inf960 - Fundamental Competencies in Computing Science I: Signals and Dynamical Systems ... 7

inf961 - Fundamental Competencies in Computing Science II: Mathematics ... 9

inf962 - Fundamental Competencies in Computing Science III: Algorithms and Computational Problem Solving ... 11

inf963 - Foundations of STS Eng.: Cognitive Processes ... 13

inf964 - Foundations of STS Eng.: Psychology and Philosophy of Technology ... 15

inf965 - Foundations of STS Eng.: Systems Engineering ... 17

inf966 - Foundations of STS Eng.: Statistics and Programming ... 19

inf970 - Fundamental Competencies in Psychology I: Psychology .. 21

inf972 - Fundamental Competencies in Psychology III: Experiments and Studies .. 23

inf977 - Fundamental Competencies in Psychology II: Experimental Psychology (& Cognitive Processes) ... 25

inf100 - Mensch-Maschine Interaktion .. 26

inf131 - Advanced Topics in Human Computer Interaction .. 29

inf174 - Spezielle Themen aus dem Gebiet "Medieninformatik und Multimedia-Systeme" I ... 32

inf175 - Spezielle Themen aus dem Gebiet "Medieninformatik und Multimedia-Systeme" II .. 34

inf301 - Hardwaresnahe Systementwicklung .. 36

inf303 - Fuzzy-Regelung und künstliche neuronale Netze in Robotik und Automation ... 38

inf305 - Medizintechnik ... 41
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>inf307</td>
<td>Robotik</td>
<td>43</td>
</tr>
<tr>
<td>inf308</td>
<td>Mikrorobotik II</td>
<td>45</td>
</tr>
<tr>
<td>inf336</td>
<td>Application Area Automotive</td>
<td>47</td>
</tr>
<tr>
<td>inf338</td>
<td>Design of Autonomous Systems</td>
<td>49</td>
</tr>
<tr>
<td>mar364</td>
<td>Zeitreihenanalyse</td>
<td>51</td>
</tr>
<tr>
<td>inf535</td>
<td>Computational Intelligence I</td>
<td>53</td>
</tr>
<tr>
<td>inf536</td>
<td>Computational Intelligence II</td>
<td>55</td>
</tr>
<tr>
<td>inf537</td>
<td>Intelligent Systems</td>
<td>57</td>
</tr>
<tr>
<td>inf663</td>
<td>Application Area Maritime</td>
<td>59</td>
</tr>
<tr>
<td>inf650</td>
<td>Transportsysteme</td>
<td>61</td>
</tr>
<tr>
<td>inf604</td>
<td>Business Intelligence I</td>
<td>63</td>
</tr>
<tr>
<td>inf607</td>
<td>Business Intelligence II</td>
<td>65</td>
</tr>
<tr>
<td>inf657</td>
<td>Product Engineering</td>
<td>67</td>
</tr>
<tr>
<td>inf203</td>
<td>Embedded Systems I</td>
<td>69</td>
</tr>
<tr>
<td>inf339</td>
<td>Industry 4.0: Digitalization in Industrial Manufacturing</td>
<td>72</td>
</tr>
<tr>
<td>inf5122</td>
<td>Learning-Based Control in Digitalised Energy Systems</td>
<td>74</td>
</tr>
<tr>
<td>inf5408</td>
<td>Angewandtes Deep Learning in PyTorch</td>
<td>76</td>
</tr>
<tr>
<td>inf5452</td>
<td>Aktuelle Themen des Vertrauenswürdigen Maschinellen Lernen</td>
<td>78</td>
</tr>
<tr>
<td>inf100</td>
<td>Mensch-Maschine Interaktion</td>
<td>80</td>
</tr>
<tr>
<td>inf300</td>
<td>Hybride Systeme</td>
<td>83</td>
</tr>
<tr>
<td>inf301</td>
<td>Hardwarenahe Systementwicklung</td>
<td>85</td>
</tr>
<tr>
<td>inf303</td>
<td>Fuzzy-Regelung und künstliche neuronale Netze in Robotik und Automation</td>
<td>87</td>
</tr>
<tr>
<td>Code</td>
<td>Course</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>inf305</td>
<td>Medizintechnik</td>
<td>90</td>
</tr>
<tr>
<td>inf307</td>
<td>Robotik</td>
<td>92</td>
</tr>
<tr>
<td>inf308</td>
<td>Mikrorobotik II</td>
<td>94</td>
</tr>
<tr>
<td>inf311</td>
<td>Low Energy System Design</td>
<td>96</td>
</tr>
<tr>
<td>inf331</td>
<td>Automated and Connected Driving</td>
<td>98</td>
</tr>
<tr>
<td>inf332</td>
<td>Practice Robotics</td>
<td>100</td>
</tr>
<tr>
<td>inf334</td>
<td>System Level Design</td>
<td>102</td>
</tr>
<tr>
<td>inf336</td>
<td>Application Area Automotive</td>
<td>104</td>
</tr>
<tr>
<td>inf338</td>
<td>Design of Autonomous Systems</td>
<td>106</td>
</tr>
<tr>
<td>inf456</td>
<td>Realzeitsysteme</td>
<td>108</td>
</tr>
<tr>
<td>inf535</td>
<td>Computational Intelligence I</td>
<td>110</td>
</tr>
<tr>
<td>inf536</td>
<td>Computational Intelligence II</td>
<td>112</td>
</tr>
<tr>
<td>inf537</td>
<td>Intelligent Systems</td>
<td>114</td>
</tr>
<tr>
<td>inf604</td>
<td>Business Intelligence I</td>
<td>116</td>
</tr>
<tr>
<td>inf607</td>
<td>Business Intelligence II</td>
<td>118</td>
</tr>
<tr>
<td>inf650</td>
<td>Transportsysteme</td>
<td>120</td>
</tr>
<tr>
<td>inf663</td>
<td>Application Area Maritime</td>
<td>122</td>
</tr>
<tr>
<td>inf973</td>
<td>Psychological practicum fNIRS, EEG</td>
<td>124</td>
</tr>
<tr>
<td>inf974</td>
<td>Human Computer Interaction and Brain Computer Interfacing</td>
<td>126</td>
</tr>
<tr>
<td>mar364</td>
<td>Zeitreihenanalyse</td>
<td>128</td>
</tr>
<tr>
<td>inf203</td>
<td>Embedded Systems I</td>
<td>130</td>
</tr>
<tr>
<td>inf204</td>
<td>Embedded Systems II</td>
<td>133</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>inf340</td>
<td>Uncertainty Modeling for Control in Digitalised Energy Systems</td>
<td>135</td>
</tr>
<tr>
<td>inf341</td>
<td>Robust Control and State Estimation in Digitalised Energy Systems</td>
<td>137</td>
</tr>
<tr>
<td>inf5122</td>
<td>Learning-Based Control in Digitalised Energy Systems</td>
<td>139</td>
</tr>
<tr>
<td>inf5408</td>
<td>Angewandtes Deep Learning in PyTorch</td>
<td>141</td>
</tr>
<tr>
<td>inf5452</td>
<td>Aktuelle Themen des Vertrauenswürdigen Maschinellen Lernen</td>
<td>143</td>
</tr>
<tr>
<td>inf300</td>
<td>Hybride Systeme</td>
<td>145</td>
</tr>
<tr>
<td>inf301</td>
<td>Hardwarenahe Systementwicklung</td>
<td>147</td>
</tr>
<tr>
<td>inf303</td>
<td>Fuzzy-Regelung und künstliche neuronale Netze in Robotik und Automation</td>
<td>149</td>
</tr>
<tr>
<td>inf305</td>
<td>Medizintechnik</td>
<td>152</td>
</tr>
<tr>
<td>inf307</td>
<td>Robotik</td>
<td>154</td>
</tr>
<tr>
<td>inf308</td>
<td>Mikrorobotik II</td>
<td>156</td>
</tr>
<tr>
<td>inf311</td>
<td>Low Energy System Design</td>
<td>158</td>
</tr>
<tr>
<td>inf334</td>
<td>System Level Design</td>
<td>160</td>
</tr>
<tr>
<td>inf336</td>
<td>Application Area Automotive</td>
<td>162</td>
</tr>
<tr>
<td>inf338</td>
<td>Design of Autonomous Systems</td>
<td>164</td>
</tr>
<tr>
<td>inf454</td>
<td>Kommunizierende und mobile Systeme</td>
<td>166</td>
</tr>
<tr>
<td>inf456</td>
<td>Realzeitsysteme</td>
<td>168</td>
</tr>
<tr>
<td>inf502</td>
<td>Simulation</td>
<td>170</td>
</tr>
<tr>
<td>inf537</td>
<td>Intelligent Systems</td>
<td>172</td>
</tr>
<tr>
<td>inf604</td>
<td>Business Intelligence I</td>
<td>174</td>
</tr>
<tr>
<td>inf607</td>
<td>Business Intelligence II</td>
<td>176</td>
</tr>
</tbody>
</table>
Modulhandbuch Engineering of Socio-Technical Systems - Master-Studiengang

Datum 08.12.2023

Basiskompetenzen/Grundlagen

inf960 - Fundamental Competencies in Computing Science I: Signals and Dynamical Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Fundamental Competencies in Computing Science I: Signals and Dynamical Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf960</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Basiskompetenzen/Grundlagen

Zuständige Personen
- Hein, Andreas (Modulverantwortung)
- Fränzle, Martin Georg (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen

Kompetenzziele
Dieser Kurs bietet eine Einführung in die digitale Signalverarbeitung. Er deckt die mathematischen Grundlagen ab, die notwendig sind, um die Auswirkungen der Digitalisierung auf ein kontinuierliches Signal zu verstehen, sowie die zielgerichtete Synthese von digitalen Filtern. Damit werden die theoretischen Grundlagen für das Verständnis und den Entwurf von Anwendungen der digitalen Signalverarbeitung in einer Vielzahl von Bereichen gelegt, die für den MSc EngSTS relevant sind, wie z.B. neurophysiologische Messungen, Brain-Computing-Interfaces oder Embedded Control. Im Gegensatz zu den nachfolgenden Modulen des Studiengangs zielt das Modul selbst nicht darauf ab, solche Anwendungen abzudecken, sondern ein solides Verständnis der zugrundeliegenden Prinzipien und der grundlegenden Beschränkungen der digitalen Signalverarbeitung zu vermitteln. Es richtet sich an Psychologen, aber auch an Informatiker, die bisher keine systematische mathematische Behandlung der Grundlagen der digitalen Signalverarbeitung erfahren haben.

Fachkompetenzen
Die Studierenden:
- nennen die Konzepte der Signal- und Bildverarbeitung in technischen Systemen
- nennen die Methoden/Algorithmen der Vorverarbeitung, Filterung, Klassifikation, Interpretation und Visualisierung von Signalen und Bildern
- wählen Algorithmen sachgerecht aus
- bewerten die Wirksamkeit von Algorithmen
- entwerfen Algorithmen und Verarbeitungsketten und bewerten deren Qualität

Selbstkompetenzen
Die Studierenden:
- arbeiten sich in spezifische Themen der Signal- und Bildverarbeitung ein

Methodenkompetenzen
Die Studierenden:
- präsentieren Lösungen für spezifische Fragen der Signal- und Bildverarbeitung

Sozialkompetenzen
Die Studierenden:
- reflektieren ihre Lösungen mit Hilfe der in dem Kurs erlernten Methoden

Modulinhalte
- Grundlegende Konzepte
- Signalverarbeitung
- Signalräume und Signalverarbeitungssysteme
- Diskrete und konstante Signale
- Kennzeichnung von Signalübertragern mit Testsignalen
- Darstellungsbereiche und Transformationen
- Zeitdiskrete Systeme und Abtastung
Schätzung und Filterung
Konstruktion mit MATLAB
Bildverarbeitung
Einführung / Anwendungsbereiche
Funktionale Transformation
Bildverbesserung/Filterung
Segmentierung
3D-Rekonstruktion und Visualisierung

Literaturnachweise
Empfohlen:
- Meyer, M.; Signalverarbeitung: Analoge und digitale Signale, Systeme und Filter
- Grünigen, D. C. v.; Digitale Signalverarbeitung: mit einer Einführung in die kontinuierlichen Signale und Systeme
- Tönies, K.; Grundlagen der Bildverarbeitung; Pearson Studium 2005
- Lehmann, Th.; Oberschelp, W.; Pelinak, E.; Pegges, R.; Bildverarbeitung in der Medizin; Springer Verlag 1997
- Handels, H.; Medizinische Bildverarbeitung; Teubner Verlag, Stuttgart - Leipzig 2000

Links

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Modulart

Vorkenntnisse
Modul math040 Analysis II b: Differentialgleichung mehrerer Variablen

Prüfung
Prüfungszeiten
Prüfungsform
Gesamtmodul
Am Ende der Vorlesungszeit
Praktische Übungen und schriftliche oder mündliche Prüfung

Lehrveranstaltungsform
Kommentar
SWS
Angebotsrhythmus
Workload Präsenz

Vorlesung
2
WiSe
28

Übung
2
WiSe
28

Präsenzzeit Modul insgesamt
56 h
inf961 - Fundamental Competencies in Computing Science II: Mathematics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Fundamental Competencies in Computing Science II: Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf961</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering of Socio-Technical Systems (Master) > Basiskompetenzen/Grundlagen</td>
</tr>
</tbody>
</table>
| Zuständige Personen | Fränzle, Martin Georg (Modulverantwortung)
 | Heß, Florian (Modulverantwortung)
 | Stein, Andreas (Modulverantwortung)
 | Stein, Sandra (Modulverantwortung)
 | Lehrenden, Die im Modul (Prüfungsberechtigt) |
| Kompetenzziele | Die Kurse bieten eine Einführung in die grundlegenden Methoden der mathematischen Formalisierung und Beweisführung sowie in die zentralen Konzepte der Graphentheorie, der elementaren Zahlentheorie und der Algebra. Die Auswahl der Themen richtet sich nach ihrer besonderen Relevanz für die Informatik und verwandte Disziplinen. Im Rahmen des Curriculums des MSc EngSTS vermittelt dieser Kurs Studierenden mit einem BSc in Psychologie oder verwandten Fächern die Fähigkeiten in mathematischer Formalisierung, die für die Bewältigung nachfolgender Kurse in Informatik notwendig sind. |
| Teilnahmevoraussetzungen | Keine Teilnahmevoraussetzungen |

Methodenkompetenzen

Die Studierende:

- sind in der Lage, grundlegende Methoden der mathematischen Formalisierung und Argumentation auf konkrete Problemstellungen anzuwenden
- sind in der Lage, die aus einer solchen formalen Argumentation resultierenden Urteile abzurufen und im Hinblick auf die ursprüngliche, informelle Problembeschreibung zu interpretieren.

Soziale Kompetenzen

Die Studierenden:

- sind in der Lage, sich gegenseitig mathematische Formalisierungen zu erklären und deren Begründungen zu diskutieren

Selbstkompetenzen

Die Studierenden:

- sind in der Lage, die Angemessenheit ihrer Formalisierungs- und Verifikationsversuche zu reflektieren

Modulinhalte

- Aussagenlogik;
- Methoden der mathematischen Beweisführung;
- Mengen, Relationen und Funktionen;
- Kombinatorik;
- Graphen und ihre Anwendungen;
- natürliche und ganze Zahlen und ihre Restklassen;
- Gruppen und Sime-Gruppen.

Das Modul besteht aus einer Vorlesung und einem Übungsteil.

Literaturempfehlungen

- B. Kreußler und G. Pfister: Mathematik für Informatiker, Springer-Verlag 2009 (available online from the university library)
<table>
<thead>
<tr>
<th>Links</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unterrichtssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modullevel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkategorie</td>
<td>Modulart</td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1VL + 1Ü</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
</tr>
<tr>
<td>Gesamtnote</td>
<td>At the end of the lecture periods</td>
</tr>
<tr>
<td>Prüfungsort</td>
<td>written exam or oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Übung</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload Präsenz</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2 WiSe</td>
</tr>
<tr>
<td>Übung</td>
<td>2 WiSe</td>
</tr>
</tbody>
</table>

<p>| Präsenzzeit Modul insgesamt | 56 h |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Fundamental Competencies in Computing Science III: Algorithms and Computational Problem Solving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf962</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Applied Economics and Data Science (Master) > Data Science Master Engineering of Socio-Technical Systems (Master) > Basiskompetenzen/Grundlagen Master Umweltmodellierung (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Vogel-Sonnenschein, Ute (Modulverantwortung) Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Es sind keine spezifischen Kenntnisse erforderlich, um an diesem Modul teilzunehmen.</td>
</tr>
</tbody>
</table>

Kompetenzziele

Dieser Kurs vermittelt Studierenden grundlegende Fähigkeiten in der rechnergestützten Problemlösung, die für die Bewältigung nachfolgender Kurse in Informatik notwendig sind.

Fachkompetenzen:

Die Studierenden
- benennen die grundlegenden Konzepte der von Neumannschen Rechnerarchitektur,
- beschreiben Konzepte der rechnerischen Repräsentation von Informationen und deren Grenzen,
- nutzen grundlegende Datenstrukturen und Algorithmen und können über deren Komplexität argumentieren,
- modellieren einfache Sachverhalte mit formalen Konzepten wie Automaten und formalen Sprachen,
- entwerfen relationale Datenbanken und benennen die Vorteile einer datenbankgestützten Speicherung.

Methodenkompetenzen:

Die Studierenden
- analysieren Probleme aus ihrem Anwendungsbereich,
- entwerfen sachgemessene Lösungen für einfache Problemstellungen mittels der Programmiersprache Python und schätzen den Aufwand für die Ausführung ab,
- entwickern einfache objektorientierte Modelle und implementieren diese in Python und setzen eine einfache IDE zur Erstellung von Python-Skripten ein,
- diskutieren alternative rechnerische Darstellungen von Daten und Problemen und ziehen daraus fundierte Schlüsse für spätere Entwurfs- und Implementierungsentscheidungen,
- stellen Anfragen an relationale Datenbank über eine einfaches Datenbankmanagementsystem und können Anfragen an Datenbanken sowohl über ein DBMS als auch über die SQL-Schnittstelle von Programmersprachen stellen,
- erarbeiten sich die Syntax einfacher neuer Konstrukte anhand von formalen Konzepten.

Soziale Kompetenzen:

Die Studierenden
- präsentieren und diskutieren ihre Lösungen in einem interdisziplinären Team,
- erarbeiten Lösungen zu einfachen Problemstellungen kooperativ im Team.
Selbstkompetenzen:
Die Studierenden
- reflektieren grundlegende Entwurfsentscheidungen in Algorithmen und Datenstrukturen kritisch,
- vertiefen ihre Fähigkeiten im Zeitmanagement.

Modulinhalte
- von-Neumannsche Rechnerarchitektur, Aufgaben von Betriebssystemen
- Computerdarstellung von Informationen,
- formale Sprachen, Grammatik und Automaten,
- grundlegende Datenstrukturen,
- Algorithmen und Komplexität,
- Programmierung einfacher objektorientierter Lösungen in Python
- Grundlegende Konzepte SQL-basierter Datenbanken

Literaturempfehlungen

Links

<table>
<thead>
<tr>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jedes Wintersemester</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Hinweise
Dieses Modul vermittelt Studierenden mit nicht-informatischem Hintergrund die Fähigkeiten zur rechnergestützten Problemlösung, die für die Bewältigung nachfolgender Kurse in Informatik erforderlich sind. Es ist nicht für Studierende mit Informatikhintergrund gedacht.

Modullevel

Modulart

<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>1VL + 1Ü</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Die Prüfung findet in den ersten drei Wochen nach Ende der Veranstaltungszeit statt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Wiederholungsprüfung findet in den letzten drei Wochen vor Beginn der nächsten Veranstaltungszeit statt.</td>
<td></td>
</tr>
<tr>
<td>Fachpraktische Übungen und Klausur oder Fachpraktische Übungen und mündliche Prüfung (bei weniger als 20 Teilnehmenden)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>WiSe</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
Modul: Foundations of STS Eng.: Cognitive Processes

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Foundations of STS Eng.: Cognitive Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf963</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering of Socio-Technical Systems (Master) > Basiskompetenzen/Grundlagen</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Fränzle, Martin Georg (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Keine Teilnehmervoraussetzungen</td>
</tr>
</tbody>
</table>

Kompetenzziele

Ziel des Moduls ist es, einen Überblick über Theorien kognitiver Prozesse zu geben. Teil 1 wird eine Vorlesung über Neurokognition sein. Die Studierenden erwerben zunächst ein allgemeines Verständnis der Gehirnmechanismen verschiedener kognitiver Funktionen und der zur Untersuchung dieser Funktionen verwendeten Methoden:

- Gehirn und Kognition, Methoden der kognitiven Neurowissenschaften
- Aufmerksamkeit, Lernen und Gedächtnis
- Emotionales und soziales Verhalten
- Sprache, exekutive Funktionen

Kompetenzen:

Verständnis grundlegender Konzepte der biomedizinischen Signalverarbeitung;

- interaktiver und selbständiger Umgang mit EEG-Analysewerkzeugen;
- Verständnis der gesamten Kette von EEG-Analysephasen, vom Datenimport bis zur Darstellung der Ergebnisse;
- Fähigkeit zur Nutzung von Open-Source-Werkzeugen für die EEG-Analyse;
- Anwendung theoretischer Kenntnisse auf praktische Probleme der Physiologie.

