exercises - 90 h workload)
- Theoretical background - general hydraulic terms, Bernoulli Equation, Major Empirical Formulae and their backgrounds
- Water Resource - catchment area, seasonal precipitation, flow duration curve, dam, & run off river
- Powerhouse - penstock, water hammer, cavitation, tailrace
- Turbines - main types of turbines, their characteristics & their components
- Ocean Power Overview

Literatureempfehlungen

Suggested reading:

Solar Energy PV
- Stuart R. Wenham, Martin A. Green, Muriel E. Watt & Richard Corkish (Edt.), 2007: Applied Photovoltaics, Earthscan Publications Ltd.

Basics of Wind Energy

Fuel Cells & Energy Storage
Biomass Energy

- D.L. Klass. Biomass for renewable energy, fuels, and chemicals, Chapter 4 Virgin Biomass Production, p. 91ff
- Food and Agriculture Organization of the UN (FAO) http://www.fao.org
- Schlögl, Robert (2013). Chemical energy storage (Elektronische Ressource ed.). Berlin [u.a.]: De Gruyter.

Solar Thermal

Hydro Power

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>Winter semester</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td></td>
</tr>
<tr>
<td>Type of module</td>
<td>Pflicht / Mandatory</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Lectures, Seminars, Exercises</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>Helpful previous knowledge:</td>
</tr>
<tr>
<td></td>
<td>Chemistry, Black Body Radiation, Semiconductor Physics, Fluid Dynamics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Before the end of the lecture period</td>
<td>4 Exams (weight 25% each): Written exam or Paper with Presentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>4</td>
<td>SoSe und WiSe</td>
<td>56</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 84 h
pre420 - Fundamentals

<table>
<thead>
<tr>
<th>Module label</th>
<th>Fundamentals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre420</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency

Module capacity
- unlimited

Type of module
- Wahlpflicht / Elective

Module level
- MM (Mastermodul / Master module)

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Prüfungsleistungen: Klausur (2h, Gewicht: 50%) und fachpraktische Übung (Versuchsprotokoll 10-20 Seiten, Gewicht: 50%).</td>
<td>2 Prüfungsleistungen: Klausur (2h, Gewicht: 50%) und fachpraktische Übung (Versuchsprotokoll 10-20 Seiten, Gewicht: 50%).</td>
<td></td>
</tr>
</tbody>
</table>

Form of instruction

<table>
<thead>
<tr>
<th>Lecture</th>
<th>2</th>
<th>WISe</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
- 56 h
pre421 - Simulation and System Optimization

<table>
<thead>
<tr>
<th>Module label</th>
<th>Simulation and System Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre421</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Module frequency

<table>
<thead>
<tr>
<th>Module capacity</th>
<th>unlimited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>2 Prüfungsleistungen: Seminararbeit (20 Seiten, Gewicht: 50%) und fachpraktische Übung (Versuchsprotokoll 10 Seiten, Gewicht: 50%).</td>
</tr>
</tbody>
</table>

Form of instruction

<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzzeit Modul insgesamt

56 h
pre422 - Energy

<table>
<thead>
<tr>
<th>Module label</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre422</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency

Module capacity
- unlimited

Type of module
- Wahlpflicht / Elective

Module level
- MM (Mastermodul / Master module)

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3 Prüfungsleistungen: Klausur (3h) und fachpraktische Übung (Versuchsprotokoll 5 Seiten) und Seminararbeit (20 Seiten). Alle Prüfungsleistungen werden zu je 1/3 gewichtet.</td>
</tr>
</tbody>
</table>

Form of instruction

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
- 56 h
pre423 - Materials

<table>
<thead>
<tr>
<th>Module label</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre423</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literatureempfehlungen

Links

Languages of instruction

German, English

Duration (semesters)

1 Semester

Module frequency

Module capacity

unlimited

Type of module

Wahlpflicht / Elective

Module level

MM (Mastermodul / Master module)