Teil 3 wird ein Seminar über kognitive Technik sein. Die Studenten werden mit Methoden, Werkzeugen und Techniken (MTTs) zur Bewertung und Vorhersage der menschlichen Leistung in kleinen Anwendungsfallen in verschiedenen Bereichen (Luftfahrt, Flugsicherung, Automobil, Schiffsfahrt oder Gesundheitswesen) vertraut gemacht. Von jedem Teilnehmer wird erwartet, dass er die MTT auf der Grundlage der zur Verfügung gestellten Materialien und Software studiert und anwendet und den Modellierungsansatz und die erzielten Ergebnisse mit den anderen Teilnehmern und Experten im Seminar präsentiert und diskutiert.

Fachkompetenz

Die Studierenden:

- Neuropsychologische / neurophysiologische Kenntnisse

Methodenkompetenz

Die Studierenden:

- Interdisziplinäres Wissen & Denken

Sozialkompetenz

Die Studierenden:

- schriftliche und mündliche Präsentation und Diskussion von wissenschaftlichen und technischen Ergebnissen mit anderen

Selbstkompetenz

Die Studierenden:

- lesen, verstehen, zusammenfassen und kritisches Beurteilen wissenschaftlicher Texte/Literatur
Modulinhalte

- The Student's Guide to Cognitive Neuroscience, Psychology Press Tei
 l 2 Neurophysiologie: Kandel et al. (2000).
- An Introduction to the ERP Technique, The MIT Press Van Drongelen,
- Signalverarbeitung für Neurowissenschaftler, Academic Press Teil 3
- Model-Based Design and Evaluation of Interactive Applications
- ACT-R: A Theory of Higher Level Cognition and Its Relation to Visual
- Engineering Psychology & Human Performance Vicente, K (2002).
- Ökologisches Schnittstellendesign: Fortschritte und
- Cognitive Work Analysis: Auf dem Weg zu sicherer, produktiver und
- Die Psychologie der Mensch-Computer-Interaktion

Literaturempfehlungen

<table>
<thead>
<tr>
<th>Links</th>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
<td></td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
<td></td>
</tr>
</tbody>
</table>

Hinweise

Das Modul wird im Wintersemester angeboten und sollte innerhalb eines Semesters absolviert werden. Beide Teile werden parallel laufen

Modullevel

<table>
<thead>
<tr>
<th>Modulart</th>
<th>Lehr-/Lernform</th>
<th>1VL + 1S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse</td>
<td>keine</td>
<td></td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gesamtmodul

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Angebotsrhythmus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Präsenzzzeit Modul insgesamt 56 h
Kompetenzziele

Fachkompetenz
Die Studierenden:
- sollen über ein Repertoire an kognitionspsychologischen Konzepten verfügen, die für reale Situationen relevant sind
- sollen wichtige ethische Konzepte kennen, erläutern und auf Szenarien der Technikfolgenabschätzung übertragen können
- sollen verschiedene Formen und Konzepte der Technikfolgenabschätzung kennenlernen, erläutern und auf Szenarien anwenden können (Experten-, partizipative, konstruktive, diskursive Technikfolgenabschätzung, Health Technology Assessment (HTA))
- sollen das Kolingride-Dilemma reflektieren können

Methodenkompetenz
Die Studierenden:
- sollen in der Lage sein, die erlernten theoretischen Konzepte in praktische Kontexte zu übertragen
- sollen in der Lage sein, systematische Literaturrecherchen durchzuführen
- sollen in der Lage sein, mögliche Probleme im Übersetzungsprozess zu bewerten
- sollen in der Lage sein, eine Risiko-Nutzen-Analyse und eine Kosten-Nutzen-Analyse von vorgegebenen Beispielen durchzuführen
- sollen empirische Methoden der Technikfolgenabschätzung kennen und erläutern können
- Methodische Überlegungen: Generalisierung, Gültigkeit von Theorien und Forschungsmethoden

Sozialkompetenz
Die Studierenden:
- sollen in der Lage sein, auf der Grundlage unterschiedlicher Standpunkte zu argumentieren

Selbstkompetenz
Die Studierenden:
- sollen in der Lage sein, ihre eigenen Einstellungen zu reflektieren und mit ethischen Grundsätzen zu begründen
- Verfolgung von Zielen: Denken, Problemlösen und Handeln

Modulinhalte
Das Modul besteht aus einer Vorlesung und einem Seminarteil:

Vorlesung:
- Neurokognitive Psychologie mit Schwerpunkt in der Praxis
- Ethische Prinzipien und Konzepte
Formen und Konzepte der Technikfolgenabschätzung
Chancen und Grenzen der Technikfolgenabschätzung

Allgemeines:
Präsentation sowie kritische Bewertung und Diskussion wissenschaftlicher Literatur, Anwendung von Forschungsmethoden, Übertragung wissenschaftlicher Paradigmen (Konzepte und Methoden) auf reale Situationen.

Seminar:

Literaturempfehlungen

Links
Unterrichtssprache Englisch
Dauer in Semestern 2 Semester
Angebotsrhythmus Modul every Semester
Aufnahmekapazität Modul unbegrenzt

Modulart
Lehr-/Lernform 1VL + 1S
Vorkenntnisse keine

Prüfung Prüfungszeiten Prüfungsform
Gesamtmodul Am Ende der Vorlesungszeit Portfolio
Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz
Vorlesung 2 SoSe 28
Seminar 2 WiSe 28

Präsenzzeit Modul insgesamt 56 h
inf965 - Foundations of STS Eng.: Systems Engineering

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Foundations of STS Eng.: Systems Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf965</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering of Socio-Technical Systems (Master) > Basiskompetenzen/Grundlagen</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>• Hahn, Axel (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>• Fränzle, Martin Georg (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>• Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Keine Teilnehmervoraussetzungen</td>
</tr>
</tbody>
</table>

Kompetenzziele

Fachkompetenz

Die Studierenden:

- Der Entwurf und die Wartung komplexer Artefakte sind seit Jahrzehnten eine große Herausforderung für die Ingenieurwissenschaften. System Engineering ist ein Ansatz zur Bewältigung dieser Komplexität.
- sind sich nach Abschluss dieses Moduls der Herausforderungen der Komplexität bewusst.
- wissen, wie die Systemtechnik diese bewältigen kann, indem sie komplexe, aber zuverlässige und sichere Produkte entwickelt. Ein wichtiger Eckpfleiler ist die Kenntnis des Konzepts eines Systems und dessen Beschreibung mit Hilfe geeigneter Modellierungstechniken.
- sind in der Lage, die Auswirkungen der Eigenschaften einzelner Komponenten auf das System als Ganzes zu verstehen, einschließlich des Menschen als Element komplexer Systeme.

Methodenkompetenz

Die Studierenden:

Fachliche Kompetenzen

Die Studierenden:

- werden praktische Erfahrungen vermittelt durch den Einsatz von Engineering-Tools

Sozialkompetenz

Die Studierenden:

- sind sich der Rolle, die komplexe Systeme in unserer Gesellschaft spielen, bewusst
- haben ein Verständnis für Komplexitätsmanagement als Selbstkompetenz im Ingenieurwesen

Modulinhalte

Literaturempfehlungen

Links

- Unterrichtssprache: Englisch
- Dauer in Semestern: 2 Semester

17 / 213
<table>
<thead>
<tr>
<th>Angebotsrhythmus Modul</th>
<th>jedes Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel</td>
<td></td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1VL + 1Ü</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td></td>
</tr>
<tr>
<td>Am Ende der Vorlesungszeit</td>
<td></td>
</tr>
<tr>
<td>Portfolio</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
</tr>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenz</td>
<td></td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2</td>
</tr>
<tr>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
</tr>
<tr>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf966 - Foundations of STS Eng.: Statistics and Programming

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Foundations of STS Eng.: Statistics and Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf966</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Engineering of Socio-Technical Systems (Master) > Basiskompetenzen/Grundlagen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuständige Personen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timmer, Antje (Modulverantwortung)</td>
</tr>
<tr>
<td>Hein, Andreas (Modulverantwortung)</td>
</tr>
<tr>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnahmevoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine Teilnehmervoraussetzungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompetenzziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachkompetenzen: Die Studierenden:</td>
</tr>
<tr>
<td>lernen Statistische Datenauswertungen mittels Programmierung zu planen, zu programmieren und zu interpretieren.</td>
</tr>
<tr>
<td>Methodenkompetenzen: Die Studierenden:</td>
</tr>
<tr>
<td>verstehen die wichtigsten statistischen Methoden und deren praktischen Einsatz durch Anwendung</td>
</tr>
<tr>
<td>können statistische Methoden hinsichtlich ihrer Eigenschaften und Grenzen bewerten</td>
</tr>
<tr>
<td>lernen den Einsatz von Statistiksoftware in Anwendungsszenarien</td>
</tr>
<tr>
<td>können Programme mittels einer Programmiersprache implementieren</td>
</tr>
<tr>
<td>wissen, wie man statistische Datenanalysen programmiert</td>
</tr>
<tr>
<td>Soziale Kompetenzen: Die Studierenden</td>
</tr>
<tr>
<td>sammeln Erfahrungen im interdisziplinären Arbeiten.</td>
</tr>
<tr>
<td>Selbstkompetenzen</td>
</tr>
<tr>
<td>Die Studierenden:</td>
</tr>
<tr>
<td>sammeln Erfahrungen in Verfolgung von Zielen: Denken, Problemlösen und Handeln</td>
</tr>
<tr>
<td>erlernen Fähigkeiten bei der Analyse und Bewertung der Auswirkungen und Relevanz von Datensätzen für spezifische Forschungsfragen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulinhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul besteht aus einer Vorlesung und einem Übungsteil:</td>
</tr>
<tr>
<td>Vorlesung: Einführung in die Konzepte und Methoden der computergestützten statistischen Datenauswertung. Besonderer Wert wird auf statistische Methoden sowie auf ein grundlegendes Verständnis von Programmiersprachen gelegt.</td>
</tr>
<tr>
<td>1. Grundlegende Informatikkonzepte im Hinblick auf den Umgang mit imperativen Programmiersprachen einschließlich:</td>
</tr>
<tr>
<td>Variablentypen und Variablenhandhabung</td>
</tr>
<tr>
<td>typische Codestrukturen (wie "while / for-Schleifen" oder "if-then else"-Anweisungen)</td>
</tr>
<tr>
<td>Datenhandhabung und Berechnungsansätze</td>
</tr>
<tr>
<td>2. Grundlegende statistische Methodik wie:</td>
</tr>
<tr>
<td>Schätzung von Parametern durch die Methode der maximalen Wahrscheinlichkeit (maximum likelihood)</td>
</tr>
<tr>
<td>Konfidenzintervalle und klassische Signifikanztests</td>
</tr>
<tr>
<td>klassische Regressionsanalyse</td>
</tr>
<tr>
<td>moderne Fortschritte in der Regressionsanalyse</td>
</tr>
<tr>
<td>Übungen: Schrittweise praktische oder papierbasierte Anwendung der erlernten Konzepte, Methoden und Werkzeuge.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literaturempfehlungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Links</td>
</tr>
<tr>
<td>Unterrichtssprache</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
</tr>
<tr>
<td>Modullevel</td>
</tr>
<tr>
<td>Modulart</td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
</tr>
<tr>
<td>Prüfung</td>
</tr>
<tr>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Prüfungsform</td>
</tr>
<tr>
<td>Gesamtmodul</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
</tr>
<tr>
<td>Kommentar</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
</tr>
<tr>
<td>Workload Präsenz</td>
</tr>
<tr>
<td>Vorlesung</td>
</tr>
<tr>
<td>Übung</td>
</tr>
<tr>
<td>Präsenzzzeit Modul insgesamt</td>
</tr>
<tr>
<td>Am Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td>Vorlesung</td>
</tr>
<tr>
<td>Übung</td>
</tr>
</tbody>
</table>
inf970 - Fundamental Competencies in Psychology I: Psychology

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Fundamental Competencies in Psychology I: Psychology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf970</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering of Socio-Technical Systems (Master) > Basiskompetenzen/Grundlagen</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Herrmann, Christoph Siegfried (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Teilnahmeveraussetzungen
Keine Teilnahmeveraussetzungen

Kompetenzziele

Fachkompetenz
Die Studierenden:
- erwerben Grundkenntnisse in ausgewählten Themen der Psychologie

Methodenkompetenz
Die Studierenden:
- erlernen ausgewählte Methoden und Theorien der Psychologie

Sozialkompetenz
Die Studierenden:
- lernen, in kleinen Gruppen zusammenzuarbeiten
- können wissenschaftliche Theorien vermitteln

Selbstkompetenzen
Die Studierenden:
- lernen, ihr Wissen in anderen, spezifischeren Psychologiekursen anzuwenden

Modulinhalte

Literaturempfehlungen

Links

<table>
<thead>
<tr>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Hinweise

Modullevel

Modulart

<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>1VL + 1Ü</th>
</tr>
</thead>
</table>

Vorkenntnisse

keine

Prüfung

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>Beim letzten Vortragstermin</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform | Kommentar | SWS | Angebotsrhythmus | Workload Präsenz |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td></td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
inf972 - Fundamental Competencies in Psychology III: Experiments and Studies

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Fundamental Competencies in Psychology III: Experiments and Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf972</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering of Socio-Technical Systems (Master) > Basiskompetenzen/Grundlagen</td>
</tr>
</tbody>
</table>
| Zuständige Personen | • Boll-Westermann, Susanne (Modulverantwortung)
| | • Lehrenden, Die im Modul (Prüfungsberechtigt) |
| Teilnahmeveraussetzungen | Keine Teilnahmeveraussetzungen |

Kompetenzziele

Fachkompetenzen

Die Studierenden:
- Methodenkompetenzen
 - werden in die Planung, Durchführung sowie in die Auswertung und Interpretation von Experimenten eingeführt.
- Sozialkompetenzen
 - Die Studierenden:
- Selbstkompetenzen
 - Die Studierenden:
 - kennen die Instrumente und Methoden der Versuchsplanung und -auswertung
 - sind in der Lage, die richtigen Methoden für ihr spezifisches Experiment auszuwählen. Sie sind in der Lage, Experimente zu planen und durchzuführen.

Modulinhalte

- Inhalt des Moduls: Einführung in die experimentelle Psychologie
 - Variablen, abhängige und unabhängige Variablen
 - Formulierung von Hypothesen / Hypothesentestung
 - Korrelation und Ursache
 - Quantitative und qualitative Methoden
 - Erhebungen, Experimente, Beobachtungsstudien Versuchsplanung /
Studien Designs
- Experimente zwischen Versuchspersonen
- Within-Subjects-Experimente
- Randomisierte Kontrollversuche
- Praktische Überlegungen
- Komplexe Forschungsdesigns
- Forschung mit einem einzigen Probanden
- Laborstudien v.w. Studien in freier Wildbahn
- Einzelfaktor vs. Multifaktor-Designs Teilnehmer
- Rekrutierung von Teilnehmern
- Probenahme der Teilnehmer
- Randomisierung
- Tools zur Leistungsberechnung
- SoSci Survey für Online-Befragung
- Statistische Werkzeuge Analyse
- Deskriptive Statistik
- Deskriptive Statistik und Korrelationskoeffizienten
- Statistische Analyse der Daten
- Interne und externe Validität Ethik
- Institutionelle Prüfungsausschüsse
- Informierte Zustimmung Das Modul besteht aus einer Vorlesung und einem Übungsteil:

Vorlesung: Theoretische Einführung in die Konzepte und wissenschaftlichen Methoden der Versuchsplanung.

Literaturempfehlungen
- Das psychologische Experiment, Eine Einführung, Osswald Huber, 2005
- How to Design and Report Experiments, Andy Field, sage 2003
- Research Methods in HCI, Jonathan Lazar, Jinjuan Heidi Feng, Harry Hochheiser, John Wiley and Sons Ltd, 2009
- Allgemeine Psychologie, Müseler, Jochen, Berlin ; Heidelberg: Springer, 2017

Links

Unterrichtssprache Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul jährlich
Aufnahmekapazität Modul unbegrenzt

Hinweise

Modullevel

Modulart

Lehr-/Lernform 1 VL + 1 Ü
Vorkenntnisse keine
Prüfung praktische Übung oder mündliche Prüfung
Prüfungsform

Gesamtmodul

Angebotsrhythmus

Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz

Vorlesung
2 WiSe 28

Übung
2 WiSe 28

Präsenzzeit Modul insgesamt 56 h

24 / 213
Modulbezeichnung
- **inf977 - Fundamental Competencies in Psychology II: Experimental Psychology (& Cognitive Processes)**

Modulkürzel
- inf977

Kreditpunkte
- 6.0 KP

Workload
- 180 h

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Basiskompetenzen/Grundlagen

Zuständige Personen
- Rieger, Jochem (Modulverantwortung)
- Feuerstack, Sebastian (Modulverantwortung)
- Unni, Anirudh (Modulverantwortung)

Teilnahmevoraussetzungen
- Keine Teilnehmervoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- jährlich

Aufnahmekapazität Modul
- unbegrenzt

Modullevel

Modulart
- 1VL + 1S

Vorkenntnisse
- keine

Prüfung

Gesamtmodul
- Klausur, oder Portfolio oder Referat oder mündliche Prüfung

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzzeit Modul insgesamt
- 56 h
Human-Computer Interaction

inf100 - Mensch-Maschine Interaktion

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Mensch-Maschine Interaktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf100</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>Master Informatik (Master) > Praktische Informatik</td>
</tr>
<tr>
<td></td>
<td>Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Boll-Westermann, Susanne (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmeveranlassungen</td>
<td>Nützliche Vorkenntnisse: Interaktive Systeme</td>
</tr>
</tbody>
</table>

Kompetenzziele

Die Studierenden können eigenständig, unter zu Hilfenahme geeigneter Ressourcen, eine Mensch-Maschine Schnittstelle nach dem nutzerzentrierten Designprozess (HCD) konzipieren, prototypisch entwickeln und evaluieren.

Fachkompetenzen

Die Studierenden:

- können den HCD Prozess beschreiben und erklären.
- können eine unbekannte Methode anhand einer knappen Beschreibung in den HCD Prozess einordnen.
- können eine geeignete Art des Prototypings für einen gegebenen Anwendungsfall auswählen.
- können eine geeignete Prototypingmethode für einen gegebenen Anwendungsfall auswählen.
- können ausgewählte Prototypingmethoden anwenden um ein interaktives System zu konzipieren.
- können grundlegende Charakteristiken der menschlichen Wahrnehmung und Motorik nennen und deren Bedeutung für die Entwicklung interaktiver Systeme erläutern.
- können auf Basis der Gestaltgesetze Verbesserungsvorschläge für eine gegebene Benutzungsschnittstelle machen und begründen.
- können die Grundzüge der visuellen Suche erläutern und zur Verbesserung gegebener Interfaces heranziehen.
- können mehrere Varianten eines Konzepts eines interaktiven Systems anhand der Erkenntnisse der "Multiple Ressource Theory" kritisch vergleichen.

Methodenkompetenzen

Die Studierenden

- können Methoden zur Nutzungskontext- und/oder Nutzungsanforderungsanalyse kritisch vergleichen und auswählen.
- können Methoden zur Nutzungskontext- und/oder Nutzungsanforderungs auf ein reales Beispiel anwenden.
- können retrospektiv zur Verwendung einer Methode zur Nutzungskontext- und/oder Nutzungsanforderungs Stellung beziehen.
- können eine Ideation (= Ideenfindung) Sitzung planen, moderieren und auswerten.
- können auf Basis einer gegebenen Themenstellung eine präzise Forschungsfrage formulieren.
- können die Vor- und Nachteile eines Experiment Designs diskutieren.
- können für eine gegebene Fragestellung ein geeignetes Experiment Design auswählen.
- können für ein gegebenes Experiment Hypothesen und Nullhypothesen formulieren.

Sozialkompetenzen

Die Studierenden:

- können in Gruppenarbeit eigenständig Lösungsansätze zu einem gegebenen Designproblem erarbeiten.
- können selbst entwickelte Lösungen eines Designproblems im Plenum präsentieren.
können ihre methodische Herangehensweise an ein Designproblem motivieren.
können ihre Designentwürfe und Ergebnisse fachlich und sachlich angemessen mit dem Plenum diskutieren.
können fachliche und sachliche Kritik in ihre eigenen Designentwürfe integrieren.

Selbstkompetenzen
Die Studierenden:
können während des Designprozesses gemachte Fehler akzeptieren und aus ihnen lernen.

Modulinhalte

Das Modul vermittelt detaillierte Informationen zu Evaluationsmethoden und stellt die Grundlagen der experimentellen Forschung in der Mensch-Computer-Interaktion ein, einschließlich Forschungsmethoden, Forschungsthemen, experimentelles Design und statistische Analyse.

Literaturempfehlungen
- Literatur im Handapparat der Abteilung in der Bibliothek.
- Linkliste im Lernmanagementsystem Stud.IP zu den einzelnen Themen der Vorlesung. / Literature in the reserve shelf in the university bibliography. Link list in Stud.IP.

Links
https://uol.de/medieninformatik/lehrveranstaltungen

Unterrichtsprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jedes Sommersemester

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Modullevel
Modulart
Lehr-/Lernform
1VL + 1Ü

Vorkenntnisse
Nützliche Vorkenntnisse: Interaktive Systeme

Prüfung
Prüfungszeiten
Prüfungsform

Gesamtmodul

Portfolio

Lehrveranstaltungsform
Kommentar
SWS
Angebotsrhythmus
Workload Präsenz

Vorlesung
2
SoSe
28

Übung
2
SoSe
28
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>

56 h Präsenzzeit insgesamt.
inf131 - Advanced Topics in Human Computer Interaction

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Topics in Human Computer Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf131</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Informatik (Master) > Angewandte Informatik
- Master Informatik (Master) > Praktische Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen
- Boll-Westermann, Susanne (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Nützliche Vorkenntnisse: Interaktive Systeme

Kompetenzziele

Dieser Lehrveranstaltung vermittelt einen Querschnitt der jüngsten und bedeutendsten Fortschritte in diesem spannenden. Zu den Themen gehören: Situationsbewusstein, Aufmerksamkeit, Ambient / Peripherie Interaktion, Computersupport kooperative Arbeit und Social Computing (CSCW), allgegenwärtiges und kontextbezogenes Computing, haptische und gestische Interaktion, Audio-Interaktion, Blickbasierte Interaktion, biometrische Benutzerschnittstellen, eingebettete, physikalische und greifbare Benutzerschnittstellen, mobile und tragbare Schnittstellen. Dieser Kurs konzentriert sich explizit nicht auf die Methoden, die in der HCI-Praxis verwendet werden (d.h. vom Benutzer-zentrierten Entwurfssyklus), sondern konzentriert sich eher auf (neuere) Forschung.

Fachkompetenzen
Die Studierenden:
- Demonstrieren ein systematisches Verständnis von Erkenntnissen und Ansätzen der jüngsten Forschungserfolge im Bereich der HCI
- bewerten und diskutieren die jüngsten Entwicklungen auf dem Gebiet der HCI aus wissenschaftlich-technologischer Sicht.
- können benutzerzentrierte Systeme und Techniken konzeptionalisieren, entwerfen, implementieren und bewerten.
- planen und implementieren explorative Projekte, die neuartiger interaktiver Artefakte erdenken, prototypisch entwickeln und evaluieren

Methodenkompetenzen
Die Studierenden:
- analysieren, überprüfen und kritisieren wissenschaftliche Arbeiten
- führen eigene Forschungsarbeiten von Anfang bis Ende durch
- präsentieren Forschungsergebnisse in aggregierter Form
- arbeiten in einem Team um neuartige, interaktive Artefakte prototypisch umzusetzen und zu evaluieren.

Sozialkompetenzen
Die Studierenden:
- arbeiten gemeinsam in Gruppen zusammen, um Forschungsarbeiten zu analysieren und zu überprüfen
- präsentieren Forschungsergebnisse im aggregierter Form im Plenum
- diskutieren, wie HCI-Konzepte und Methoden bei der Analyse, Gestaltung und Bewertung von interaktiven Technologien angewendet werden können.
- diskutieren soziale und ethische Implikationen interaktiver Technologien

Selbstkompetenzen
Die Studierenden:
- haben keine Scheu eigene Forschung durchzuführen
- zeigen ihre Fähigkeit der Konzeption und Durchführung von qualitativen und quantitativen HCI-Experimenten
- trauen es sich zu veröffentlichte (Peer-Reviewed) wissenschaftliche Arbeiten zu aggregieren, analysieren und kritisieren
Modulinhalte

Mensch-Maschine-Interaktion (Human-Computer Interaction, HCI) ist ein schnell wachsendes Feld, das multidisziplinäre Forschung einschließt. Die in diesem Gebiet vorhandene theoretische und empirische Wissensbasis, auf der die Gestaltung effektiver Systeme fußt, entwickelt sich rasch, was die Bedeutung der aktuellen Forschung auf diesem Gebiet verdeutlicht.

Literaturempfehlungen

Links
https://uol.de/medieninformatik/lehrveranstaltungen

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jedes Wintersemester

Aufnahmekapazität Modul
24

Hinweise

Modullevel

Modulart
1VL + 1Ü

Vorkenntnisse
Nützliche Vorkenntnisse: Interaktive Systeme

Prüfung
Prüfungszeiten
Prüfungsform

Gesam module
Am Ende der Vorlesungszeit

Projekt und mündliche Prüfung

Nichtteilnahme an der Prüfung

Wenn Sie die Prüfung aus nicht triftigen Gründen (z. B. medizinische Gründe, Überschneidungen im Prüfungsplan) nicht antreten können, müssen Sie uns vor der Prüfung informieren, und bis spätestens 5 Tage nach der Prüfung die entsprechenden Belege (ärztliche Bescheinigung, Prüfungsplan, Bordkarten) einreichen.

- Wenn der Grund für die fehlende Prüfung triftig ist, haben Sie die Möglichkeit, die Prüfung nachzuholen
Bei Nichtteilnahme an der Prüfung ohne triftigen Grund, werden keine Punkte für diesen Teilbereich vergeben. Reicht die Gesamtpunktzahl zum Gesamtbestehen aus, so besteht keine Möglichkeit einer Wiederholung der Teilprüfung.

Notengebung:

Ihre Note wird wie folgt berechnet:

<table>
<thead>
<tr>
<th>Teilnoten</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abschlussprüfung</td>
<td>40</td>
</tr>
<tr>
<td>Übungsaufgaben A01-03</td>
<td>30</td>
</tr>
<tr>
<td>Mini HCI</td>
<td>20</td>
</tr>
<tr>
<td>Forschungsprojekt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
inf174 - Spezielle Themen aus dem Gebiet "Medieninformatik und Multimedia-Systeme" I

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Spezielle Themen aus dem Gebiet "Medieninformatik und Multimedia-Systeme" I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf174</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>• Master Informatik (Master) > Praktische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>• Boll-Westermann, Susanne (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>• Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Keine Teilnehmervoraussetzungen</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Das Modul hat zum Ziel aktuelle Entwicklungen im Vertiefungsgebiet "Medieninformatik und Multimedia-Systeme" in den jeweils angemessenen Lehrveranstaltungsformen in das Studium zu integrieren.</td>
</tr>
</tbody>
</table>

Fachkompetenzen

Die Studierenden:

- differenzieren und kontrastieren einen Teilbereich der Informatik, auf den sie sich spezialisiert haben, im Detail genauer oder reflektieren die Informatik im Allgemeinen
- erkennen und beurteilen die in ihrem Spezialgebiet anzuwendenden Techniken und Methoden und deren Grenzen
- identifizieren, strukturieren und lösen Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin
- wenden dem Stand der Wissenschaft entsprechende und innovative Methoden bei der Untersuchung und Lösung von Problemen an, gegebenenfalls unter Rückgriff auf andere Disziplinen
- erkennen die Grenzen des heutigen Wissenstands und der heutigen Technik und tragen zur weiteren wissenschaftlichen und technologischen Entwicklung der Informatik bei
- diskutieren aktuelle Entwicklungen der Informatik und beurteilen deren Bedeutung

Methodenkompetenzen

Die Studierenden:

- evaluieren Werkzeuge, Technologien und Methoden und wenden diese differenziert an
- entwickeln kreativ neue und originäre Vorgehensweisen und Methoden
- reflektieren Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin und wenden Informatik Methoden zur Untersuchung und Lösung an

Sozialkompetenzen

Die Studierenden:

- integrieren ihre Fähigkeiten in Teamprozesse

Selbstkompetenzen

Die Studierenden:

- verfolgen die weitere Entwicklung in der Informatik allgemein und in ihrem Spezialgebiet kritisch
- führen innovative Tätigkeiten in ihrem Berufsfeld erfolgreich und eigenverantwortlich aus

Modulinhalte

Siehe Beschreibung der zugeordneten Lehrveranstaltung

Literaturempfehlungen

Literatur wird in der zugeordneten Lehrveranstaltung bekannt gegeben.

Links

https://uol.de/medieninformatik/lehrveranstaltungen

Unterrichtsprachen

Deutsch, Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

unregelmäßig

Aufnahmekapazität Modul

unbegrenzt

Modullevel

Modulart
<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>1VL + 1Ü</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>Am Ende der Vorlesungszeit</td>
</tr>
<tr>
<td></td>
<td>Portfolio oder Referat oder mündliche Prüfung</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf175 - Spezielle Themen aus dem Gebiet "Medieninformatik und Multimedia-Systeme" II

Modulbezeichnung
Spezielle Themen aus dem Gebiet "Medieninformatik und Multimedia-Systeme" II

Modulkürzel
inf175

Kreditpunkte
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Informatik (Master) > Praktische Informatik

Zuständige Personen
- Boll-Westermann, Susanne (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Keine Teilnehmervoraussetzungen

Kompetenzziele
Das Modul hat zum Ziel aktuelle Entwicklungen im Vertiefungsgebiet "Medieninformatik und Multimedia-Systeme" in den jeweils angemessenen Lehrveranstaltungsformen in das Studium zu integrieren.

Fachkompetenzen
Die Studierenden:

- differenzieren und kontrastieren einen Teilbereich der Informatik, auf den sie sich spezialisiert haben, im Detail genauer oder reflektieren die Informatik im Allgemeinen
- erkennen und beurteilen die in ihrem Spezialgebiet anzuwendenden Techniken und Methoden und deren Grenzen
- identifizieren, strukturieren und lösen Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin
- wenden dem Stand der Wissenschaft entsprechende und innovative Methoden bei der Untersuchung und Lösung von Problemen an, gegebenenfalls unter Rückgriff auf andere Disziplinen
- erkennen die Grenzen des heutigen Wissenstands und der heutigen Technik und tragen zur weiteren wissenschaftlichen und technologischen Entwicklung der Informatik bei
- diskutieren aktuelle Entwicklungen der Informatik und beurteilen deren Bedeutung

Methodenkompetenzen
Die Studierenden:

- evaluiieren Werkzeuge, Technologien und Methoden und wenden diese differenziert an
- entwickeln kreativ neue und originäre Vorgehensweisen und Methoden
- reflektieren Probleme auch in neuen oder erst im Entstehen begriffenen Bereichen ihrer Disziplin und wenden Informatik-Methoden zur Untersuchung und Lösung an.

Sozialkompetenzen
Die Studierenden:

- integrieren ihre Fähigkeiten in Teamprozesse

Selbstkompetenzen
Die Studierenden:

- verfolgen die weitere Entwicklung in der Informatik allgemein und in ihrem Spezialgebiet kritisch
- führen innovative Tätigkeiten in ihrem Berufsfeld erfolgreich und eigenverantwortlich aus

Modulinhalte
Siehe Beschreibung der zugeordneten Lehrveranstaltung

Literaturrempfehlungen
Literatur wird in der zugeordneten Lehrveranstaltung bekannt gegeben.

Links
https://uol.de/medieninformatik/lehrveranstaltungen

Unterrichtsprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
unregelmäßig

Aufnahmekapazität Modul
unbegrenzt

Modullevel
34 / 213
<table>
<thead>
<tr>
<th>Modulart</th>
<th>Lehr-/Lernform</th>
<th>1VL + 1Ü</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse</td>
<td>Prüfungsform</td>
<td>keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
<td>Am Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>Prüfung</td>
<td>Portfolio oder Referat oder mündliche Prüfung</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>VA-Auswahl</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
<td></td>
</tr>
</tbody>
</table>
inf301 - Hardwarenahe Systementwicklung

Modulbezeichnung: Hardwarenahe Systementwicklung

Modulkürzel: inf301

Kreditpunkte: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls:
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Technische Informatik

Zuständige Personen:
- Fränzle, Martin Georg (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen: Keine Teilnehmervoraussetzungen

Kompetenzziele:
- Das Modul liefert den Praxisbezug zum Bereich "Entwurf digitaler eingebetteter Systeme".

 Fachkompetenzen
 Die Studierenden:
 - charakterisieren den praktischen Aufbau eines Mikroprozessorsystems
 - benennen Aspekte der zeitkritischen Ansteuerung externer Komponenten
 - programmieren leistungsfähige eingebettete Systeme

 Methodenkompetenzen
 Die Studierenden:
 - verwenden Spezifikationen von Datenblättern elektronischer Komponenten

 Sozialkompetenzen
 Die Studierenden:
 - arbeiten im Team
 - diskutieren Lösungen im Team

Modulinhalte:

Literaturempfehlungen:
- Foliensammlungen sowie Handbücher und Datenblätter der verwendeten Hardware und Handbücher der Entwicklungswerkzeuge

Links:
- Deutsch, Englisch

Dauer in Semestern: 1 Semester

Angebotsrhythmus Modul: jährlich

Aufnahmekapazität Modul: unbegrenzt

Modullevel: Modulart
<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>1V + 1P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse</td>
<td>Keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>Am Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2</td>
</tr>
<tr>
<td>Praktikum</td>
<td>2</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
</tr>
</tbody>
</table>

Workload Präsenz 37 / 213
inf303 - Fuzzy-Regelung und künstliche neuronale Netze in Robotik und Automation

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Fuzzy-Regelung und künstliche neuronale Netze in Robotik und Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf303</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Fatikow, Sergej (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmeverfahren

Kompetenzziele

Ziels des Moduls
Spezialisten verschiedener Disziplinen lösen ihre anwendungsspezifischen Steuerungs- und Informationsverarbeitungsprobleme durch den Einsatz von Fuzzy-Logik und neuronaler Netze. Wie die gesammelten Erfahrungen zeigten, sind die Robotik und die Automatisierungstechnik prädestinierte Anwendungsbereiche für diese Technologien.

Fachkompetenzen
Die Studierenden:
- verstehen die Steuerungs- und Regelprobleme in Robotik und Automation,
- erwerben Grundlagen der Fuzzy-Logik und künstlicher neuronaler Netze,
- vergleichen mit konventionellen und fortgeschrittenen Ansätze zur Steuerung und Regelung und
- lernen den Einsatz neuronaler Netze in Kombination mit Fuzzy-Logik kennen.
- ihr Wissen über die praktische Anwendbarkeit beider Verfahren zu vertiefen,
- die erworbenen Kenntnisse später in Studien- oder Diplomarbeiten in der AMiR umzusetzen

Methodische Kompetenzen
Die Studierenden:
- erwerben Kenntnisse über die Werkzeuge, Methoden und Anwendungen der Fuzzy-Logik und ANN
- vertiefen ihre Kenntnisse für die praktische Anwendung der genannten Methoden
- können gängige Softwaretools für den Entwurf und die Anwendung von Fuzzy-Logik und ANN nutzen

Soziale Kompetenzen
Die Studierenden:
- sammeln Erfahrungen im interdisziplinären Arbeiten
- werden in die aktuelle Forschungsarbeit eingebunden Ziel des Moduls / Fähigkeiten:

Selbstkompetenzen
Die Studierenden:
- sind in der Lage, das erworbene Wissen für eine spätere Verwendung in ihrer Abschlussarbeit oder im Studium für AMiR zu transferieren
- können (komplexe) Fuzzy-Logic-Regler und ANN-Systeme entwerfen und
- ihre (Regelungs-)Lösungen mit Hilfe der in dieser Lehrveranstaltung erlernten Methoden reflektieren

Modulinhalte

38 / 213
- Steuerungsprobleme in Robotik und Automation;
- Einführung in Fuzzy- und Neuro-Systeme;
- Grundlagen der Fuzzy-Logik;
- Fuzzy-Logik regelbasierter Systeme;
- Modelle neuronaler Netze;
- Lernalgorithmen für neuronale Netze;
- Mehrschichtige Netze und Backpropagation;
- Assoziativspeicher und stochastische Netze;
- Selbstorganisierende Netze;
- Entwurf klassischer Regler;
- Entwurf von Fuzzy-Regelungssystemen;
- Praktische Anwendungen der Fuzzy-Logik;
- Entwurf von Neuro-Regelungssystemen;
- Praktische Anwendungen neuronaler Netze

Literaturempfehlungen

Essentiell:
- Vorlesungsskript in Buchform (erhältlich im Sekretariat, A1-3-303)

Empfohlen:

Gute Sekundärliteratur:
- Altrock, M. O. R.: Fuzzy Logic, R. Oldenbourg Verlag, 1993
- Kahlert, J. and Hubert, F.: Fuzzy-Logik und Fuzzy-Control, Vieweg, 1993
- Kratzer, K.P.: Neurionale Netze, Carl Hanser, 1993
- Lawrence, J.: Neurionale Netze, Sythema Verlag, München, 1992
- Patterson, D.W.: Künstliche neuronale Netze, Prentice Hall, 1996
- Zimmermann H.-J. (Hrsg.): Datenanalyse, VDI-Verlag, 1995

Links

Unterrichtsprachen	Englisch, Deutsch
Dauer in Semestern | 1 Semester
<table>
<thead>
<tr>
<th>Angebotsrhythmus Modul</th>
<th>jährlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel</td>
<td></td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1VL + 1Ü</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>Kenntnisse in Regelungstechnik</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtemodul</td>
<td>Nach Beendigung des Moduls bis zum Anfang des nachfolgenden Semesters</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Fachpraktische Übungen und mündliche Prüfung</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>3</td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
</tr>
<tr>
<td>Prüfung</td>
<td>SoSe</td>
</tr>
<tr>
<td>Präsenzzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
<tr>
<td>Workload Präsenz</td>
<td>40 / 213</td>
</tr>
</tbody>
</table>
inf305 - Medizintechnik

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Medizintechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf305</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Interdisziplinäre Module
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Hein, Andreas (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Nützliche Kenntnisse in
- Signal und Bildverarbeitung
- Regelungstechnik

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- beschreiben Diagnose- und Therapieverfahren in der Medizin
- erkennen die Grundkonzepte von Computer-assistierte Eingriffen in der Medizin
- beschreiben die Grundsätze und rechtlichen Rahmenbedingungen für die Entwicklung von Medizinprodukten
- definieren die Rolle von Softwarekomponenten in Medizinprodukten und implementieren diese
- schätzen die komplexen Zusammenhänge/Interaktionen zwischen Medizinprodukt und Patient ab
- arbeiten sich in spezifische Fragen der Entwicklung von Medizinprodukten schnell ein

Methodenkompetenzen
Die Studierenden:
- erkennen interdisziplinäre Herausforderung und reagieren durch Kommunikation mit anderen Disziplinen darauf

Sozialkompetenzen
Die Studierenden:
- präsentieren Lösungsansätze

Selbstkompetenzen
Die Studierenden:
- reflektieren ihre Lösungen und beziehen dabei die gelernten Methoden ein

Modulinhalt

- Medizinische Gebiete und Einsatzfelder
- Grundlegende Anforderungen an medizintechnische Systeme (Hygiene, MPG, technische Sicherheit, Materialien)

Medizintechnische Systeme:
- Funktionsdiagnostik (EKG, EMG, EEG)
- Bildgebende Systeme (CT, MRT, Ultraschall, PET, SPECT)
- Therapiegeräte (Laser, HF, Mikrotherapie)
- Signalverarbeitung/Monitoring (kardiovaskulär, hämodynamisch, respiratorisch, metabolisch, zerebral)
- Medizinische Informationsverarbeitung (HIS, DICOM, Telemedizin, VR, Bildverarbeitung)

Literaturrempfehlungen

Essentiell:
- Kramme, R.: Medizintechnik. Verfahren, Systeme und
Informationssysteme. Springer Verlag, 2002 (2. Auflage)
- Foliensammlung zur Vorlesung
- Empfohlen:

Gute Sekundärliteratur:

Links

Unterrichtsprachen
- Englisch, Deutsch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- jährlich

Aufnahmekapazität Modul
- unbegrenzt

Modullevel

Modulart
- 1VL + 1Ü

Vorkenntnisse
- Kenntnisse in
 - Signal und Bildverarbeitung
 - Regelungstechnik

Prüfung

Gesamtmodul
- Prüfungszeiten: Am Ende der Vorlesungszeit
- Prüfungsform: Semesterbegleitende fachpraktische Übung und Klausur oder mündliche Prüfung

Lehrveranstaltungsform
- Kommentar: SWS
- Angebotsrhythmus: Workload Präsenz

Vorlesung
- SWS: 3
- Angebotsrhythmus: WiSe
- Workload: 42

Übung
- SWS: 1
- Angebotsrhythmus: WiSe
- Workload: 14

Präsenzzeit Modul insgesamt
- 56 h
inf307 - Robotik

Modulbezeichnung: Robotik
Modulkürzel: inf307
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master Engineering of Socio-technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Interdisziplinäre Module
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Hein, Andreas (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- benennen und erkennen die Funktionsweise und Anwendungsgebiete von Robotersystemen
- charakterisieren die Grundkonzepte der Programmierung von Robotersystemen
- differenzieren das Zusammenwirken mechanischer, elektrischer und softwaretechnischer Komponenten in einem

Methodenkompetenzen
Die Studierenden:
- definieren Eigenschaften und Komponenten für Robotersysteme für eine spezifische Anwendung - entwerfen und implementieren Teilmodule von Robotersteuerungen
- entwerfen und parametrisieren einfache Reglerstrukturen
- planen den Einsatz von Robotersystemen und leiten Anforderungen an das System ab
- konstruieren Modelle elektro-mechanischer Systeme
- entwerfen und realisieren einfache Robotersysteme

Sozialkompetenzen
Die Studierenden:
- arbeiten gemeinsam an gegebenen Problemstellungen der Robotik

Selbstkompetenzen
Die Studierenden:
- reflektieren ihre Lösungen und beziehen dabei die Methoden der Robotik ein

Modulinhalte

Das Modul vermittelt die folgenden Inhalte:
- Integration in Produktionsanlagen / Ziele / Teilsysteme - Architekturen / Typisierungen (Typisierung von Robotern);
- Komponenten eines Roboters + Rechnersystems zur Programmierung -- Beispiel PA-10 -- Beispiel Lego Mindstorms
- Grundlagen der Kinematik -- Koordinatentransformationen, homogene Koordinaten, Parametrisierung von Koordinatenübergängen, -- Kinematische Gleichungssysteme, Transformation von Vektoren
- Planung / Regelung -- Ansatz der Regelung, Begriffe, Prozess- und Regelfunktionen, PID-Regler, -- Konzepte und Ansätze zur Planung (On-Line, Off-Line), Planungsverfahren, Montage- und Wegeplanung - Aktoren

Teilnahmevoraussetzungen
Keine
Literaturempfehlungen

Essentiell:
- Skript zur Vorlesung

Empfohlen:
- Siegert, H.-J.; Bocione, S.: Programmierung intelligenter Roboter. Springer Verlag, 1996

Gute Sekundärliteratur:

Links

Unterrichtsprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel

Modulart

Lehr-/Lernform
1 VL + 1 Ü

Vorkenntnisse
keine

Prüfung
Prüfungszeiten
Prüfungsform

Gesamtmodul
Am Ende der Vorlesungszeit
Portfolio oder Klausur oder mündliche Prüfung

Lehrveranstaltungsform
Kommentar
SWS
Angebotsrhythmus
Workload Präsenz

Vorlesung
3
SoSe
42

Übung
1
SoSe
14

Präsenzzeit Modul insgesamt
56 h
Inf308 - Mikrorobotik II

Modulbezeichnung: Mikrorobotik II
Modulkürzel: inf308
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Interdisziplinäre Module

Zuständige Personen:
- Fatikow, Sergej (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen:
Mikrorobotik und Mikrosystemtechnik

Kompetenzziele:
Nachdem im Modul "Mikrorobotik und Mikrosystemtechnik" eine fundierte Einführung in die Mikrosystemtechnik und Mikrorobotik gegeben wurde, bietet diese Veranstaltung eine Vertiefung in das komplexe Gebiet der Mikro- und Nanorobotik. Dabei werden alle relevanten Teilbereiche der Mikrorobotik, u.a. auch sämtliche Forschungsthemen der Abteilung für Mikrorobotik und Regelungstechnik (AMiR) präsentiert und analysiert. Dem Student wird u.a. ein tiefer Einblick in die aktuellen Forschungsprojekte der AMiR und anderer Mikrorobotik-Institute weltweit ermöglicht, wobei in erster Linie die Anforderungen der Industrie an die Mikrorobotik diskutiert werden. Die Veranstaltung wird durch praxisnahe Übungen in den Forschungslaboren der AMiR abgerundet.