Examination

1 Prüfungsteil: Klausur (2h)

Final exam of module

Form of Instruction

Lecture

SWS

4

Frequency

SoSe und WiSe

Workload Präsenzzeit

56 h
<table>
<thead>
<tr>
<th>Pre424 - Project, case study and innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module label</td>
</tr>
<tr>
<td>Project, case study and innovation</td>
</tr>
<tr>
<td>Modulkürzel</td>
</tr>
<tr>
<td>pre424</td>
</tr>
<tr>
<td>Credit points</td>
</tr>
<tr>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
</tr>
<tr>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>• Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
</tr>
<tr>
<td>Prerequisites</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
</tr>
<tr>
<td>Module contents</td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
</tr>
<tr>
<td>Links</td>
</tr>
<tr>
<td>Languages of instruction</td>
</tr>
<tr>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
<tr>
<td>unlimited</td>
</tr>
<tr>
<td>Type of module</td>
</tr>
<tr>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Module level</td>
</tr>
<tr>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Examination</td>
</tr>
<tr>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
</tr>
<tr>
<td>2 Prüfungsleistungen: Klausur (2h, Gewicht: 1/3) und Hausarbeit (30 Seiten, Gewicht: 2/3).</td>
</tr>
<tr>
<td>Form of instruction</td>
</tr>
<tr>
<td>Comment</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>Workload of compulsory attendance</td>
</tr>
<tr>
<td>Lecture</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
</tr>
<tr>
<td>56 h</td>
</tr>
</tbody>
</table>
pre430 - Introduction to Electric Power Systems and power electronics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Introduction to Electric Power Systems and power electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre430</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency
- unlimited

Type of module
- Wahlpflicht / Elective

Module level
- MM (Mastermodul / Master module)

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 Prüfungsleistungen: Klausur (2h, Gewicht: 95%), fachpraktische Übung (Übungsaufgabe, Gewicht: 5%)</td>
</tr>
</tbody>
</table>

Form of instruction
- Vorlesung und Übung

SWS
- 2

Frequency
- SoSe und WiSe

Workload Präsenzzeit
- 28 h
pre431 - Distributed energy resources (DER)

<table>
<thead>
<tr>
<th>Module label</th>
<th>Distributed energy resources (DER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre431</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.1 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>183 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Module frequency

<table>
<thead>
<tr>
<th>Module capacity</th>
<th>unlimited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
</tbody>
</table>

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3 Prüfungsleistungen: Klausur (2h, Gewicht: 42,5%), Präsentation (20min + 10min Diskussion, Gewicht: 50%) und fachpraktische Übung (Übungsaufgabe, Gewicht: 7,5%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Vorlesung und Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzelt</td>
<td>56 h</td>
</tr>
</tbody>
</table>
pre432 - Renewable Energy Integration

<table>
<thead>
<tr>
<th>Module label</th>
<th>Renewable Energy Integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre432</td>
</tr>
<tr>
<td>Credit points</td>
<td>5.6 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>168 h</td>
</tr>
</tbody>
</table>

- **Verwendbarkeit des Moduls**
 - Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

- **Verwendbarkeit des Moduls**
 - Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literatureempfehlungen

Links

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency
- unlimited

Type of module
- Wahlpflicht / Elective

Module level
- MM (Mastermodul / Master module)

Examination

<table>
<thead>
<tr>
<th>Prüfungsleistungen</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur (2h, Gewicht: 40%)</td>
<td>3 Prüfungsleistungen: Klausur (2h, Gewicht: 40%), Präsentation (20min + 10min Diskussion, Gewicht: 40%) und fachpraktische Übung (Übungsaufgabe, Gewicht: 20%)</td>
</tr>
<tr>
<td>Präsentation (20min + 10min Diskussion, Gewicht: 40%)</td>
<td></td>
</tr>
<tr>
<td>Fachpraktische Übung (Übungsaufgabe, Gewicht: 20%)</td>
<td></td>
</tr>
</tbody>
</table>

Form of instruction
- Vorlesung und Übung

SWS
- 4

Frequency
- SoSe und WiSe

Workload Präsenzzeit
- 56 h
Module: DER Impact on EPS

<table>
<thead>
<tr>
<th>Module label</th>
<th>DER Impact on EPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre433</td>
</tr>
<tr>
<td>Credit points</td>
<td>5.2 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>156 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literatureempfehlungen

Links

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency
- unlimited

Type of module
- Wahlpflicht / Elective

Module level
- MM (Mastermodul / Master module)

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 Prüfungsleistungen: Klausur (2h, Gewicht: 50%), Präsentation (20min + 10min Diskussion, Gewicht: 40%) und fachpraktische Übung (Übungsaufgabe, Gewicht: 10%)</td>
<td></td>
</tr>
</tbody>
</table>

Form of instruction
- Vorlesung und Übung

SWS
- 4

Frequency
- SoSe und WiSe

Workload Präsenzzzeit
- 56 h
pre434 - Smart Grids solutions

<table>
<thead>
<tr>
<th>Module label</th>
<th>Smart Grids solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre434</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.1 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>183 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction

German, English

Duration (semesters)

1 Semester

Module frequency

unlimited

Type of module

Wahlpflicht / Elective

Module level

MM (Mastermodul / Master module)

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Prüfungsleistungen: Klausur (2h, Gewicht: 50%), Präsentation (20min + 10min Diskussion, Gewicht: 40%) und fachpraktische Übung (Übungsaufgabe, Gewicht: 10%)</td>
</tr>
</tbody>
</table>

Form of instruction

Vorlesung und Übung

SWS

4

Frequency

SoSe und WiSe

Workload Präsenzzeit

56 h
Module label: Energetic Markets

Modulkürzel: pre435

Credit points: 4.0 KP

Workload: 120 h

Verwendbarkeit des Moduls:
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction: German, English

Duration (semesters): 1 Semester

Module frequency: unlimited

Type of module: Wahlpflicht / Elective

Module level: MM (Mastermodul / Master module)

Examination

Final exam of module: 2 Prüfungsleistungen: Klausur (2h, Gewicht: 50%) und Präsentation (20min + 10min Diskussion, Gewicht: 50%)

Form of instruction: Vorlesung und Seminar

SWS: 4

Frequency: SoSe und WiSe

Workload: Präsenzzeit 56 h
Module Contents

Energy Meteorology (Lecture - 90 h workload)

Section I: Solar Irradiance
- Radiation laws,
- Solar geometry,
- Interaction of solar irradiance with the atmosphere,
- Radiation climatology,
- Solar radiation model,
- Statistical properties of solar irradiance,
- Measuring devices to ascertain solar radiation balance,
- Satellite-supported data acquisition to assess solar irradiance,

Section II: Wind Flow
- Origin and potential of atmospheric energy movements, Heat balance of the atmosphere,
- Physical laws of atmospheric flow,
- Wind circulation in the atmosphere, local winds,
- Wind flow in atmospheric layers (vertical structure, Ekman Layer),
- Assessment of wind potential (European Wind Atlas: model, concept,
- Wind Measurements,

Energy Systems (Lecture - 90 h workload)
- Definitions, separation electrical - thermal energy use,
- Resources and reserves,
- Energy system analysis: Efficiencies at various levels of the energy chain: Exergy analysis,
- Energy scenarios,
- Climate change,
• Advanced (power plant) technologies for conventional fuels,
• Electric power systems with large shares of renewables

Literaturempfehlungen

Energy Meteorology:

- IEA Word Energy Outlook (http://wordenergyoutlook.org/)

Energy Systems:

- Boyle, G. et al. (Eds.): Energy Systems and Sustainability (Oxford University Press, 2003)
- Blok, K.: Introduction to Energy Analysis (Techne Press, Amsterdam, 2007)
- EIA: International Energy Outlook 2016 (www.eia.doe.gov/forecasts/ieo/)

Links

Language of instruction

English

Duration (semesters)

1 Semester

Module frequency

Winter semester

Module capacity

unlimited

Type of module

Pflicht / Mandatory

Module level

MM (Mastermodul / Master module)

Teaching/Learning method

Lectures, Exercises

Examination

Prüfungszeiten

Type of examination

Final exam of module

At the end of the lecture period

2 Written Exams (max 90 min each)

Form of instruction

Lecture

SWS

4

Frequency

SoSe oder WiSe

Workload Präsenzzeit

56 h
pre014 - Fundamentals for Renewable Energy

Module label: Fundamentals for Renewable Energy
Modulkürzel: pre014
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule
- Sustainable Renewable Energy Technologies (Master) > Mastermodule