Fachkompetenzen:
Die Studierenden
- benennen und erkennen die Grundkonzepte der Nanotechnologie, insbesondere die Ansätze der Mikro- und Nanorobotik

Methodenkompetenzen:
Die Studierenden
- übertragen die erlangten Fähigkeiten in den Bereichen der Regelungstechnik und Bildverarbeitung auf fachübergreifende Problemstellungen.

Sozialkompetenzen:
Die Studierenden
- arbeiten im Team

Selbstkompetenzen:
Die Studierenden
- reflektieren ihr Vorgehen
- beziehen ihre praktischen Erfahrungen in der Entwicklung, Steuerung/Regelung und Anwendung von mikrorobotischen Systemen in ihre Handlungen ein

Modulinhalte
- Rasterelektronenmikroskopie und Rasterkraftmikroskopie
- Intelligente multifunktionale Mikrorobotik
- Mikroaktoren (Piezo-, Ferrofluid-, SMA-Aktoren) für Mikroroboter
- Echtzeit-Bildverarbeitung in der Mikro- und Nanowelt (REM, AFM, optische Mikroskopie)
- Mikrokraftsensoren und taktile Sensoren für Mikroroboter
- Roboterrgelenkung, u.a. mit Hilfe neuronaler Netze und Fuzzy-Logik
Haptische Benutzenschnittstelle zur Steuerung von Mikrorobotern - Roboterbasierte Mikro- und Nanohandhabung (REM, TEM, AFM, optische Mikroskopie)

Anwendungen: Mikro- und Nanomontage, Test von Nanoschichten, Handhabung und Charakterisierung von Kohlenstoffnanoröhren, Handhabung biologischer Zellen

Mehrobotersysteme in der Mikrowelt: Kommunikation, Steuerung, Kooperation

Literaturempfehlungen

- Vorlesungsskript in Buchform (kann nach Fertigstellung zum Selbstkostenpreis im Sekretariat A1 3-303 erworben werden)

Links

- Unterrichtsprachen: Englisch, Deutsch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: jährlich
- Aufnahmekapazität Modul: unbegrenzt

Modullevel

- Modulart: 1VL + 1Ü
- Vorkenntnisse: Mikrorobotik und Mikrosystemtechnik

Gesamtmittel

- Nach Beendigung des Moduls bis zum Anfang des nachfolgenden Semesters
- Fachpraktische Übungen und mündliche Prüfung

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt: 56 h
inf336 - Application Area Automotive

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Application Area Automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf336</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Köster, Frank (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Keine Teilnehmervoraussetzungen

Kompetenzziele
Dieses Modul führt in den Anwendungsbereich Automotive ein.

Fachkompetenzen
Die Studierenden
- Diskussion von Kernkonzepten der Transportdomäne
- Erörterung verschiedener Verkehrsträger (Schwerpunkt Automobil)
- Automatisiertes und vernetztes Fahren erörtern (kurze Einführung/Überblick)
- Erörterung der menschlichen Faktoren im Automobilsektor
- Erörterung der Verkehrsinfrastruktur (Fokus auf Kreuzungen)
- Erörterung der Grundprinzipien des Verkehrsmanagements

Methodenkompetenzen
Die Studierenden
- analysieren von Fahrzeugsystemen
- analysieren von Verkehrsinfrastruktur
- kooperative Fahrzeug-Infrastruktur-Systeme analysieren
- sozio-technische Systeme analysieren

Sozialkompetenzen
Die Studierenden:
- arbeiten in Teams
- diskutieren ihre Ergebnisse in angemessener Form

Selbstkompetenzen
Die Studierenden:
- erkennen die Grenzen ihrer Belastbarkeit bei der Bearbeitung der Themen des Moduls an

Modulinhalte
- Kernkonzepte des Verkehrsbereichs
- Verkehrsträger (Fokus auf den Automobilsektor)
- Automatisiertes und vernetztes Fahren (kurze Einführung/Überblick)
- Menschliche Faktoren im Automobilbereich
- Verkehrsinfrastruktur (Fokus auf Kreuzungen)

Literaturempfehlungen
Kraftfahrzeugtechnik, Vieweg.

<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unterrichtssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Modullevel	
Modulart	
Lehr-/Lernform	1VL + 1Ü
Vorkenntnisse	keine

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
</table>

Gesamtmodul
- At the end of the lecture period: Practical work or oral exam

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
Inf338 - Design of Autonomous Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Design of Autonomous Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf338</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Lehrenden, Die im Modul (Prüfungsberechtigt)
- Fränzle, Martin Georg (Modulverantwortung)

Teilnahmevoraussetzungen
Keine Teilnehmervoraussetzungen

Kompetenzziele

Fachkompetenzen
Die Studierenden
- sind in der Lage, autonome Systeme zu analysieren und zu erstellen.

Methodenkompetenzen
Die Studierenden
- kennen Beispiele bestehender autonomer Systeme
- verstehen die Elemente ihres Architekturentwurfs und die Gründe für die Dekomposition des Problems in Pflichten für die jeweiligen Systemkomponenten,
- analysieren bestehende Architekturen für autonome Systeme im Hinblick auf ihre Leistungsfähigkeit und Sicherheit
- lernen, ein Problem des Entwurfs eines autonomen Systems in eine Architektur zu zerlegen
- sind in der Lage, Entwurfsverpflichtungen für seine Komponenten abzuleiten und können einen entsprechenden Sicherheitsfall strukturieren.
- verstehen die zur Erreichung der Systemautonomie notwendigen Software- und Hardwarekomponenten und sind in der Lage, diese zu entwerfen oder zu instanziieren.

Sozialkompetenzen
Die Studierenden:
- erwerben praktische Erfahrungen im Entwurf von Komponenten für autonome Systeme in kleinen Teams und präsentieren die zugrundeliegende Theorie, ihre jeweiligen Entwurfsentscheidungen und ihre persönliche Bewertung vor Mitstudierenden.

Selbstkompetenzen
Die Studierenden:
- können die Angemessenheit ihrer methodischen Fähigkeiten für den Entwurf bestimmter autonomer Lösungen beurteilen
- sind in der Lage, die sicherheitstechnischen Auswirkungen einer solchen Lösung abzuschätzen und können daher eine persönliche ethische Haltung zu deren Realisierung entwickeln.

Modulinhalte
Das Modul besteht aus einer Vorlesung und einem Übungsteil

Literaturempfehlungen

Links

Unterrichtssprache
Englisch
<table>
<thead>
<tr>
<th>Modul</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1VL + 1Ü</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
</tr>
</tbody>
</table>

Gesamtmodul

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Präsenzzeit Modul insgesamt</th>
<th>56 h</th>
</tr>
</thead>
</table>
mar364 - Zeitreihenanalyse

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Zeitreihenanalyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mar364</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Marine Sensorik (Master) > Mastermodule
- Master Marine Umweltwissenschaften (Master) > Mastermodule
- Master Umweltmodellierung (Master) > Mastermodule

Zuständige Personen
- Freund, Jan (Modulverantwortung)

Teilnahmevoraussetzungen
- Keine

Kompetenzziele

Modulinhalte
Charakteristika eines stochastischen Prozesses und deren Schätzer, Komponentenmodell, Trendbereinigung, spektrale Methoden, Filterung, lineare Prozesse, und nichtlineare Prozesse, Einbettungsverfahren, Kenngrößen der nichtlinearen Zeitreihenanalyse, symbolische Dynamik

Literaturempfehlungen
- R. Schlittgen: Angewandte Zeitreihenanalyse mit R. Oldenbourg;
- R. Schlittgen & B. Streitberg: Zeitreihenanalyse. Oldenbourg;

Links

Unterrichtssprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- jährlich

Aufnahmekapazität Modul
- unbegrenzt

Modullevel
- MM (Mastermodul / Master module)

Modulart
- Wahlpflicht / Elective

Lehr-/Lernform
- Wahlpflichtbereich Mathematische Modellierung
 - VL Zeitreihenanalyse
 - Ü Zeitreihenanalyse

Vorkenntnisse
- Nützlich: Erfahrung im Umgang mit R oder Matlab.

Prüfung
- Prüfungszeiten
- Prüfungsform

Gesamtmodul
- Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung
Prüfung
Prüfungszeiten
Prüfungsform

oder Portfolio nach Maßgabe der Dozentin oder des Dozenten

1 benotete Prüfungsleistung.
Klausur oder fachpraktische Übung (testierte Übungsaufgaben) oder mündliche Prüfung

Aktive Teilnahme

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
Computational Intelligence I

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Computational Intelligence I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf535</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Applied Economics and Data Science (Master) > Data Science
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Umweltmodellierung (Master) > Mastermodule
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen
- Kramer, Oliver (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmeveraussetzungen
Grundlagen der Statistik

Kompetenzziele
- Nach erfolgreichem Abschluss der Lehrveranstaltung sollen Studierende die Fähigkeit erworben haben, die vorgestellten Methoden sicher in Theorie und Praxis zu beherrschen. Dabei sollen entsprechende Problembestellungen der Optimierung und Datenanalyse von den Studierenden selbst erkannt, modelliert und die Methoden zielgerichtet eingesetzt werden.

Fachkompetenzen
Die Studierenden:
- erkennen Optimierungsprobleme
- implementieren einfache Algorithmen der heuristischen Optimierung - diskutieren kritisch Lösungsansätze und Methodenauswahl
- vertiefen bekannte Kenntnisse aus Analysis und linearer Algebra

Methodenkompetenzen
Die Studierenden:
- vertiefen Programmierkenntnisse
- wenden Modellierungsfähigkeiten an
- lernen den Zusammenhang zwischen Problemklasse und Methodenauswahl

Sozialkompetenzen
Die Studierenden:
- implementieren gemeinsam in der Vorlesung vorgestellte Algorithmen
- evaluierten eigene Lösungen und vergleichen diese mit denen Ihrer Kommilitonen

Selbstkompetenzen
Die Studierenden:
- schätzen ihre Fach und Methodenkompetenz im Vergleich zu Kommilitonen ein.
- erkennen die eigenen Grenzen passen ihr eigenes Vorgehen unter Bezugnahme der Methodenkompetenzen an nötige Anforderungen an

Modulinhalte
Das Gebiet der Computational Intelligence umfasst intelligente und lerntechnische Verfahren zur Optimierung und Datenanalyse. Schwerpunkt der Lehrveranstaltung "Computational Intelligence I" sind Methoden der evolutionären Optimierung und heuristischen Algorithmen. In den Übungen werden praktische Aspekte der Implementierung und Anwendung der Verfahren anhand beispielhafter Aufgabenstellungen vorgestellt und vertieft.

Die Inhalte der Vorlesung umfassen im Einzelnen:
- Grundlagen der Optimierung
- genetische Algorithmen und Evolutionssstrategien
- Parametersteuerung und Selbstadaptation
- Laufzeitanalyse
- Schwarmalgorithmen
- restringierte Optimierung
- Mehrzieloptimierung
- Meta-Modelle

Literaturrempfehlungen

- KRAMER, O.: *Computational Intelligence*. Springer, 2009

Links

<table>
<thead>
<tr>
<th>Unterrichtsprachen</th>
<th>Englisch, Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Modullevel

Modulart

<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>1VL + 1Ü</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse</td>
<td>- Grundlagen der Statistik</td>
</tr>
</tbody>
</table>

Prüfung

- Prüfungszeiten: Am Ende der Vorlesungszeit
- Prüfungsform: Mündliche Prüfung oder Klausur

Gesamtmodul

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
inf536 - Computational Intelligence II

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Computational Intelligence II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf536</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master Applied Economics and Data Science (Master) > Data Science
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Umweltmodellierung (Master) > Mastermodule
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen

- Kramer, Oliver (Modulverantwortung)

Teilnahmeversuchsetzungen

- nützliche Vorkenntniss: Lineare Algebra, Stochastik

Kompetenzziele

In der Vorlesung „Convolutional Neural Networks“ lernen die Grundlagen von Convolutional Neural Networks, vom methodischen Verständnis bis zur Implementierung.

Fachkompetenzen

Die Studierenden:

- erlernen die Fachkompetenz im Bereich Deep Learning, die wesentliche Qualifikationen als KI-Experte und Data Scientist darstellen

Methodenkompetenzen

Die Studierenden:

- lernen die genannten Methoden sowie die Implementierung in Python, NymPy und Keras

Sozialkompetenzen

Die Studierenden:

- werden dazu angehalten, in Gruppen die gelehrten Inhalte zu diskutieren und gemeinsam die Programmieraufgaben in den Übungen zu Implementieren

Selbstkompetenzen

Die Studierenden:

- werden zur eigenständigen Recherche zu weiterführenden Methoden angeleitet, da sich der Lehrbereich dynamisch ändert

Modulinhalte

Die Studierenden lernen die Grundlagen maschinellen Lernens und insbesondere die Themen vollvernetzte Schichten, Cross-Entropy, Backpropagation, SGD, Momentum, Adam, Batch Normalisierung, Regularisierung, Convolution, Pooling, ResNet, DenseNet und Convolutional SOMs

Literaturempfehlungen

- Deep Learning von Aaron C. Courville, Ian Goodfellow und Yoshua Bengio

Links
<table>
<thead>
<tr>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jedes Sommersemester</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Modulart

<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>1VL + 1Ü</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse</td>
<td>nützliche Vorkenntniss: Lineare Algebra, Stochastik</td>
</tr>
</tbody>
</table>

Prüfung

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>Klausur, e-Klausur</td>
</tr>
</tbody>
</table>

Gesamtmodule

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Präsenzzzeit Modul insgesamt</th>
<th>56 h</th>
</tr>
</thead>
</table>
Inf537 - Intelligent Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Intelligent Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf537</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td>Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction</td>
</tr>
<tr>
<td>Master Engineering of Socio-Technical Systems (Master) > Systems Engineering</td>
</tr>
<tr>
<td>Master Informatik (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td>Master Wirtschaftsinformatics (Master) > Akzentsetzungsmodul Bereich Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuständige Personen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauer, Jürgen (Modulverantwortung)</td>
</tr>
<tr>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnahmevoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produktionsorientierte Wirtschaftsinformatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompetenzziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachkompetenzen</td>
</tr>
<tr>
<td>Die Studierenden:</td>
</tr>
<tr>
<td>benennen den Aufbau intelligenter agentenbasierter Systeme</td>
</tr>
<tr>
<td>verwenden Problemlösungsmethoden für komplexe Probleme</td>
</tr>
<tr>
<td>charakterisieren den Anwendungsbereich Planung/ Ablaufplanung</td>
</tr>
<tr>
<td>bewerten die Eignung von Verfahren für bestimmte Problemstellungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methodenkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden:</td>
</tr>
<tr>
<td>ordnen Problemlösungsmethoden verschiedenen Problemstellungen zu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sozialkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden:</td>
</tr>
<tr>
<td>implementieren ausgewählte Verfahren in kleinen Teams</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selbstkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden:</td>
</tr>
<tr>
<td>entwickeln eigene Lösungsansätze für vorgegebene Problemstellungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulinhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>In vielen Anwendungsbereichen kommen „intelligente“ Lösungsverfahren zum Einsatz. Diese Lösungsverfahren stehen im Kern der Veranstaltung und sie werden am Beispiel der Anwendungsdomain Ablaufplanung vorgestellt und vertieft. Im Modul werden intelligente Systeme, in denen KI-Lösungsverfahren verwendet werden, am Beispiel der Anwendungsdomain Ablaufplanung vorgestellt und vertieft.</td>
</tr>
<tr>
<td>Dazu gehören</td>
</tr>
<tr>
<td>eine kurze Einführung in die KI</td>
</tr>
<tr>
<td>Agentensysteme und</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literaturempfehlungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russel/Norvig: Künstliche Intelligenz, Pearson, 2004</td>
</tr>
<tr>
<td>Ghallab/Nau/Traverso: Automated Planning, Morgan Kaufman, 2004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.wi ol.de</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unterrichtsprachen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
</tr>
<tr>
<td>Hinweise</td>
</tr>
</tbody>
</table>

Modullevel

Modulart

Lehr-/Lernform	1VL + 1Ü

Vorkenntnisse | Produktionsorientierte Wirtschaftsinformatik |

Prüfung

<table>
<thead>
<tr>
<th>Gesamtmodul</th>
<th>Am Ende des Semesters</th>
</tr>
</thead>
</table>

Prüfungsform

Fachpraktische Übungen und mündliche Prüfung oder Fachpraktische Übungen und Klausur oder Portfolio

Lehrveranstaltungsform | Kommentar | SWS | Angebotsrhythmus | Workload Präsenz |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt | 56 h |

| **Präsenzzeit Modul insgesamt** | 56 h |
inf663 - Application Area Maritime

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Application Area Maritime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf663</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik

Zuständige Personen
- Hahn, Axel (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberichtigt)

Teilnahmevoraussetzungen
Keine Teilnehmervoraussetzungen

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- verstehen letzteres als einen wesentlichen Beitrag zur Organisation der Navigation als hierarchisches Teamkonzept eines sicherheitskritischen soziotechnischen Systems.
- sind sich der besonderen technischen und physikalischen Herausforderungen der Navigation bewusst.

Methodenkompetenzen
Die Studierenden:
- können Methoden der Systemtechnik anwenden, um maritime Systeme zu beschreiben, zu analysieren und zu entwerfen.
- durch die Betrachtung des maritimen Verkehrs gewinnen sie übertragbares Wissen über andere cyber-physikalische Systeme.
- lernen, wie Systeme mit rauen Umweltbedingungen resilient umgehen können.

Sozialkompetenzen
Die Studierenden:
- erwerben Verständnis für diese Transportsysteme und ihre technischen und systemischen Herausforderungen.
- kennen nach Abschluss dieses Moduls die Konzepte des Seeverkehrs und seine Rolle in internationalen Transportnetzwerken.

Selbstkompetenzen
Die Studierenden:
- umfassen insbesondere ein Verständnis des Seeverkehrs als System mit hohen Anforderungen an Zuverlässigkeit, Verlässlichkeit und Sicherheit in Kombination mit Effizienz, um in einer globalen Wirtschaft wettbewerbsfähig zu sein.

Modulinhalte

Vorlesung:
- Maritimer Transport in globalen und lokalen Lieferketten
- Grundkonzepte der Schiffsführung und Navigation, maritime Systemdynamik, Brückenressourcenmanagement, eNAvigation und hohe Automatisierungssysteme

Seminar:
- Abdeckung der Aspekte des Seeverkehrs

Literaturempfehlungen
- Bernhard Berking, Werner Huth (Herausgeber), Handbuch Nautik 1: Navigatorische Schiffsführung, Seeihafen Verlag, 2010

Links
<table>
<thead>
<tr>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel</td>
<td></td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1VL + 1S</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td></td>
</tr>
<tr>
<td>Am Ende der Vorlesungszeit</td>
<td></td>
</tr>
<tr>
<td>Mündliche Prüfung und Dokumentation</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>SWS</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2</td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>Workload Präsenz</td>
<td>28</td>
</tr>
<tr>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf650 - Transportsysteme

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Transportsysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf650</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule Bereich Wirtschaftsinformatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Teilnahmeverwaltungsangaben

- Sauer, Jürgen (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Kompetenzziele

Fachkompetenzen

Die Studierenden:

- benennen die Grundlagen der Planung und Steuerung der betrieblichen Logistik.
- bewerten Transportsysteme im Unternehmenskontext
- benennen Methoden und Ansätze zur informatischen Unterstützung von Transportsystemen und ordnen diese ein
- charakterisieren Software zur Planung komplexer logistischer Abläufe

Methodenkompetenzen

Die Studierenden:

- bilden die Fragestellungen und Konzepte von Verkehrssysteme ab
- simulieren Transport und Verkehrssystemen mit geeigneten Methoden

Sozialkompetenzen

Die Studierenden:

- Bearbeiten Fragestellungen in Gruppen
- Diskutieren die Ergebnisse sachlich angemessen

Selbstkompetenzen

Die Studierenden:

- erkennen die Grenzen Ihrer Belastbarkeit in einem Projekt mit Modellierung und Implementierungsanteil
- reflektieren die Vermittlung ihrer Ergebnisse

Modulinhalte

Inhalte des Moduls:

- Verkehrs- und Logistikkonzepte
- Betriebliche Datenerfassung in der Logistik
- Planungs- und Simulationssoftware für komplexe Logistik- und Verkehrsprozesse
- Energie- und Ressourceneffiziente Transportsysteme
- Ressourcenumorientierte Transportkostenrechnung (z.B. nach CO2, Lärmbelastung)
- Planungsmodelle für Verkehrsinfrastruktur

Literaturempfehlungen

- Verkehrsdynamik und -simulation: Daten, Modelle und Anwendungen

Links	http://www.wi-ol.de			
Unterrichtsprachen	Deutsch, Englisch			
Dauer in Semestern	1 Semester			
Angebotsrhythmus Modul	jährlich			
Aufnahmekapazität Modul	unbegrenzt			
Hinweise	Dieses Modul ist im Rahmen der Projekte FiF und FoL konzipiert worden			
Modullevel				
Modulart				
Lehr-/Lernform	1VL + 1Ü			
Vorkenntnisse	Produktionsorientierte Wirtschaftsinformatik			
Prüfung	Prüfungszeiten			
Prüfungsform	Fachpraktische Übungen und Klausur			
Gesamtmodul	Ende der Vorlesungszeit			
Lehrveranstaltungsform	Commentar	SWS	Angebotsrhythmus	Workload Präsenz
Vorlesung	2	SoSe	28	
Übung	2	SoSe	28	
Präsenzeit Modul insgesamt	56 h			
inf604 - Business Intelligence I

Modulbezeichnung: Business Intelligence I
Modulkürzel: inf604
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master Applied Economics and Data Science (Master) > Data Science
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master of Education (Wirtschaftspädagogik) Informatik (Master of Education) > Akzentsetzungsbereich
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction

Zuständige Personen
- Marx Gómez, Jorge (Prüfungsbeauftragter)
- Lehrenden, die im Modul (Prüfungsberechtigt)

Teilnehmervoraussetzungen
Keine Teilnehmervoraussetzung

Kompetenzziele
Ziele des Moduls/Kompetenzen:

Fachkompetenzen
Die Studierenden:
- benennen und erkennen die Aufgaben des Business Intelligence im unternehmerischen Handeln
- analysieren die Vor- und Nachteile der unterschiedlichen Ansätze und Methoden für die Analyse von Daten und werden in die Lage versetzt, diese für einfache Fallbeispiele anzuwenden
- erhalten theoretische Kenntnisse über die Datenbeschaffung und -modellierung sowie den dabei anzuwendenden Vorgehensweisen

Methodenkompetenzen
Die Studierenden:
- führen Aufgaben des Business Intelligence durch und erweitern hierbei ihr Verständnis zu den verschiedenen Ansätzen und Methoden
- erlernen anhand der Durchführung der Methoden Vor- und Nachteile der unterschiedlichen Methoden und können diese Methoden anhand des erworbenen Wissens optimiert einsetzen

Sozialkompetenzen
Die Studierenden:
- konstruieren Lösungen zu gegeben Fallstudien in der Gruppe z.B. zur Lösung des Problems der faktierten Faktentabelle
- diskutieren die Lösungen auf fachlicher Ebene
- präsentieren die Lösungen der Fallstudien im Rahmen der Übungen

Selbstkompetenzen
- die bereitgestellten Daten und Informationen kritisch prüfen

Modulinhalte

In dem Modul werden die folgenden Inhalte vermittelt
- Gewinnung von Einblicken in die Arbeitsweisen und Ziele des Data
Warehousing
- Kenntnisse über die Durchführung von Data Warehouse Projekten
- Datenmodellierung, Datenbeschaffung und Reporting in Data Warehouses praktische Anwendung des erworbenen Wissens am Beispiel des SAP BusinessInformation Warehouse in den vorlesungsbegleitenden Übungen anhand durchgängiger Fallstudien
- Phasen der Datenmodellierung, Datenbeschaffung und des Reporting im Zusammenhang mit einem plausiblen Szenario

Literaturrempfehlungen
- Marx Gómez, Rautenstrauch, Cissek (2008): Einführung in die Business Intelligence mit SAP NetWeaver 7.0.

Links
- www.wi-ol.de

Unterrichtssprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- jährlich

Aufnahmekapazität Modul
- unbegrenzt

Modullevel

Modulart
- 1VL + 1Ü

Vorkenntnisse
- keine

Prüfung
- keine

Prüfungszeiten
- keine

Prüfungsform
- keine

Gesamtmodul
- Am Ende der Vorlesungszeit
- Klausur von max. 120 Minuten

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>WiSe</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
- 56 h
inf607 - Business Intelligence II

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Business Intelligence II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf607</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Applied Economics and Data Science (Master) > Data Science
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule
 Bereich Wirtschaftsinformatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen
- Marx Gómez, Jorge (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmeveraussetzungen
Keine Teilnahmeveraussetzung

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- benennen und erkennen die Aufgaben von Data Analytics / Data Science im unternehmerischen Handeln
- analysieren die Vor- und Nachteile der unterschiedlichen Ansätze und Methoden für die Analyse von Daten und werden in die Lage versetzt diese für einfache Fallbeispiele anzuwenden
- erhalten theoretische Kenntnisse über die Datenbeschaffung und -modellierung sowie den dabei anzuwendenden Vorgehensweisen

Methodenkompetenzen
Die Studierenden:
- bearbeiten Data Analytics-Aufgabenstellungen und erweitern hierbei Ihr Verständnis zu den verschiedenen Ansätzen und Methoden
- erlernen anhand der Durchführung der Methoden Vor- und Nachteile dieser und können diese Methoden anhand des erworbenen Wissen optimiert einsetzen

Sozialkompetenzen
Die Studierenden:
- konstruieren Lösungen zu gegebenen Fallstudien in der Gruppe z.B.
 Erstellung eines Regressionsmodells anhang ein gegebene Dataset
- diskutieren diese Lösungen auf fachlicher Ebene
- präsentieren die Lösungen der Fallstudien im Rahmen der Übungen

Selbstkompetenzen
Die Studierenden:
- kritisch überprüfen angebotene Informationen

Modulinhalte
Arbeitsplatzsuche zu werten sind.

Literaturempfehlungen

- Jürgen Cleve, Uwe Lämmel (2014): "Data mining" (Deutsch)
- Max Bramer (2013): "Principles of data mining" (Englisch)
- Ian Witten, Eibe Frank, Mark Hall (2011): "Data mining : practical machine learning tools and techniques" (Englisch)
- Jure Leskovec, Anand Rajaraman, Jeffrey Ullman (2014): "Mining of massive datasets" (Englisch)

Links

www.wi-ol.de

Unterrichtsprachen

Deutsch, Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

jährlich

Aufnahmekapazität Modul

unbegrenzt

Modulart

Nach Ankündigung zu Beginn der Veranstaltung (2 SWS V + 2 SWS Ü oder Blockveranstaltung)

Vorkenntnisse

keine

Prüfung

Am Ende der Veranstaltungszeit

Klausur oder mündliche Prüfung oder Hausarbeit oder Referat oder Portfolio oder fachpraktische Übungen und Klausur oder fachpraktische Übungen und mündliche Prüfung.

Gesamtmodul

Am Ende der Veranstaltungszeit

Klausur oder mündliche Prüfung oder Hausarbeit oder Referat oder Portfolio oder fachpraktische Übungen und Klausur oder fachpraktische Übungen und mündliche Prüfung.

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzzeit Modul insgesamt</td>
<td></td>
<td>56 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
inf657 - Product Engineering

Modulbezeichnung: Product Engineering
Modulkürzel: inf657
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul Bereich Wirtschaftsinformatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Zuständige Personen
- Sauer, Jürgen (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- erlernen und erproben den Umgang mit virtuellen und physikalischen Produkt Prototypen
- erlernen und erproben das konstruieren und validieren von virtuellen Produkt Prototypen mit Hilfe von CAD Programmen
- erlernen grundlegende Entwicklungsmethodiken verschiedener Fachrichtungen wie Maschinenbau, Mikroelektronik, Regelungstechnik und Softwaretechnik, sowie die Fähigkeit diese in einem Entwicklungsprozess zu verknüpfen

Methodenkompetenzen
Die Studierenden:
- erlernen und erproben Methoden des Projektmanagement
- erlernen und erkennen die Zusammenhänge zwischen den Entwicklungsmethoden verschiedener Fachrichtungen, wie Maschinenbau, Mikroelektronik, Regelungstechnik und Softwaretechnik
- entwickeln eigene Produktideen anhand von Kreativitätstechniken
- planen und organisieren eigenständig die Produktentstehung mithilfe von Projektmanagement techniken
- erlernen das systematische Verfeinern der eigenen Produktideen mittels SysML
- entwerfen und überprüfen die entwickelten Produkte mit hilfe von aktuellen CAD Programmen

Sozialkompetenzen
Die Studierenden:
- vermitteln die Struktur und Wirkweise eines eigenen Produktes an andere
- arbeiten in kleinen Teams, um ein eigenes Produkt zu entwickeln
- präsentieren ihre Lösungsansätze vor der Gruppe
- integrieren fachliche und sachliche Kritik in ihre Lösungsansätze
- unterstützen andere Gruppen durch fachliche und sachliche Kritiken

Selbstkompetenzen
Die Studierenden:
- erkennen die Grenzen ihrer Belastbarkeit bei der Einarbeitung und der Durchführung eines Projektes in einer zunächst unbekannten Anwendungsdome (z.B. Maritimer Anlagenbau)
Modulinhalte

Literaturempfehlungen

- Ehrlenspiel (2003): Integrierte Produktentwicklung

Links

- www.wi-ol.de

Unterrichtssprachen

- Deutsch, Englisch

Dauer in Semestern

- 1 Semester

Angebotsrhythmus Modul

- jährlich

Aufnahmekapazität Modul

- unbegrenzt

Hinweise

- Das Vorlesungsmaterial enthält englische Passagen

Modullevel

Modular

Lehr-/Lernform

- 1VL + 1Ü

Vorkenntnisse

- keine

Prüfung

Prüfungszeiten

Zum Ende der Veranstaltungszeit

Prüfungsform

Klausur oder mündliche Prüfung oder Hausarbeit oder Referat oder Portfolio

Gesamtmodul

Lehrveranstaltungsform

Kommentar

SWS

Angebotsrhythmus

Workload Präsenz

Vorlesung

2

WiSe

28

Übung

2

WiSe

28

Präsenzzeit Modul insgesamt

56 h
inf203 - Embedded Systems I

Modulbezeichnung: Embedded Systems I
Modulkürzel: inf203
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Fach-Bachelor Informatik (Bachelor) > Akzentsetzungsbereich - Wahlbereich Informatik
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master of Education (Gymnasium) Informatik (Master of Education) > Wahlpflichtmodule (Technische Informatik)
- Zweifächer-Bachelor Informatik (Bachelor) > Wahlpflicht Technische Informatik (30 KP)

Zuständige Personen
- Fränzle, Martin Georg (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- Grundlagen der technischen Informatik
- Technische Informatik

Kompetenzziele
Das Modul leistet eine Einführung in den Entwurf digitaler eingebetteter Systeme.

Fachkompetenzen
Die Studierenden:
- benennen funktionale und nichtfunktionale Anforderungen zur Spezifikation eingebeteter Systeme
- diskutieren den Entwurfsraum und der damit verbundenen Entwurfsmethodik eingebetteter Systeme
- benennen die grundlegenden Verfahren der Steuerungs- und Regelungstechnik
- charakterisieren die grundlegenden Algorithmen der digitalen Signalverarbeitung

Methodenkompetenzen
Die Studierenden:
- konstruieren mit Modellierungswerkzeugen eingebettete Systeme und Regelungssysteme
- implementieren ein eingebettetes Hardware-/Software-System
- analysieren verschiedene Spezifikationssprachen anhand diverser Eigenschaften

Sozialkompetenzen
Die Studierenden:
- konstruieren Lösungen zu gegebenen Problemen in Gruppen
- präsentieren Lösungen von informatischen Problemen vor Gruppen
- organisieren sich zu einer Gruppe zur Lösung eines größeren Problems mit Hilfe gängiger Projektmanagementmethoden

Selbstkompetenzen
Die Studierenden:
- erkennen die Grenzen ihrer Belastbarkeit bei der Implementierung von Systemen, bzw. Teilaspekten dieser
- lösen die Übungsaufgaben eigenverantwortlich

Modulinhalte

Foliensammlung sowie:

Sekundärliteratur:
- Artikelserie zum MPEG-2-Standard 3/94 10/94 und das Tutorial "Digitale Bildcodierung" 1/92 1/93, beides in "Fernseh- und Kinotechnik" (BIS: Z elt ZA 1536)
"Low Energy System Design" möglich.

<table>
<thead>
<tr>
<th>Modullevel</th>
<th>Modulart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehr-/Lernform</td>
<td>1VL + 1Ü</td>
</tr>
</tbody>
</table>
| Vorkenntnisse | - Grundlagen der technischen Informatik
| | - Technische Informatik |

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Ende des Semesters</td>
<td>Klausur oder mündliche Prüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>WiSe</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
inf339 - Industry 4.0: Digitalization in Industrial Manufacturing

Modulbezeichnung: Industry 4.0: Digitalization in Industrial Manufacturing

Modulkürzel: inf339

Kreditpunkte: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls:
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Informatik (Master) > Technische Informatik

Zuständige Personen:
- Fränzle, Martin Georg (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen: Keine Teilnehmenvoraussetzungen

Kompetenzziele:

Fachkompetenzen:
Die Studierenden
- erkennen grundlegende Zusammenhänge der Digitalisierung der industriellen Produktion
- erlangen Wissen über Schlüsselkompetenzen im Rahmen der Digitalisierung der industriellen Produktion
- erarbeiten praktisches Wissen über spezielle Themenbereiche in der Digitalisierung der industriellen Produktion
- stellen konkrete Ansätze zur Diskussion

Methodenkompetenzen:
Die Studierenden
- erfassen benötigte Informationen und analysieren diese
- bereiten die erfassten Informationen zielgruppengerecht auf
- bilden ein Verständnis der Digitalisierung der industriellen Produktion

Sozialkompetenzen:
Die Studierenden:
- präsentieren und diskutieren die eigenen Ausarbeitungen auf fachlicher Ebene

Selbstkompetenzen:
Die Studierenden:
- verstehen analysierend ihren eigenen Kenntnisstand
- erlernen das Aufbereiten und Vorstellen einer speziellen Thematik

Modulinhalte:

Das Modul vermittelt grundlegendes Wissen zur Digitalisierung der industriellen Produktion (Industrie 4.0). Neben einem Überblick über wirtschaftliche und technische Aspekte und Möglichkeiten der Digitalisierung der Produktion liegt der Schwerpunkt des Moduls auf Technologien zur Datenerfassung, Kommunikation und Steuerung in Produktionsanlagen. Vernetzte Werkzeugmaschine, Produktionsplanung und –steuerung, Organisation, Qualität und IT-Systeme für Planung und Betrieb, Gentelligente Werkstücke, Intelligente Werkzeuge, Transfersysteme, Montage 4.0, Cyber-
Literaturneuempfehlungen

- Handbuch Industrie 4.0 – Geschäftsmodelle, Prozesse, Technik“, Gunther Reinhart, 2017
- Handbuch Industrie 4.0 Bd.1 – Produktion“, Birgit Vogel-Heuser, Thomas Bauernhansl, Miachel ten Hompel, 2017
- Handbuch Industrie 4.0 Bd.2 – Automatisierung“, Birgit Vogel-Heuser, Thomas Bauernhansl, Miachel ten Hompel, 2017
- Handbuch Industrie 4.0 Bd.3 – Logistik“, Birgit Vogel-Heuser, Thomas Bauernhansl, Miachel ten Hompel, 2017
- Handbuch Industrie 4.0 Bd.4 – Allgemeine Grundlagen“, Birgit Vogel-Heuser, Thomas Bauernhansl, Miachel ten Hompel, 2017

Links

Unterrichtsprachen Deutsch, Englisch

Dauer in Semestern 1 Semester

Angebotsrhythmus Modul jedes Wintersemester

Aufnahmekapazität Modul unbegrenzt

Modullevel

Modulart

Lehr-/Lernform 1VL + 1S

Vorkenntnisse keine

Prüfung Prüfungszeiten Prüfungsform

Gesamtmodul Am Ende der Vorlesungszeiten Mündliche Prüfung

Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz

Vorlesung 2 SoSe oder WiSe 28

Seminar 2 SoSe oder WiSe 28

Präsenzzeit Modul insgesamt 56 h
inf5122 - Learning-Based Control in Digitalised Energy Systems

Modulbezeichnung: Learning-Based Control in Digitalised Energy Systems
Modulkürzel: inf5122
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master Digitalised Energy Systems (Master) > Digitalised Energy System Design and Assessment
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik

Zuständige Personen
- Rauh, Andreas (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung

Kompetenzziele

Die Studierenden identifizieren die grundlegenden Konzepte der lernenden Regelung dynamischer Systeme.

Fachkompetenz
Die Studierenden:
- identifizieren die grundlegenden Konzepte der lernenden Regelung dynamischer Systeme
- charakterisieren problemangepasste Lernmethoden
- erkennen softwaretechnische Umsetzungen für ausgewählte Prüfstände.

Methodenkompetenz
Die Studierenden:
- analysieren Probleme der lernenden Regelung
- generalisieren diese eigenständig auf neue forschungsnaher Anwendungsszenarien.

Sozialkompetenz
Die Studierenden:
- erarbeiten in einem vorlesungsbegleitenden Projekt/Praktikum Lösungsideen für reale regelungstechnische Aufgaben in kleinen Gruppen
- vermitteln die von ihnen erzielten Ergebnisse in kurzen Präsentationen

Selbstkompetenz
Die Studierenden:
- reflektieren kritisch die von ihnen in Projektform erarbeiteten Ergebnisse
- erkennen Grenzen unterschiedlicher Ansätze lernender Regelungen.

Modulinhalte

1. Iterativ-lernende Regelungen
 - Grundlegende 2D-Systemstrukturen
 - Stabilitätskriterien
 - Ausgewählte Optimierungsansätze
2. Datenbasierte Neurionale-Netz- Modellierung vs. physikalisch-orientierte Modelle
 - Statische Funktionsapproximation
 - NARX-Modelle
3. Entwurf von Reglern mittels Neuronaler Netze
4. Stabilität von Regelungen mittels Neuronaler Netze

Literaturempfehlungen
- Rauh, A. Folien/ Skript zur Vorlesung „Learning-Based Control in DES“

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unterrichtssprache</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modullevel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart</td>
</tr>
<tr>
<td>Lehr-Lernform</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Im Anschluss an die Veranstaltungszeit</td>
<td>Portfolio oder Klausur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
Inf5408 - Angewandtes Deep Learning in PyTorch

Modulbezeichnung	Angewandtes Deep Learning in PyTorch
Modulkürzel | inf5408
Kreditpunkte | 6.0 KP
Workload | 180 h

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Umweltmodellierung (Master) > Mastermodule
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Zuständige Personen
- Strodthoff, Nils (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnehmervoraussetzungen
Ein grundlegendes theoretisches Verständnis des maschinellen Lernens und praktische Programmierkenntnisse in Python

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- haben einen Überblick über die Komponenten von Deep Learning Frameworks
- kennen Anwendungsbereiche von Deep Learning Methoden in verschiedenen Datenmodalitäten und gängige Lösungsstrategien und Modellarchitekturen
- können Deep Learning Methoden auf neue Problemstellungen in den jeweiligen Bereichen geeignet adaptieren und selbstständig anwenden

Methodenkompetenzen
Die Studierenden:
- erarbeiten sich selbstständig unter Zuhilfenahme von Präsenzveranstaltungen, bereitgestellten Materialien und Fachliteraturtheoretische und praktische Konzepte

Sozialkompetenzen
Die Studierenden:
- können Lösungsansätze für Probleme in diesem Bereich im Plenum präsentieren und in Diskussionen verteidigen

Selbstkompetenzen
Die Studierenden:
- können ihre eigene Fach- und Methodenkompetenz einschätzen
- übernehmen die Verantwortung für ihre Kompetenzentwicklung und ihre Lernfortschritte und reflektieren diese selbstständig
- erarbeiten selbstständig die Lerninhalte und können die Inhalte kritisch reflektieren

Modulinhalte

Dabei werden die wichtigsten aktuellen Modellarchitekturen in diesen Bereichen diskutiert, angefangen von Convolutional Neural Networks über Recurrent Neural Networks bis hin zu Transformer-Modellen. Die Vorlesung wird von Übungsgruppen begleitet in denen die Studenten praktische Erfahrungen in PyTorch und zugleich die nötigen Kenntnisse erwerben sollen.
um aktuelle Deep Learning Verfahren in ihren jeweiligen Anwendungsgebieten zum Einsatz zu bringen.