Zuständige Personen
- Torio, Herena (module responsibility)
- Agert, Carsten (module responsibility)
- Torio, Herena (Prüfungsberechtigt)
- Hoppmann, Jörn (Prüfungsberechtigt)
- Günther, Andreas (Prüfungsberechtigt)
- Ziethe, Paul (Prüfungsberechtigt)

Prerequisites
Skills to be acquired in this module

After successful completion of the module students should be able to:
- develop a basic understanding and skills for programming in languages relevant for energy systems analysis and modelling (Python)
- understand and apply fundamental approaches for modelling energy systems (statistical and analytical models)
- understand the most important economic principles
- have a basic understanding of the functioning of energy markets
- have an overview of the types and effectiveness of policies to promote renewable energy technologies
- understand the interaction between society and renewable energy technologies
- know which aspects play an important role when founding renewable energy start-ups and developing corporate strategies in the renewable energy sector
- be able to assess alternative investment and financing possibilities in the context of renewable energy

Module contents

The module is designed to give students a solid foundation to successfully start the MSc programme. The compulsory content from the fields of Energy Systems Modelling and Programming, as well as energy economics and management intends to provide a homogeneous knowledge base in these fields.

The compulsory content of the Primers course provides a basic introduction to Python as one of the leading programming languages in the fields of energy system analysis as well as a sound introduction to fundamental modelling approaches used in energy system analysis. These two topics provide a solid basis required for understanding the content of the provided specializations during the summer term. Additional optional materials within this course include videos, scripts and exercises in the fields of electric power systems analysis, thermodynamics, fluid dynamics or solid-state physics and are provided as optional self-learning materials that can be used on demand by the students to update their knowledge on these fundamental fields.

The course "Renewable Energy Management" offers an introduction to the most important areas relevant to the management of renewable energy companies. To this end, the course first provides a general introduction to economic fundamentals and principles. Students then gain insights into the following topics:
- Energy markets
- Renewable energy policy and climate policy
- Foundation and strategies of renewable energy companies
- Investment and financing in the renewable energy sector
- Innovation management in the renewable energy sector

Each of these topics will be explored in depth through practical exercises, including guest lectures, simulations, stakeholder discussions, case studies and investment calculations.
Literaturempfehlungen

Primer:

RE Management (optional):

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Type of module</td>
<td>Pflicht / Mandatory</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Lectures, Exercises</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Primer: During the semester RE Management: At the end of the lecture period</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Comment</td>
</tr>
<tr>
<td>Course or seminar</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Practical training</td>
<td>2</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
</tr>
</tbody>
</table>
pre017 - Renewable Energy Laboratories

<table>
<thead>
<tr>
<th>Module label</th>
<th>Renewable Energy Laboratories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre017</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule
- Sustainable Renewable Energy Technologies (Master) > Mastermodule

Zuständige Personen

- Torio, Herena (Prüfungsberechtigt)
- Knipper, Martin (Prüfungsberechtigt)
- Günther, Andreas (Prüfungsberechtigt)
- Agert, Carsten (module responsibility)
- Knipper, Martin (module responsibility)

Prerequisites

Skills to be acquired in this module

After successful completion of the module students should be able to:

- perform laboratory measurements in a university environment according to scientific standards
- present a sound analysis of the results and related conclusions in a scientific report
- analyse and interpret measurement results using relevant and widely used software tools
- work and communicate their results with international and interdisciplinary partners

Module contents

Laboratories (Theoretical/practical Seminar ? 120 h workload)

- Introductory Laboratory
- Interaction Light and Matter
- Heat Transfer
- Fluid Dynamics
- Storage Technologies
- Scientific Writing