Literaturempfehlungen

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Englischt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dauer in Semestern</th>
<th>1 Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Angebotsrhythmus Modul</th>
<th>jedes Wintersemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Aufnahmekapazität Modul</th>
<th>unbegrenzt</th>
</tr>
</thead>
</table>

Modullevel

<table>
<thead>
<tr>
<th>Modulart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1VL + 1Ü</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ein grundlegendes theoretisches Verständnis des maschinellen Lernens und praktische Programmierkenntnisse in Phyton</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungszeiten Prüfungsform</td>
</tr>
</tbody>
</table>

Gesamtmult

| am Ende der Vorlesungszeit Klausur und mündl. Prüfung |

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>WiSe</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>WiSe</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 0 h |

77 / 213
inf5452 - Aktuelle Themen des Vertrauenswürdigen Maschinellen Lernen

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Aktuelle Themen des Vertrauenswürdigen Maschinellen Lernen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf5452</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen
- Strodthoff, Nils (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Grundlagenvorlesung im Bereich Maschinelles Lernen und / oder Deep Learning Vorkenntnisse

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- haben einen exemplarischen Überblick über Herausforderungen und exemplarische, existierende Lösungsansätze in den jeweiligen Problemfeldern und können diese in den breiteren Methodenkontext einordnen.

Methodenkompetenzen
Die Studierenden:
- können sich selbstständig Themen unter Zuhilfenahme von aktueller Forschungsliteratur erarbeiten und kritisch reflektieren.

Sozialkompetenzen
Die Studierenden:
- können Vor- und Nachteile von existierenden Lösungsmöglichkeiten in der Literatur präsentieren und im Plenum kritisch diskutieren.

Selbstkompetenzen
Die Studierenden:

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jedes Wintersemester
<table>
<thead>
<tr>
<th>Aufnahmekapazität Modul</th>
<th>unbegrenzt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modullevel</td>
<td></td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1S</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>Grundlagenvorlesung im Bereich Maschinelles Lernen und / oder Deep Learning Vorkenntnisse</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtsmodul</td>
<td>mündl. Prüfung / Portfolio / Referat</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>am Ende der Vorlesungszeit / Zwischenprüfungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
Embedded Brain Computer Interaction

inf100 - Mensch-Maschine Interaktion

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Mensch-Maschine Interaktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf100</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Informatik (Master) > Praktische Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Zuständige Personen

- Boll-Westermann, Susanne (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen

Nützliche Vorkenntnisse: Interaktive Systeme

Kompetenzziele

Die Studierenden können eigenständig, unter zu Hilfenahme geeigneter Ressourcen, eine Mensch-Maschine Schnittstelle nach dem nutzerzentrierten Designprozess (HCD) konzipieren, prototypisch entwickeln und evaluieren.

Fachkompetenzen

Die Studierenden:

- können den HCD Prozess beschreiben und erklären.
- können eine unbekannte Methode anhand einer knappen Beschreibung in den HCD Prozess einordnen.
- können eine geeignete Art des Prototypings für einen gegebenen Anwendungsfall auswählen.
- können eine geeignete Prototypingmethode für einen gegebenen Anwendungsfall auswählen.
- können ausgewählte Prototypingmethoden anwenden um ein interaktives System zu konzipieren.
- können grundlegende Charakteristiken der menschlichen Wahrnehmung und Motorik nennen und deren Bedeutung für die Entwicklung interaktiver Systeme erläutern.
- können auf Basis der Gestaltgesetze Verbesserungsvorschläge für eine gegebene Benutzungsschnittstelle machen und begründen.
- können die Grundzüge der visuellen Suche erläutern und zur Verbesserung gegebener Interfaces heranziehen.
- können mehrere Varianten eines Konzepts eines interaktiven Systems anhand der Erkenntnisse der “Multiple Ressource Theory” kritisch vergleichen.

Methodenkompetenzen

Die Studierenden

- können Methoden zur Nutzungskontext- und/oder Nutzungsanforderungsanalyse kritisch vergleichen und auswählen.
- können Methoden zur Nutzungskontext- und/oder Nutzungsanforderungs auf ein reales Beispiel anwenden.
- können retrospektiv zur Verwendung einer Methode zur Nutzungskontext- und/oder Nutzungsanforderungs Stellung beziehen.
- können eine Ideation (= Ideenfindung) Sitzung planen, moderieren und auswerten.
- können auf Basis einer gegebenen Themenstellung eine präzise Forschungsfrage formulieren.
- können die Vor- und Nachteile eines Experiment Designs diskutieren.
- können für eine gegebene Fragestellung ein geeignetes Experiment Design auswählen.
- können für ein gegebenes Experiment Hypothesen und Nullhypothesen formulieren.

Sozialkompetenzen

Die Studierenden:

- können in Gruppenarbeit eigenständig Lösungsansätze zu einem gegebenen Designproblem erarbeiten.
- können selbst entwickelte Lösungen eines Designproblems im Plenum präsentieren.
können ihre methodische Herangehensweise an ein Designproblem motivieren.
können ihre Designentwürfe und Ergebnisse fachlich und sachlich angemessen mit dem Plenum diskutieren.
können fachliche und sachliche Kritik in ihre eigenen Designentwürfe integrieren.

Selbstkompetenzen
Die Studierenden:
können während des Designprozesses gemachte Fehler akzeptieren und aus ihnen lernen.

Modulinhalte

Das Modul vermittelt detaillierte Informationen zu Evaluationsmethoden und stellt die Grundlagen der experimentellen Forschung in der Mensch-Computer-Interaktion ein, einschließlich Forschungsarten, Forschungshypothesen, experimentelles Design und statistische Analyse.

Literaturempfehlungen
- Literatur im Handapparat der Abteilung in der Bibliothek. Linkliste im Lernmanagementsystem Stud.IP zu den einzelnen Themen der Vorlesung. / Literature in the reserve shelf in the university bibliography. Link list in Stud.IP.

Links
- https://uol.de/medieninformatik/lehrveranstaltungen

Unterrichtssprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jedes Sommersemester

Aufnahmekapazität Modul
unbegrenzt

Hinweise

Modullevel

Modulart

Lehr-/Lernform
1 VL + 1 Ü

Vorkenntnisse
Nützliche Vorkenntnisse: Interaktive Systeme

Prüfung
Prüfungszeiten
Prüfungsform

Gesamtmodul

Portfolio

Lehrveranstaltungsform
Kommentar
SWS
Angebotsrhythmus
Workload Präsenz

Vorlesung
2
SoSe
28

Übung
2
SoSe
28
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf300 - Hybride Systeme

Modulbezeichnung: Hybride Systeme
Modulkürzel: inf300
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Technische Informatik
- Master Informatik (Master) > Theoretische Informatik

Zuständige Personen
- Fränzle, Martin Georg (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- charakterisieren die einschlägigen formalen Systemmodelle cyber-physischer Systeme: Hybride Automaten, hybride symbolische Transitionssysteme
- benennen domänentypische Systemanforderungen: Sicherheit im Sinne von “safety”, Stabilisierungsbegriffe, Robustheit
- wählen und setzen adäquate Modellierungs- und Analysemethoden für konkrete Anwendungsszenarien ein
- wenden Methoden zur Reduktion großer Zustandsräume und Abstraktionen zur Behandlung zustandsunendlicher Systeme an
- kennen die den Industrie-Standard darstellenden Modellierungswerkzeuge und können sie anwenden

Methodenkompetenzen
Die Studierenden:
- modellieren semiformal heterogene dynamische Systeme mit industriellen Entwurfswerkzeugen, insbes. mit Simulink/Stateflow
- übertragen die erlernten Modellierungs- und Analysetechniken auf andere heterogene Systemdomänen, bspw. soziotechnische Systeme

Sozialkompetenzen
Die Studierenden:
- arbeiten in Teams
- lösen komplexe Modellierungs-, Entwicklungs- und Analyseaufgaben im Team

Selbstkompetenzen
Die Studierenden:
- reflektieren ihr Vorgehen und erkennen die Grenzen der erlerneten Methoden hybrider Systeme

Modulinhalte
Die vorlesungsbegleitende Bearbeitung eines Semesterprojekts mit aktuellen Entwurfs- und Verifikationswerkzeugen dient der Vertiefung des Vorlesungsstoffs.

Literaturempfehlungen

Links

<table>
<thead>
<tr>
<th>Unterrichtsprachen</th>
<th>Englisch, Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Modullevel

<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>1VL + 1Ü</th>
</tr>
</thead>
</table>

Vorkenntnisse

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Ende der Vorlesungszeit</td>
<td>Projekt</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
<td>SWS</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>3</td>
<td>SoSe</td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
<td>SoSe</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
inf301 - Hardwarenahe Systementwicklung

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Hardwarenahe Systementwicklung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf301</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Fränzle, Martin Georg (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Keine Teilnehmervoraussetzungen

Kompetenzziele
Das Modul liefert den Praxisbezug zum Bereich "Entwurf digitaler eingebetteter Systeme".

Fachkompetenzen
- charakterisieren den praktischen Aufbau eines Mikroprozessorsystems
- benennen Aspekte der zeitkritischen Ansteuerung externer Komponenten
- programmieren leistungsfähige eingebettete Systeme

Methodenkompetenzen
- verwenden Spezifikationen von Datenblättern elektronischer Komponenten

Sozialkompetenzen
- arbeiten im Team
- diskutieren Lösungen im Team

Modulinhalte

Literaturempfehlungen
Foliensammlungen sowie Handbücher und Datenblätter der verwendeten Hardware und Handbücher der Entwicklungswerkzeuge

Links

Unterrichtssprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel

Modulart
<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>1V + 1P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse</td>
<td>Keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtdauer</td>
<td>Am Ende der Vorlesungszeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Praktikum</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td>56 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
inf303 - Fuzzy-Regelung und künstliche neuronale Netze in Robotik und Automation

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Fuzzy-Regelung und künstliche neuronale Netze in Robotik und Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf303</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | • Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
 • Master Engineering of Socio-Technical Systems (Master) > Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
 • Master Informatik (Master) > Angewandte Informatik
 • Master Informatik (Master) > Technische Informatik |
| Zuständige Personen | • Fatikow, Sergej (Modulverantwortung)
 • Lehrenden, Die im Modul (Prüfungsberechtigt) |
| Teilnahmeverantraetungen | |
| Kompetenzziele | Ziels des Moduls |
| Fachkompetenzen | • Spezialisten verschiedener Disziplinen lösen ihre anwendungsspezifischen Steuerungs- und Informationsverarbeitungsprobleme durch den Einsatz von Fuzzy-Logik und neuronaler Netze. Wie die gesammelten Erfahrungen zeigten, sind die Robotik und die Automatisierungstechnik prädestinierte Anwendungsbereiche für diese Technologien. |
| Methodische Kompetenzen | • verstehen die Steuerungs- und Regelprobleme in Robotik und Automation,
 • erwerben Grundlagen der Fuzzy-Logik und künstlicher neuronaler Netze,
 • vergleichen mit konventionellen und fortschrittlicher Ansätze zur Steuerung und Regelung und
 • lernen den Einsatz neuronaler Netze in Kombination mit Fuzzy-Logik kennen.
 • ihr Wissen über die praktische Anwendbarkeit beider Verfahren zu vertiefen,
 • die erworbenen Kenntnisse später in Studien- oder Diplomarbeiten in der AMiR umzusetzen |
| Soziale Kompetenzen | |
| Selbstkompetenzen | |
| Modulinhalte | |
Steuerungsprobleme in Robotik und Automation;
Einführung in Fuzzy- und Neuro-Systeme;
Grundlagen der Fuzzy-Logik;
Fuzzy-Logik regelbasierter Systeme;
Modelle neuronaler Netze;
Lernalgorithmen für neuronale Netze;
Mehrschichtige Netze und Backpropagation;
Assoziativspeicher und stochastiche Netze;
Selbstorganisierende Netze;
Entwurf klassischer Regler;
Entwurf von Fuzzy-Regelungssystemen;
Praktische Anwendungen der Fuzzy-Logik;
Entwurf von Neuro-Regelungssystemen;
Praktische Anwendungen neuronaler Netze

Literaturempfehlungen

Essentiell:

- Vorlesungsskript in Buchform (erhältlich im Sekretariat, A1-3-303)

Empfohlen:

Gute Sekundärliteratur:

- Altrock, M. O. R.: Fuzzy Logic, R. Oldenbourg Verlag, 1993
- Kahlert, J. und Hubert, F.: Fuzzy-Logik und Fuzzy-Control, Vieweg, 1993
- Kutzker, K.P.: Neuronale Netze, Carl Hanser, 1993
- Lawrence, J.: Neuronale Netze, SyntHEMA Verlag, München, 1992
- Patterson, D.W.: Künstliche neuronale Netze, Prentice Hall, 1996
- Zakharian, S. Ladewig-Riebler, P. und Thoer, St.: Neuronale Netze für Ingenieure, Vieweg, Wiesbaden, 1998
- Zimmermann H.-J. (Hrsg.): Datenanalyse, VDI-Verlag, 1995

Links

Unterrichtsprachen Englisch, Deutsch
Dauer in Semestern 1 Semester
<table>
<thead>
<tr>
<th>Angebotsrhythmus Modul</th>
<th>jährlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel</td>
<td></td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1VL + 1Ü</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>Kenntnisse in Regelungstechnik</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Fachpraktische Übungen und mündliche Prüfung</td>
</tr>
<tr>
<td>Gesamtmodule</td>
<td>Nach Beendigung des Moduls bis zum Anfang des nachfolgenden Semesters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzzeit Modul insgesamt 56 h
inf305 - Medizintechnik

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Medizintechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf305</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Interdisziplinäre Module
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Hein, Andreas (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Nützliche Kenntnisse in
- Signal und Bildverarbeitung
- Regelungstechnik

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- beschreiben Diagnose- und Therapieformen in der Medizin
- erkennen die Grundkonzepte von Computer-assistierten Eingriffen in der Medizin
- beschreiben die Grundsätze und rechtlichen Rahmenbedingungen für die Entwicklung von Medizinprodukten
- definieren die Rolle von Softwarekomponenten in Medizinprodukten und implementieren diese
- schätzen die komplexe Zusammenhänge/Interaktionen zwischen Medizinprodukt und Patient ab
- arbeiten sich in spezifische Fragen der Entwicklung von Medizinprodukten schnell ein

Methodenkompetenzen
Die Studierenden:
- erkennen interdisziplinäre Herausforderung und reagieren durch Kommunikation mit anderen Disziplinen darauf

Sozialkompetenzen
Die Studierenden:
- präsentieren Lösungsansätze

Selbstkompetenzen
Die Studierenden:
- reflektieren ihre Lösungen und beziehen dabei die gelernten Methoden ein

Modulinhalte
- Medizinische Gebiete und Einsatzfelder
- Grundlegende Anforderungen an medizintechnische Systeme (Hygiene, MPG, technische Sicherheit, Materialien)

Medizintechnische Systeme:
- Funktionsdiagnostik (EKG, EMG, EEG)
- Bildgebende Systeme (CT, MRT, Ultraschall, PET, SPECT)
- Therapiegeräte (Laser, HF, Mikrotherapie)
- Signalverarbeitung/Monitoring (kardiovaskulär, hämodynamisch, respiratorisch, metabolisch, zerebral)
- Medizinische Informationsverarbeitung (HIS, DICOM, Telemedizin, VR, Bildverarbeitung)

Literaturempfehlungen
Essentiell:
- Kramme, R.: Medizintechnik. Verfahren, Systeme und
Informationssysteme, Springer Verlag, 2002 (2. Auflage)
- Foliensammlung zur Vorlesung
- Empfohlen:

Gute Sekundärliteratur:

Links
Unterrichtsprachen
Englisch, Deutsch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel

Modulart

Lehr-/Lernform
1VL + 1Ü

Vorkenntnisse
Kenntnisse in
- Signal und Bildverarbeitung
- Regelungstechnik

Prüfung
Prüfungszeiten
Am Ende der Vorlesungszeit

Prüfungsform
Semesterbegleitende fachpraktische Übung und Klausur oder mündliche Prüfung

Lehrveranstaltungsform

Kommentar
SWS
Angebotsrhythmus
Workload Präsenz

Vorlesung
3
WiSe
42

Übung
1
WiSe
14

Präsenzzeit Modul insgesamt
56 h
inf307 - Robotik

Modulbezeichnung: Robotik
Modulkürzel: inf307
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Interdisziplinäre Module
- Master Informatik (Master) > Technische Informatik

Zuständige Personen:
- Hein, Andreas (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen: Keine

Kompetenzziele:

<table>
<thead>
<tr>
<th>Fachkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden:</td>
</tr>
<tr>
<td>- benennen und erkennen die Funktionsweise und Anwendungsgebiete</td>
</tr>
<tr>
<td>von Robotersystemen</td>
</tr>
<tr>
<td>- charakterisieren die Grundkonzepte der Programmierung von Robotersystemen</td>
</tr>
<tr>
<td>- differenzieren das Zusammenwirken mechanischer, elektrischer und</td>
</tr>
<tr>
<td>softwaretechnischer Komponenten in einem</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methodenkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden:</td>
</tr>
<tr>
<td>- definieren Eigenschaften und Komponenten für Robotersysteme für</td>
</tr>
<tr>
<td>eine spezifische Anwendung - entwerfen und implementieren</td>
</tr>
<tr>
<td>Teilmodule von Robotertechnologien</td>
</tr>
<tr>
<td>- entwerfen und parametrisieren simple Reglerstrukturen</td>
</tr>
<tr>
<td>- planen den Einsatz von Robotersystemen und leiten Anforderungen an</td>
</tr>
<tr>
<td>das System ab</td>
</tr>
<tr>
<td>- konstruieren Modelle elektro-mechanischer System</td>
</tr>
<tr>
<td>- entwerfen und realisieren simple Robotersysteme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sozialkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden:</td>
</tr>
<tr>
<td>- arbeiten gemeinsam an gegebenen Problemstellungen der Robotik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selbstkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden:</td>
</tr>
<tr>
<td>- reflektieren ihre Lösungen und beziehen dabei die Methoden der Robotik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulinhale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul vermittelt die folgenden Inhalte:</td>
</tr>
<tr>
<td>- Integration in Produktionsanlagen / Ziele / Teilsysteme - Architekturen</td>
</tr>
<tr>
<td>/ Typisierungen (Typisierung von Robotern);</td>
</tr>
<tr>
<td>- Komponenten eines Roboters + Rechnersystems zur Programmierung</td>
</tr>
<tr>
<td>-- Beispiel PA-10 -- Beispiel Lego Mindstorms</td>
</tr>
<tr>
<td>- Grundlagen der Kinematik -- Koordinatentransformationen, homogene</td>
</tr>
<tr>
<td>Koordinaten, Parametrisierung von Koordinatentransformationen, --</td>
</tr>
<tr>
<td>Kinematische Gleichungssysteme, Transformation von Vektoren</td>
</tr>
<tr>
<td>- Kinematik -- Gelenkarten/Räder, TCP -- Denavit-Hartenberg-Regeln --</td>
</tr>
<tr>
<td>Vorwärtsrechnung -- Rückwärtstransformation - Sensorik -- Allgemeine</td>
</tr>
<tr>
<td>Eigenschaften von Sensoren, Kenngrößen, -- Einfache optische</td>
</tr>
<tr>
<td>Positionssensoren, -- Induktive, kapazitive und Ultraschall-Schalter --</td>
</tr>
<tr>
<td>Abstandssensoren (Laserscanner, Triangulationsensoren) --</td>
</tr>
<tr>
<td>Kraftsensorik -- Sensordatenauflösung</td>
</tr>
<tr>
<td>- Planung / Regelung -- Ansatz der Regelung, Begriffe, Prozess- und</td>
</tr>
<tr>
<td>Regelungsfunktionen, PID-Regler, -- Konzepte und Ansätze zur Planung</td>
</tr>
<tr>
<td>(On-Line, Off-Line), Planungsverfahren, Montage- und Wegeplanung -</td>
</tr>
<tr>
<td>Aaktoren</td>
</tr>
</tbody>
</table>

Literaturnachweise

Essentiell:
 - Skript zur Vorlesung

Empfohlen:
 - Jiang, X.; Bunke, H.: Dreidimensionales Computersehen (Gewinnung und Analyse von Tiefenbildern), Springer Verlag, 1997

Gute Sekundärliteratur:

Links

Unterrichtsprachen
 - Deutsch, Englisch

Dauer in Semestern
 - 1 Semester

Angebotsrhythmus Modul
 - jährlich

Aufnahmekapazität Modul
 - unbegrenzt

Modullevel

Modulart

Lehr-/Lernform
 - 1VL + 1Ü

Vorkenntnisse
 - keine

Prüfung

Gesamtmodul
 - Am Ende der Vorlesungszeit
 - Portfolio oder Klausur oder mündliche Prüfung

Lehrveranstaltungsform

Vorlesung
 - Kommentar
 - SWS: 3
 - Angebotsrhythmus: SoSe
 - Workload Präsenz: 42

Übung
 - SWS: 1
 - Angebotsrhythmus: SoSe
 - Workload Präsenz: 14

Präsenzzeit Modul insgesamt
 - 56 h
Nachdem im Modul "Mikrorobotik und Mikrosystemtechnik" eine fundierte Einführung in die Mikrosystemtechnik und Mikrorobotik gegeben wurde, bietet diese Veranstaltung eine Vertiefung in das komplexe Gebiet der Mikro- und Nanorobotik. Dabei werden alle relevanten Teilbereiche der Mikrorobotik, u.a. auch sämtliche Forschsthemen der Abteilung für Mikrorobotik und Regelungstechnik (AMiR) präsentiert und analysiert. Dem Student wird u.a. ein tiefer Einblick in die aktuellen Forschungsprojekte der AMiR und anderer Mikrorobotik-Institute weltweit ermöglicht, wobei in erster Linie die Anforderungen der Industrie an die Mikrorobotik diskutiert werden. Die Veranstaltung wird durch praxisnahe Übungen in den Forschungslaboren der AMiR abgerundet.

Fachkompetenzen
Die Studierenden
- benennen und erkennen die Grundkonzepte der Nanotechnologie, insbesondere die Ansätze der Mikro- und Nanorobotik
- differenzieren die Konzepte der Mikro- und Nanorobotik, speziell auf den Gebieten der Entwicklung, Steuerung/Regelung und Anwendung von mikro- und nanorobotischen Systemen
- wenden ihr Wissen für den Entwurf von anwendungspezifischen Mikro- und Nanorobotersystemen an

Methodenkompetenzen
Die Studierenden
- übertragen die erlangten Fähigkeiten in den Bereichen der Regelungstechnik und Bildverarbeitung auf fachübergreifende Problemstellungen
- übertragen die Kompetenz praktische Erfahrungen in der Entwicklung, Steuerung/Regelung und Anwendung von mikrorobotischen Systemen auf neue Aufgaben

Sozialkompetenzen
Die Studierenden
- arbeiten im Team

Selbstkompetenzen
Die Studierenden
- reflektieren ihr Vorgehen
- beziehen ihre praktischen Erfahrungen in der Entwicklung, Steuerung/Regelung und Anwendung von mikrorobotischen Systemen in ihre Handlungen ein

Modulinhalte
- Rasterelektronenmikroskopie und Rasterkraftmikroskopie
- Intelligente multifunktionale Mikrorobotik
- Mikroaktoren (Piezo-, Ferrofluid-, SMA-Aktoren) für Mikroroboter
- Echtzeit-Bildverarbeitung in der Mikro- und Nanowelt (REM, AFM, optische Mikroskopie)
- Mikrokraftsensoren und taktile Sensoren für Mikroroboter
- Roboterbewegung, u.a. mit Hilfe neuronaler Netze und Fuzzy-Logik
Haptische Benutzeroberfläche zur Steuerung von Mikrorobotern -
Roboterbasierte Mikro- und Nanohandhabung (REM, TEM, AFM,
optische Mikroskopie)
- Anwendungen: Mikro- und Nanomontage, Test von Nanoschichten,
Handhabung und Charakterisierung von Kohlenstoffnanoröhren,
Handhabung biologischer Zellen
- Mehrrobotersysteme in der Mikrowelt: Kommunikation, Steuerung,
 Kooperation

Literaturnachweise

- Vorlesungsskript in Buchform (kann nach Fertigstellung zum
 Selbstkostenpreis im Sekretariat A1 3-303 erworben werden)
- Fatikow, Sergej (Ed.): Automated Nanohandling by Microrobotics,

Links

- Unterrichtssprachen: Englisch, Deutsch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: jährlich
- Aufnahmekapazität Modul: unbegrenzt

Modul niveau

- Modulart: 1VL + 1Ü
- Vorkenntnisse: Mikrorobotik und Mikrosystemtechnik
- Prüfung: Fachpraktische Übungen und mündliche Prüfung.

Gesamtmodul

- Nach Beendigung des Moduls bis zum Anfang des
 nachfolgenden Semesters
- Fachpraktische Übungen und mündliche Prüfung

Lehrveranstaltungsform

- Vorlesung: 3 SWS
- Übung: 1 SWS

Präsenzzeit Modul insgesamt: 56 h

SoSe 42
SoSe 14
95 / 213
Low Energy System Design

Links

<table>
<thead>
<tr>
<th>Unterrichtsprachen</th>
<th>Englisch, Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Modulart

| Lehr-/Lernform | 1VL + 1Ü |

Vorkenntnisse

Kenntnisse in:
- Grundlagen der Technische Informatik,
- Technische Informatik,
- Eingebettete Systeme I+,
- Eingebettete Systeme II

Prüfung

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Am Ende der Vorlesungszeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td>56 h</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt: 56 h
inf331 - Automated and Connected Driving

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Automated and Connected Driving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf331</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>Master Informatik (Master) > Technische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Köster, Frank (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Nützliche Kenntnisse in:</td>
</tr>
<tr>
<td></td>
<td>- Technische Informatik,</td>
</tr>
<tr>
<td></td>
<td>- Eingebettete Systeme I,</td>
</tr>
<tr>
<td></td>
<td>- Eingebettete Systeme II</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td></td>
</tr>
</tbody>
</table>

Dieses Modul führt in die Grundlagen des automatisierten Fahren ein.

Fachkompetenzen

Die Studierenden:

- diskutieren verschiedene Stufen des automatisierten Fahrens (z.B. SAE-Level) und die Unterschiede
- diskutieren Sie verschiedene Stufen des vernetzten Fahrens und die Unterschiede
- diskutieren Kernbereiche des automatisierten Fahrens
- erörtern wichtige technologische Säulen in den Bereichen Erkennen, Planen und Handeln
- erörtern den Übergang zwischen verschiedenen Automatisierungsstufen
- diskutieren Sie die Auswirkungen von vernetzten Fahrzeugfunktionen auf das automatisierte Fahren
- erörtern die Auswirkungen von automatisierten Fahrzeugfunktionen auf das vernetzte Fahren
- charakterisieren die Auswirkungen des automatisierten und vernetzten Fahrens auf den Straßenverkehr
- charakterisieren der Interaktion von Menschen und automatisierten und vernetzten Fahrzeugen
- entwerfen Sie ein abstraktes Verfahren für den Wechsel verschiedener Automatisierungsgrade
- entwerfen Sie eine grobe Fahrzeugarchitektur für das automatisierte und vernetzte Fahren:

Methodenkompetenzen

Die Studierenden

- analysieren komplexe automatisierte und vernetzte Fahrzeuge (-> Domänen)
- analysieren Kernfunktionen von automatisierten und vernetzten Fahrzeugen (-> Funktionen)

Sozialkompetenzen

Die Studierenden:

- arbeiten in Teams
- diskutieren ihre Ergebnisse sachgerecht

Selbstkompetenzen

Die Studierenden:

- verstehen analysierend ihren eigenen Kenntnisstand
- erlernen das Aufbereiten und Vorstellen einer speziellen Thematik

Modulinhalte
- Stufen des automatisierten Fahrens (z.B. SAE-Level)
- Ebenen des vernetzten Fahrens - Kernbereiche des automatisierten Fahrzeugs
- Erkennen, Planen und Handeln im Kontext von automatisierten und vernetzten Fahrzeugen
- Übergang zwischen verschiedenen Automatisierungsgraden
- ausgewählte Funktionen des vernetzten Fahrzeugs
- ausgewählte automatisierte Fahrzeugfunktionen
- Menschliche Faktoren und sozio-technische Systeme
- Fahrzeugarchitekturen

Literaturempfehlungen

<table>
<thead>
<tr>
<th>Suggested reading:</th>
</tr>
</thead>
</table>

Links

<table>
<thead>
<tr>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Modullevel

<table>
<thead>
<tr>
<th>Modulart</th>
<th>Lehr-/Lernform</th>
</tr>
</thead>
<tbody>
<tr>
<td>1VL + 1Ü</td>
<td></td>
</tr>
</tbody>
</table>

Vorkenntnisse

<table>
<thead>
<tr>
<th>Kenntnisse in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Technische Informatik,</td>
</tr>
<tr>
<td>- Eingebettete Systeme I,</td>
</tr>
<tr>
<td>- Eingebettete Systeme II</td>
</tr>
</tbody>
</table>

Prüfungszeiten

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td></td>
<td>Practical work and oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

| 56 h |
inf332 - Practice Robotics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Practice Robotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf332</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | - Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Informatik (Master) > Technische Informatik |
| Zuständige Personen | - Hein, Andreas (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt) |
| Teilnahmevoraussetzungen | Keine Teilnehmervoraussetzungen |
| Kompetenzziele | |

Fachkompetenzen
Die Studierenden:
- Programmierung von Robotern (mobil oder stationär)
- Durchführung elementarer Operationen
- Integration von Operationen in ein kleines Anwendungsszenario
- Programmierung mit dem Robot Operating System (ROS)

Methodenkompetenzen
Die Studierenden:
- systematischer Entwicklungsprozess mit Teammitgliedern
- systematische Bewertung der Anwendung
- Entwurf einer Robotieranwendung unter Verwendung grundlegender und fortgeschrittener Robotickonzepte

Sozialkompetenzen
Die Studierenden:
- Projektleitung
- Teamarbeit
- Organisation des Teams

Selbstkompetenzen
Die Studierenden:
- Zeitmanagement
- autodidaktisches Arbeiten (Literaturrecherche, technische Spezifikationen, verwandte Arbeiten)

Modulinhalte

Literaturempfehlungen
- John J. Craig, Introduction to Robotics: Mechanics and Control
- Patrick Goebel, ROS By Example

Links

Unterrichtssprache
Englisch
<table>
<thead>
<tr>
<th>Dauer in Semestern</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1VL + 1Ü</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
</tr>
<tr>
<td>Gesamtdauer</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Demonstration and written documentation</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
</tr>
<tr>
<td>SWS</td>
<td>Angebotsrhythmus</td>
</tr>
<tr>
<td>Workload Präsenz</td>
<td></td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf334 - System Level Design

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>System Level Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf334</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Praktische Informatik
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Lehrenden, Die im Modul (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Modulverantwortung)

Teilnahmevoraussetzungen
Keine Teilnehmervoraussetzungen

Kompetenzziele

<table>
<thead>
<tr>
<th>Fachkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden:</td>
</tr>
<tr>
<td>- Fähigkeit zur Beschreibung und Analyse von Systemkomponenten und -architekturen unter Verwendung der Systembeschreibungssprachen SpecC und SystemC</td>
</tr>
<tr>
<td>- Fähigkeiten zur Partitionierung und Parallelisierung von Anwendungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methodenkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden:</td>
</tr>
<tr>
<td>- erlangen die Kenntnis der Verfeinerungs- und Transformationstechniken zur Überführung einer ursprünglichen Spezifikation in eine reale Implementierung</td>
</tr>
<tr>
<td>- erlangen die Kenntnis der Phasen eines Entwurfsablaufs auf Systemebene</td>
</tr>
<tr>
<td>- erlangen Kenntnisse über aktuelle Entwurfsmethoden und -werkzeuge im System-Level-Design</td>
</tr>
<tr>
<td>- erlangen Kenntnisse über formale Berechnungsmodelle von Spezifikationssprachen</td>
</tr>
<tr>
<td>- erlangen Kenntnisse über aktuelle Forschungsergebnisse und Trends im System-Level-Design</td>
</tr>
<tr>
<td>- erlernen die Fähigkeiten zur Partitionierung und Parallelisierung von Anwendungen</td>
</tr>
<tr>
<td>- erlernen die Fähigkeit, Entwurfsentscheidungen zu bewerten und zu untersuchen</td>
</tr>
<tr>
<td>- erlernen die Fähigkeit, eine vollständige Systementwurfs-zu-Implementierungs-Spezifikation zu implementieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sozialkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden:</td>
</tr>
<tr>
<td>- setzten Lösungen für vorgegebene Probleme im Team um</td>
</tr>
<tr>
<td>- diskutieren ihre Ergebnisse in angemessener Weise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selbstdkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden:</td>
</tr>
<tr>
<td>- erlangen Präsentationsfähigkeiten</td>
</tr>
<tr>
<td>- reflektieren ihre Lösungen mit Hilfe der in diesem Kurs erlernten Methoden</td>
</tr>
</tbody>
</table>

Modulinhalte

Literaturrempfehlungen

Empfohlene Lektüre:
Wichtigste Lehrbücher:
Optionale Bücher:

Links
https://www.uni-oldenburg.de/informatik/ehs/lehre/vorlesungen/system-level-design/

Unterrichtssprache Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul
Aufnahmekapazität Modul unbegrenzt

Moduleinsatz

Lehr-/Lernform 1VL + 1Ü
Vorkenntnisse keine
Prüfung Prüfungszeiten Prüfungsform
Gesammodul Am Ende der Vorlesungszeit Fachpraktische Übungen und mündliche Prüfung
Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz
Vorlesung 2 SoSe 28
Übung 2 SoSe 28
Präsenzzeit Modul insgesamt 56 h
inf336 - Application Area Automotive

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Application Area Automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf336</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Technische Informatik

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td>Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction</td>
</tr>
<tr>
<td>Master Engineering of Socio-Technical Systems (Master) > Systems Engineering</td>
</tr>
<tr>
<td>Master Informatik (Master) > Technische Informatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuständige Personen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Köster, Frank (Modulverantwortung)</td>
</tr>
<tr>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnahmevoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine Teilnehmervoraussetzungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompetenzziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieses Modul führt in den Anwendungsbereich Automotive ein.</td>
</tr>
</tbody>
</table>

Fachkompetenzen

Die Studierenden

- Diskussion von Kernkonzepten der Verkehrsdynamiken
- Erörterung verschiedener Verkehrsträger (Schwerpunkt Automobil)
- Automatisiertes und vernetztes Fahren erörtern (kurze Einführung/Überblick)
- Erörterung der menschlichen Faktoren im Automobilsektor
- Erörterung der Verkehrsinfrastruktur (Fokus auf Kreuzungen)
- Erörterung der Grundprinzipien des Verkehrsmanagements

Methodenkompetenzen

Die Studierenden

- analysieren von Fahrzeugsystemen
- analysieren von Verkehrsinfrastruktur
- kooperative Fahrzeug-Infrastruktur-Systeme analysieren
- sozio-technische Systeme analysieren

Sozialkompetenzen

Die Studierenden:

- arbeiten in Teams
- diskutieren ihre Ergebnisse in angemessener Form

Selbstkompetenzen

Die Studierenden:

- erkennen die Grenzen ihrer Belastbarkeit bei der Bearbeitung der Themen des Moduls an

<table>
<thead>
<tr>
<th>Modulinhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernkonzepte des Verkehrsbereichs</td>
</tr>
<tr>
<td>Verkehrsträger (Fokus auf den Automobilsektor)</td>
</tr>
<tr>
<td>Automatisiertes und vernetztes Fahren (kurze Einführung/Überblick)</td>
</tr>
<tr>
<td>Menschliche Faktoren im Automobilbereich</td>
</tr>
<tr>
<td>Verkehrsinfrastruktur (Fokus auf Kreuzungen)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literaturempfehlungen</th>
</tr>
</thead>
</table>
Kraftfahrzeugtechnik, Vieweg.

Links

<table>
<thead>
<tr>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modullevel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart</td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Gesamtmodul</th>
<th>At the end of the lecture period</th>
<th>Practical work or oral exam</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |

105 / 213
inf338 - Design of Autonomous Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Design of Autonomous Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf338</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Lehrende, Die im Modul (Prüfungsberechtigt)
- Fränzle, Martin Georg (Modulantwortung)

Teilnahmevoraussetzungen
Keine Teilnehmervoraussetzungen

Kompetenzziele

Fachkompetenzen

Die Studierenden
- sind in der Lage, autonome Systeme zu analysieren und zu erstellen.

Methodenkompetenzen

Die Studierenden
- kennen Beispiele bestehender autonomer Systeme
- verstehen die Elemente ihres Architekturentwurfs und die Gründe für die Dekomposition des Problems in Pflichten für die jeweiligen Systemkomponenten,
- analysieren bestehende Architekturen für autonome Systeme im Hinblick auf ihre Leistungsfähigkeit und Sicherheit
- lernen, ein Problem des Entwurfes eines autonom System in eine Architektur zu zerlegen
- sind in der Lage, Entwurfsverpflichtungen für seine Komponenten abzuleiten und können einen entsprechenden Sicherheitsfall strukturieren.
- verstehen die zur Erreichung der Systemautonomie notwendigen Software- und Hardwarekomponenten und sind in der Lage, diese zu entwerfen oder zu instanzieren.

Sozialkompetenzen

Die Studierenden:
- erwerben praktische Erfahrungen im Entwurf von Komponenten für autonome Systeme in kleinen Teams und präsentieren die zugrundeliegende Theorie, ihre jeweiligen Entwurfsentscheidungen und ihre persönliche Bewertung vor Mitstudierenden.

Selbstkompezenten

Die Studierenden:
- können die Angemessenheit ihrer methodischen Fähigkeiten für den Entwurf bestimmter autonomer Lösungen beurteilen
- sind in der Lage, die sicherheitstechnischen Auswirkungen einer solchen Lösung abzuschätzen und können daher eine persönliche ethische Haltung zu deren Realisierung entwickeln

Modulinhalte

Das Modul besteht aus einer Vorlesung und einem Übungsteil

Literaturempfehlungen

Links

Unterrichtssprache

Englisch
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1VL + 1Ü</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Second half of semester</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>Presentation</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>SWS</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenz</td>
<td>28</td>
</tr>
<tr>
<td>Workload Präsenz</td>
<td>28</td>
</tr>
</tbody>
</table>
Inf456 - Realzeitsysteme

Modulbezeichnung: Realzeitsysteme
Modulkürzel: inf456
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Theoretische Informatik

Zuständige Personen
- Olderog, Ernst-Rüdiger (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- Theoretische Informatik I + II

Kompetenzziele
Einführung von formalen Methoden zur Spezifikation und Verifikation von zeitkritischen Systemen und deren Kombination.

Fachkompetenzen
- Die Studierenden:
 - lernen Zeitmodelle und Realzeiteigenschaften kennen
 - spezifizieren und verifizieren Realzeitsysteme
 - modellieren Realzeitsysteme mit Realzeitautomaten und PLC-Automaten
 - wenden den Model-Checker UPPAAL zur Verifikation von Realzeiteigenschaften an
 - spezifizieren Realzeitsysteme im Duration Calculus
 - lernen Entscheidbarkeits- und Unentscheidbarkeitsresultate für Realzeitsysteme kennen

Methodenkompetenzen
- Die Studierenden:
 - erkennen Logik und Automaten als adäquate Beschreibungsformen für Realzeitsysteme

Sozialkompetenzen
- Die Studierenden:
 - arbeiten in kleinen Gruppen an Lösungen von Aufgaben
 - präsentieren Lösungen von Aufgaben vor Gruppen

Selbstkompetenzen
- Die Studierenden:
 - erlernen Ausdauer bei der Bearbeitung schwieriger Aufgaben
 - erlernen Präzision bei der Spezifikation von Problemen

Modulinhalte

Themen:
- diskretes und kontinuierliches Zeitmodell
- Logiken und Automatenmodelle zur Spezifikation von Realzeitsystemen
(Prädikatenlogik, Duration Calculus, Timed CTL, Realzeitautomaten, PLC-Automaten)

- Entscheidbarkeits- und Unentscheidbarkeitsresultate für Realzeitsysteme
- Model-Checker UPPAAL für Realzeitautomaten,
- formale Spezifikation von Realzeitsystemen im Duration Calculus sowie mit Realzeitautomaten und PLC-Automaten
- Verifikation konkreter Realzeitautomaten mit dem Model-Checker UPPAAL
- Transformation von Duration Calculus für diskrete Zeit in reguläre Sprachen
- Implementierbarkeit von Realzeitsystemen auf PLC-ähnlicher Hardware

Literaturempfehlungen

Essentiell:

Empfohlen:

Links

Unterrichtsprachen Deutsch, Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul unregelmäßig
Aufnahmekapazität Modul unbegrenzt
Modulart

Lehr-/Lernform 1VL + 1Ü
Vorkenntnisse Theoretische Informatik I + II
Prüfung Prüfungszeiten
Gesamtmodul Am Ende der Vorlesungszeit Fachpraktische Übungen und mündliche Prüfung.
Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz
Vorlesung 3 SoSe oder WiSe 42
Übung 1 SoSe oder WiSe 14
Präsenzzzeit Modul insgesamt 56 h
inf535 - Computational Intelligence I

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Computational Intelligence I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf535</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master Applied Economics and Data Science (Master) > Data Science
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Umweltmodellierung (Master) > Mastermodule
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen

- Kramer, Oliver (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmeveranlassungen

- Grundlagen der Statistik

Kompetenzziele

Nach erfolgreichem Abschluss der Lehrveranstaltung sollen Studierende die Fähigkeit erworben haben, die vorgestellten Methoden sicher in Theorie und Praxis zu beherrschen. Dabei sollen entsprechende Problemstellungen der Optimierung und Datenanalyse von den Studierenden selbst erkannt, modelliert und die Methoden zielsicher eingesetzt werden.

Fachkompetenzen

Die Studierenden:

- erkennen Optimierungsprobleme
- implementieren einfache Algorithmen der heuristischen Optimierung
- diskutieren kritisch Lösungsansätze und Methodenauswahl
- vertiefen bekannte Kenntnisse aus Analysis und linearer Algebra

Methodenkompetenzen

Die Studierenden:

- vertiefen Programmierkenntnisse
- wenden Modellierungsfähigkeiten an
- lernen den Zusammenhang zwischen Problemklasse und Methodenauswahl

Sozialkompetenzen

Die Studierenden:

- implementieren gemeinsam in der Vorlesung vorgestellte Algorithmen
- evaluieren eigene Lösungen und vergleichen diese mit denen ihrer Kommilitonen

Selbstkompetenzen

Die Studierenden:

- schätzen ihre Fach und Methodenkompetenz im Vergleich zu Kommilitonen ein.
- erkennen die eigenen Grenzen passen ihr eigenes Vorgehen unter Bezugnahme der Methodenkompetenzen an nötige Anforderungen an

Modulinhalte

Das Gebiet der Computational Intelligence umfasst intelligente und lernfähige Verfahren zur Optimierung und Datenanalyse. Schwerpunkt der Lehrveranstaltung "Computational Intelligence I" sind Methoden der evolutionären Optimierung und heuristischen Algorithmen. In den Übungen werden praktische Aspekte der Implementierung und Anwendung der Verfahren anhand beispielhafter Aufgabenstellungen vorgestellt und vertieft.