Literaturempfehlungen

Lecture notes for the respective courses

Links

Language of instruction

English
<table>
<thead>
<tr>
<th>Duration (semesters)</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module frequency</td>
<td>Winter Semester</td>
</tr>
<tr>
<td>Module capacity</td>
<td>40</td>
</tr>
<tr>
<td>Type of module</td>
<td>Pflicht / Mandatory</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Laboratory, Lectures, Exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>During the semester</th>
<th>Practical Exercises (lab reports)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Practical training</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

| Präsenzzzeit Modul insgesamt | 84 h |
pre336 - Project

<table>
<thead>
<tr>
<th>Module label</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre336</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>1 Prüfungsleistung: Referat (20min Präsentation und 40min Diskussion + 3020 Seiten Bericht)</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Project</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>

81 / 98
Module: Offshore Wind Energy - Research and Technologies

<table>
<thead>
<tr>
<th>Module label</th>
<th>Offshore Wind Energy - Research and Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre337</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>3 Prüfungsleistungen:</td>
</tr>
<tr>
<td></td>
<td>- Mündliche Prüfung (Gewicht: 35%),</td>
</tr>
<tr>
<td></td>
<td>- fachpraktische Übung 1 (Gewicht: 30%) und</td>
</tr>
<tr>
<td></td>
<td>fachpraktische Übung 2 (Gewicht: 35%).</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
pre425 - Renewable Storage

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module label</td>
<td>Renewable Storage</td>
</tr>
<tr>
<td>Modulkürzel</td>
<td>pre425</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of instruction

German, English

Duration (semesters)

1 Semester

Module frequency

Module capacity

unlimited

Examination

Prüfungszeiten

Type of examination

2 Prüfungsleistungen: Klausur (Gewicht: 50%) und fachpraktische Übung (Gewicht: 50%)

Form of instruction

Seminar

SWS

2

Frequency

SoSe oder WiSe

Workload Präsenzzeit

28 h
pre388 - Physics and Fuels

<table>
<thead>
<tr>
<th>Module label</th>
<th>Physics and Fuels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre388</td>
</tr>
<tr>
<td>Credit points</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Language of instruction
- English

Duration (semesters)
- 1 Semester

Module frequency

Module capacity
- unlimited

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- 2 Prüfungsleistungen: Klausur (Gewicht 80 %), Fachpraktische Übung (Gewicht: 20 %)</td>
</tr>
</tbody>
</table>

Form of instruction

| Seminar |

SWS

| 2 |

Frequency

| SoSe oder WiSe |

Workload Präsenzzeit

| 28 h |
pre389 - Sustainable Fuel System Design

<table>
<thead>
<tr>
<th>Module label</th>
<th>Sustainable Fuel System Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre389</td>
</tr>
<tr>
<td>Credit points</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literatureempfehlungen

Links

Language of instruction

Duration (semesters)

Module frequency

Module capacity

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Fachpraktische Übung 1 (Gewicht 60 %),</td>
</tr>
<tr>
<td></td>
<td>- Fachpraktische Übung 2 (Gewicht: 40 %)</td>
</tr>
</tbody>
</table>

Form of instruction

SWS

Frequency

Workload Präsenzzeit

| 28 h |
Marine Current & Tidal Energy

<table>
<thead>
<tr>
<th>Module label</th>
<th>Marine Current & Tidal Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre338</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Language of instruction | German
Duration (semesters) | 1 Semester

Module frequency

Module capacity | unlimited

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Form of instruction | Seminar

SWS | 0

Frequency | --
<table>
<thead>
<tr>
<th>Module label</th>
<th>Project in Marine Renewable Energies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre339</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>- Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Language of instruction | German |

Duration (semesters) | 1 Semester |

Module frequency

Module capacity | unlimited |

Examination

Form of instruction | Seminar |

Final exam of module | PF |

SWS | 0 |

Frequency | -- |
pre735 - Elective

<table>
<thead>
<tr>
<th>Module label</th>
<th>Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre735</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literatureempfehlungen

Links

Language of instruction

Duration (semesters)

1 Semester

Module frequency

Module capacity

unlimited

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF</td>
<td></td>
</tr>
</tbody>
</table>

Final exam of module

Form of instruction

<table>
<thead>
<tr>
<th>Seminar</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SWS</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>--</td>
</tr>
</tbody>
</table>
pre345 - Offshore Wind Energy

<table>
<thead>
<tr>
<th>Module label</th>
<th>Offshore Wind Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre345</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literatureempfehlungen

Links

Language of instruction

<table>
<thead>
<tr>
<th>German</th>
</tr>
</thead>
</table>

Duration (semesters)

<table>
<thead>
<tr>
<th>1 Semester</th>
</tr>
</thead>
</table>

Module frequency

<table>
<thead>
<tr>
<th>unlimited</th>
</tr>
</thead>
</table>

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PF</td>
</tr>
</tbody>
</table>

Form of instruction

<table>
<thead>
<tr>
<th>Seminar</th>
</tr>
</thead>
</table>

SWS

<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
</table>

Frequency

|--|
pre346 - Wave Energy

<table>
<thead>
<tr>
<th>Module label</th>
<th>Wave Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre346</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Language of instruction | German |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module capacity</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Type of examination</td>
<td>PF</td>
</tr>
</tbody>
</table>

Final exam of module | Seminar

Form of instruction | 0

SWS | 0

Frequency | --
pre436 - Power Generation and Control in Wind Energy Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Power Generation and Control in Wind Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre436</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Language of instruction | German |
Duration (semesters) | 1 Semester |

Module frequency

Module capacity | unlimited |

Examination

Form of instruction | Seminar |

Final exam of module

SWS | 0 |

Frequency | -- |
pre437 - Smartgrids and electric Mobility

<table>
<thead>
<tr>
<th>Module label</th>
<th>Smartgrids and electric Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre437</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unlimited</td>
</tr>
</tbody>
</table>

Module capacity

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>1 Prüfungsteilung Portfolio</td>
</tr>
</tbody>
</table>

Form of instruction

<table>
<thead>
<tr>
<th>SWS</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SoSe oder WiSe</td>
</tr>
</tbody>
</table>

SWS

Frequency

| 92 / 98 |
pre438 - Protection Systems in Smartgrids

<table>
<thead>
<tr>
<th>Module label</th>
<th>Protection Systems in Smartgrids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre438</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literatureempfehlungen

Links

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

unlimited

Examination

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>SWS</td>
<td>0</td>
</tr>
</tbody>
</table>
pre439 - Renewable Energy Impact in Electric Power Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Renewable Energy Impact in Electric Power Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre439</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

Module contents

Literatureempfehlungen

Links

Language of instruction | German
Duration (semesters) | 1 Semester

Module frequency

Module capacity | unlimited

Examination

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>0</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
</tbody>
</table>

Prüfungszeiten

<table>
<thead>
<tr>
<th>Type of examination</th>
<th>1 Prüfungsleistung Portfolio</th>
</tr>
</thead>
</table>
pre440 - Optimization of Hybrid Generation Systems with Renewable Sources

<table>
<thead>
<tr>
<th>Module label</th>
<th>Optimization of Hybrid Generation Systems with Renewable Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre440</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td>• Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
<td></td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Language of instruction German

Duration (semesters) 1 Semester

Module frequency

Module capacity unlimited

Examination Prüfungszeiten Type of examination

Final exam of module 1 Prüfungsleistung Portfolio

Form of instruction Seminar

SWS 0

Frequency SoSe oder WiSe
pre441 - Energy Markets

<table>
<thead>
<tr>
<th>Module label</th>
<th>Energy Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre441</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme European Master in Renewable Energy (EUREC) (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Language of instruction | German
Duration (semesters) | 1 Semester

Module frequency

Module capacity | unlimited

Examination

Final exam of module | 1 Prüfungsleistung Portfolio

Form of instruction | Seminar

SWS | 0
Frequency | SoSe oder WiSe
Abschlussmodul

mam - Master´s Thesis Module

<table>
<thead>
<tr>
<th>Module label</th>
<th>Master´s Thesis Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mam</td>
</tr>
<tr>
<td>Credit points</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme European Master in Renewable Energy (EUREC) (Master) -> Abschlussmodul

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Languages of Instruction

Duration (semesters) 1 Semester

Module frequency

Module capacity unlimited

Examination

Prüfungszeiten

Type of examination

Final exam of module G

Form of instruction Seminar

Frequency