Die Inhalte der Vorlesung umfassen im Einzelnen:

- Grundlagen der Optimierung
- genetische Algorithmen und Evolutionsstrategien
- Parametersteuerung und Selbstadaptation
- Laufzeitanalyse
- Schwarmalgorithmen
- restringierte Optimierung
Mehrzieloptimierung
Meta-Modelle

Literaturnummern

- KRAMER, O.: Computational Intelligence. Springer, 2009

Links

Unterrichtsprachen Englisch, Deutsch
Dauer in Semestern 1 Semester
Angbotsrhythmus Modul jährlich
Aufnahmekapazität Modul unbegrenzt

Modullevel

Modulart

Lehr-/Lernform 1VL + 1Ü
Vorkenntnisse - Grundlagen der Statistik

Prüfung Prüfungszeiten Prüfungsform

Gesamtmodul

Am Ende der Vorlesungszeit Mündliche Prüfung oder Klausur

Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz

Vorlesung 2 WiSe 28
Übung 2 WiSe 28

Präsenzzeit Modul insgesamt 56 h
inf536 - Computational Intelligence II

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Computational Intelligence II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf536</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Applied Economics and Data Science (Master) > Data Science
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Umweltmodellierung (Master) > Mastermodule
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen
- Kramer, Oliver (Modulverantwortung)

Teilnahmeverursachzung
nützliche Vorkenntniss: Lineare Algebra, Stochastik

Kompetenzziele
In der Vorlesung „Convolutional Neural Networks“ lernen die Grundlagen von Convolutional Neural Networks, vom methodischen Verständnis bis zur Implementierung.

Fachkompetenzen
Die Studierenden:
- erlernen die Fachkompetenz im Bereich Deep Learning, die wesentliche Qualifikationen als KI-Experte und Data Scientist darstellen

Methodenkompetenzen
Die Studierenden:
- lernen die genannten Methoden sowie die Implementierung in Python, Numpy und Keras

Sozialkompetenzen
Die Studierenden:
- werden dazu angehalten, in Gruppen die gelehrten Inhalte zu diskutieren und gemeinsam die Programmieraufgaben in den Übungen zu Implementieren

Selbstkompetenzen
Die Studierenden:
- werden zur eigenständigen Recherche zu weiterführenden Methoden angeleitet, da sich der Lehrbereich dynamisch ändert

Modulinhalte
Die Studierenden lernen die Grundlagen maschinellen Lernens und insbesondere die Themen vollvernetzte Schichten, Cross-Entropy, Backpropagation, SGD, Momentum, Adam, Batch Normalisierung, Regularisierung, Convolution, Pooling, ResNet, DenseNet und Convolutional SOMs

Literaturempfehlungen
- Deep Learning von Aaron C. Courville, Ian Goodfellow und Yoshua Bengio

Links
<table>
<thead>
<tr>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jedes Sommersemester</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Modulart

<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>1VL + 1Ü</th>
</tr>
</thead>
</table>

Vorkenntnisse
nützliche Vorkenntniss: Lineare Algebra, Stochastik

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
</table>

Gesamtmodul

Vorlesungsfreie Zeit im Anschluss des Semesters: Klausur, e-Klausur

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
inf537 - Intelligent Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Intelligent Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf537</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul Bereich Wirtschaftsinformatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Zuständige Personen
- Sauer, Jürgen (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- Produktionsorientierte Wirtschaftsinformatik

Kompetenzziele

<table>
<thead>
<tr>
<th>Fachkompetenzen</th>
<th>Die Studierenden:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>benennen den Aufbau intelligenter agentenbasierter Systeme</td>
</tr>
<tr>
<td></td>
<td>verwenden Problemlösungsmethoden für komplexe Probleme</td>
</tr>
<tr>
<td></td>
<td>charakterisieren den Anwendungsbereich Planung/ Ablaufplanung</td>
</tr>
<tr>
<td></td>
<td>bewerten die Eignung von Verfahren für bestimmte Problemstellungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methodenkompetenzen</th>
<th>Die Studierenden:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ordnen Problemlösungsmethoden verschiedener Problemstellungen zu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sozialkompetenzen</th>
<th>Die Studierenden:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>implementieren ausgewählte Verfahren in kleinen Teams</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selbstkompetenzen</th>
<th>Die Studierenden:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>entwickeln eigene Lösungsansätze für vorgegebene Problemstellungen</td>
</tr>
</tbody>
</table>

Modulinhalte

In vielen Anwendungsbereichen kommen „intelligente“ Lösungsverfahren zum Einsatz. Diese Lösungsverfahren stehen im Kern der Veranstaltung und sie werden am Beispiel der Anwendungsdomäne Ablaufplanung vorgestellt und vertieft. Im Modul werden intelligente Systeme, in denen KI-Lösungsverfahren verwendet werden, am Beispiel der Anwendungsdomäne Ablaufplanung vorgestellt und vertieft.

Dazu gehören
- eine kurze Einführung in die KI
- In den Übungen werden die erworbenen Kenntnisse zur Erstellung eines intelligenten Planungssystems angewandt und vertieft.

Literaturempfehlungen
- Russel/Norvig: Künstliche Intelligenz, Pearson, 2004
- Ghallab/Nau/Traverso: Automated Planning, Morgan Kaufman, 2004

Links
- www.wi-ol.de

Unterrichtsprachen
- Deutsch, Englisch
<table>
<thead>
<tr>
<th>Dauer in Semestern</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Hinweise</td>
<td>Dieses Modul ist im Rahmen der Projekte FliF und FoL konzipiert worden</td>
</tr>
</tbody>
</table>

Modullevel

Modulart

Lehr-/Lernform | 1VL + 1Ü |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse</td>
<td>Produktionsorientierte Wirtschaftsinformatik</td>
</tr>
</tbody>
</table>

Prüfung

<table>
<thead>
<tr>
<th>Gesamtmodul</th>
<th>Am Ende des Semesters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungszeiten</td>
<td>Fachpraktische Übungen und mündliche Prüfung oder Fachpraktische Übungen und Klausur oder Portfolio</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>WiSe</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

| **Präsenzzeit Modul insgesamt** | 56 h |
inf604 - Business Intelligence I

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Business Intelligence I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf604</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Applied Economics and Data Science (Master) > Data Science
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master of Education (Wirtschaftspädagogik) Informatik (Master of Education) > Akzentsetzungsbereich
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodulle Bereich Wirtschaftsinformatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodulle der Informatik

Zuständige Personen
- Marx Gómez, Jorge (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Kompetenzziele

Ziele des Moduls/Kompetenzen:

Fachkompetenzen
Die Studierenden:
- benennen und erkennen die Aufgaben des Business Intelligence im unternehmerischen Handeln
- analysieren die Vor- und Nachteile der unterschiedlichen Ansätze und Methoden für die Analyse von Daten und werden in die Lage versetzt diese für einfache Fallbeispiele anzuwenden
- erhalten theoretische Kenntnisse über die Datenbeschaffung und -modellierung sowie den dabei anzuwendenden Vorgehensweisen

Methodenkompetenzen
Die Studierenden:
- führen Aufgaben des Business Intelligence durch und erweitern hierbei ihr Verständnis zu den verschiedenen Ansätzen und Methoden
- erlernen anhand der Durchführung der Methoden Vor- und Nachteile der unterschiedlichen Methoden und könne diese Methoden anhand des erworbenen Wissen optimiert einsetzen

Sozialkompetenzen
Die Studierenden:
- konstruieren Lösungen zu gegeben Fallstudien in der Gruppe z.B. zur Lösung des Problems der faktenlosen Tabbetabelle
- diskutieren die Lösungen auf fachlicher Ebene
- präsentieren die Lösungen der Fallstudien im Rahmen der Übungen

Selbstkompetenzen
- die bereitgestellten Daten und Informationen kritisch prüfen

Modulinhalte

In dem Modul werden die folgenden Inhalte vermittelt
- Gewinnung von Einblicken in die Arbeitsweisen und Ziele des Data
Warehousing
- Kenntnisse über die Durchführung von Data Warehouse Projekten
- Datenmodellierung, Datenbeschaffung und Reporting in Data Warehouses praktische Anwendung des erworbenen Wissens am Beispiel des SAP Businessinformation Warehouse in den vorlesungsbegleitenden Übungen anhand durchgängiger Fallstudien
- Phasen der Datenmodellierung, Datenbeschaffung und des Reporting im Zusammenhang mit einem plausiblen Szenario

Literaturempfehlungen

- Marx Gómez, Rautenstrauch, Cissek (2008): Einführung in die Business Intelligence mit SAP NetWeaver 7.0.

Links

www.wi-ol.de

Unterrichtsprachen

Deutsch, Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

jährlich

Aufnahmekapazität Modul

unbegrenzt

Modullevel

Modulart

Lehr-/Lernform

1 VL + 1 Ü

Vorkenntnisse

keine

Prüfung

Prüfungszeiten

Prüfungsform

Gesamtmodul

Am Ende der Vorlesungszeit

Klausur von max. 120 Minuten

Lehrveranstaltungsform

Kommentar

SWS

Angebotsrhythmus

Workload Präsenz

Vorlesung

2

WiSe

28

Übung

2

WiSe

28

Präsenzzeit Modul insgesamt

56 h
inf607 - Business Intelligence II

Modulbezeichnung: Business Intelligence II
Modulkürzel: inf607
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master Applied Economics and Data Science (Master) > Data Science
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Verwendbarkeit des Moduls:
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Verwendbarkeit des Moduls:
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Verwendbarkeit des Moduls:
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Verwendbarkeit des Moduls:
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Zuständige Personen:
- Marx Gómez, Jorge (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmeveraussetzungen:
Keine Teilnahmeveraussetzung

Kompetenzziele:

Fachkompetenzen:
Die Studierenden:
- benennen und erkennen die Aufgaben von Data Analytics / Data Science im unternehmerischen Handeln
- analysieren die Vor- und Nachteile der unterschiedlichen Ansätze und Methoden für die Analyse von Daten und werden in die Lage versetzt diese für einfache Fallbeispiele anzuwenden
- erhalten theoretische Kenntnisse über die Datenbeschaffung und -modellierung sowie den darin anzuwendenden Vorgehensweisen

Methodenkompetenzen:
Die Studierenden:
- bearbeiten Data Analytics-Aufgabenstellungen und erweitern hierbei Ihr Verständnis zu den verschiedenen Ansätzen und Methoden
- erlernen anhand der Durchführung der Methoden Vor- und Nachteile dieser und können diese Methoden anhand des erworbenen Wissen optimiert einsetzen

Sozialkompetenzen:
Die Studierenden:
- konstruieren Lösungen zu gegebenen Fallstudien in der Gruppe z.B. Erstellung eines Regressionsmodells anhang ein gegebene Dataset
- diskutieren diese Lösungen auf fachlicher Ebene
- präsentieren die Lösungen der Fallstudien im Rahmen der Übungen

Selbstkompetenzen:
Die Studierenden:
- kritisch überprüfen angebotene Informationen

Modulinhalte:
Arbeitsplatzsuche zu werten sind.

Literaturempfehlungen

- Jürgen Cleve, Uwe Lämmel (2014): "Data mining" (Deutsch)
- Max Bramer (2013): "Principles of data mining" (Englisch)
- Ian Witten, Eibe Frank, Mark Hall (2011): "Data mining : practical machine learning tools and techniques" (Englisch)
- Jure Leskovec, Anand Rajaraman, Jeffrey Ullman (2014): "Mining of massive datasets" (Englisch)

Links

- www.wi-ol.de

Unterrichtsprachen

- Deutsch, Englisch

Dauer in Semestern

- 1 Semester

Angebotsrhythmus Modul

- jährlich

Aufnahmekapazität Modul

- unbegrenzt

Modullevel

Modulart

Lehr-/Lernform

Nach Ankündigung zu Beginn der Veranstaltung (2 SWS V + 2 SWS Ü oder Blockveranstaltung)

Vorkenntnisse

- keine

Prüfung

<table>
<thead>
<tr>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur oder mündliche Prüfung oder Hausarbeit oder Referat oder Portfolio oder fachpraktische Übungen und Klausur oder fachpraktische Übungen und mündliche Prüfung.</td>
</tr>
</tbody>
</table>

Gesamtnote

Am Ende der Veranstaltungszeit

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

- 56 h
inf650 - Transportsysteme

Modulbezeichnung: Transportsysteme
Modulkürzel: inf650
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Wirtschaftsinformatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Zuständige Personen
- Sauer, Jürgen (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- benennen die Grundlagen der Planung und Steuerung der betrieblichen Logistik.
- bewerten Transportsysteme im Unternehmenskontext
- benennen Methoden und Ansätze zur informatischen Unterstützung von Transportsystemen und ordnen diese ein
- charakterisieren Software zur Planung komplexer logistischer Abläufe

Methodenkompetenzen
Die Studierenden:
- bilden die Fragestellungen und Konzepte von Verkehrssysteme ab
- simulieren Transport und Verkehrssystemen mit geeigneten Methoden

Sozialkompetenzen
Die Studierenden:
- Bearbeiten Fragestellungen in Gruppen
- Diskutieren die Ergebnisse sachlich angemessen

Selbstkompetenzen
Die Studierenden:
- erkennen die Grenzen Ihrer Belastbarkeit in einem Projekt mit Modellierung und Implementierungsanteil
- reflektieren die Vermittlung ihrer Ergebnisse

Modulinhalte
- Verkehrs- und Logistikkonzepte
- Betriebliche Datenerfassung in der Logistik
- Planungs- und Simulationsssoftware für komplexe Logistik- und Verkehrsprozesse
- Energie- und Ressourceneffiziente Transportsysteme
- Ressourcenorientierte Transportkostenrechnung (z.B. nach CO2, Lärmbelastung)
- Planungsmodelle für Verkehrinfrastruktur

Literaturempfehlungen
- Verkehrsdynamik und -simulation: Daten, Modelle und Anwendungen
<table>
<thead>
<tr>
<th>Links</th>
<th>http://www.wi-ol.de</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unterrichtsprachen</td>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Hinweise</td>
<td>Dieses Modul ist im Rahmen der Projekte FiF und FoL konzipiert worden</td>
</tr>
<tr>
<td>Modullevel</td>
<td></td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1VL + 1Ü</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>Produktionsorientierte Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtmund</td>
<td>Prüfungsform</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Fachpraktische Übungen und Klausur</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Übung</td>
<td>Fachpraktische Übungen und Klausur</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

SWS: Stunden pro Woche, SoSe: Sommersemester
inf663 - Application Area Maritime

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Application Area Maritime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf663</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering</td>
</tr>
<tr>
<td></td>
<td>- Master Informatik (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Hahn, Axel (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>- Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmeverpäuschung</td>
<td>Keine Teilnahmeverpäuschung</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Fachkompetenzen</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden:</td>
</tr>
<tr>
<td></td>
<td>- verstehen letzteres als einen wesentlichen Beitrag zur Organisation der Navigation als hierarchisches Teamkonzept eines sicherheitskritischen soziotechnischen Systems.</td>
</tr>
<tr>
<td></td>
<td>- sind sich der besonderen technischen und physikalischen Herausforderungen der Navigation bewusst.</td>
</tr>
<tr>
<td>Methodenkompetenzen</td>
<td>Die Studierenden:</td>
</tr>
<tr>
<td></td>
<td>- können Methoden der Systemtechnik anwenden, um maritime Systeme zu beschreiben, zu analysieren und zu entwerfen.</td>
</tr>
<tr>
<td></td>
<td>- durch die Betrachtung des maritimen Verkehrs gewinnen sie übertragbares Wissen über andere cyber-physikalische Systeme.</td>
</tr>
<tr>
<td></td>
<td>- lernen, wie Systeme mit rauen Umweltbedingungen resilient umgehen können.</td>
</tr>
<tr>
<td>Sozialkompetenzen</td>
<td>Die Studierenden:</td>
</tr>
<tr>
<td></td>
<td>- erwerben Verständnis für diese Transportsysteme und ihre technischen und systemischen Herausforderungen.</td>
</tr>
<tr>
<td></td>
<td>- kennen nach Abschluss dieses Moduls die Konzepte des Seeverkehrs und seine Rolle in internationalen Transportnetzwerken.</td>
</tr>
<tr>
<td>Selbstkompetenzen</td>
<td>Die Studierenden:</td>
</tr>
<tr>
<td></td>
<td>- umfassen insbesondere ein Verständnis des Seeverkehrs als System mit hohen Anforderungen an Zuverlässigkeit, Verlässlichkeit und Sicherheit in Kombination mit Effizienz, um in einer globalen Wirtschaft wettbewerbsfähig zu sein.</td>
</tr>
<tr>
<td></td>
<td>Seminar: Abdeckung der Aspekte des Seeverkehrs</td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td>Bernhard Berking, Werner Huth (Herausgeber), Handbuch Nautik 1: Navigatorische Schiffsführung, Seehafen Verlag, 2010</td>
</tr>
</tbody>
</table>

Links
<table>
<thead>
<tr>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Modulart

<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>1VL + 1S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse</td>
<td>keine</td>
</tr>
</tbody>
</table>

Prüfung

<table>
<thead>
<tr>
<th>Prüfungsform</th>
<th>Mündliche Prüfung und Dokumentation</th>
</tr>
</thead>
</table>

Gesamtmodul

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Präsenzzeit Modul insgesamt</th>
<th>56 h</th>
</tr>
</thead>
</table>
inf973 - Psychological practicum fNIRS, EEG

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Psychological practicum fNIRS, EEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf973</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>• Rieger, Jochem (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmeveranlassungen</td>
<td>Keine Teilnahmeveranlassungen</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Fachkompetenzen</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden:</td>
</tr>
<tr>
<td></td>
<td>• erwerben Kenntnisse über die Planung, Durchführung und Auswertung einer neurokognitiven Studie</td>
</tr>
<tr>
<td>Methodenkompetenzen</td>
<td>Die Studierenden:</td>
</tr>
<tr>
<td></td>
<td>• lernen, einen wissenschaftlichen Bericht zu verfassen</td>
</tr>
<tr>
<td></td>
<td>• werden in den Methoden der Psychophysiology unterrichtet, z.B. EEG, MEG, fMRI oder fNIRS</td>
</tr>
<tr>
<td>Sozialkompetenzen</td>
<td>Die Studierenden:</td>
</tr>
<tr>
<td></td>
<td>• werden in einem Team arbeiten</td>
</tr>
<tr>
<td>Selbstkompetenzen</td>
<td>Die Studierenden:</td>
</tr>
<tr>
<td></td>
<td>• werden Zeitmanagement anwenden müssen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literaturempfehlungen</th>
<th>Links</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td></td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>6</td>
</tr>
<tr>
<td>Modullevel</td>
<td></td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-./Lernform</td>
<td>P</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td></td>
<td>Prüfungsform</td>
</tr>
<tr>
<td>Gesamtdauer</td>
<td>Am Ende des Semesters</td>
</tr>
<tr>
<td>Präsentation</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Praktikum</td>
</tr>
</tbody>
</table>

SWS	4
Angebotsrhythmus	WiSe
Workload Präsenzzeit	56 h
inf974 - Human Computer Interaction and Brain Computer Interfacing

Modulbezeichnung: Human Computer Interaction and Brain Computer Interfacing
Modulkürzel: inf974
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction

Zuständige Personen
- Rieger, Jochem (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Keine Teilnehmervoraussetzungen

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- Human Computer Interaction (HCI) in ihren interdisziplinären Anforderungen mit Schwerpunkt auf der Perspektive der neurokognitiven Psychologie.
- Grundkenntnisse des Brain Computer Interfacing

Methodenkompetenzen
Die Studierenden:
- erwerben grundlegende Kenntnisse über Neuroimaging und Datenanalysetechniken.
- erwerben methodische Kompetenzen die für die Ableitung statistischer Modelle zur Verknüpfung von Gehirn und Kognition/Verhalten erforderlich sind.
- erwerben Fähigkeiten und Kenntnisse zur kritischen Reflexion grundlagenwissenschaftlicher Theorien im naturalistischen Kontext.

Sozialkompetenzen
Die Studierenden:

Selbstkompetenzen
Die Studierenden:
- kennen gängige Versuchspläne, Datenerfassungs- und Analysetechniken und wissen, wie sie geeignete Methoden für ihr spezifisches Experiment auswählen können.
- sind in der Lage, ein einfaches HCI/BCI-Experiment zu planen und durchzuführen.

Modulinhalte
Das Modul besteht aus einer Vorlesung und einem Übungsteil:
Vorlesung:
- Hintergründe und Konzepte der kognitiven Psychologie, die für die Mensch-Computer-Interaktion relevant sind
- Empfindung, Wahrnehmung, Handlung
- Datenerfassung und Verarbeitungsmethoden für Brain Computer Interfacing.

Literaturempfehlungen

Links

Unterrichtssprache: Englisch
Dauer in Semestern: 2 Semester
Angebotsrhythmus Modul: jährlich
Aufnahmekapazität Modul: unbegrenzt
Hinweise: Das Modul wird jedes Sommersemester mit Teil 1 beginnen. Teil 2 wird im Wintersemester angeboten.

Modullevel
<table>
<thead>
<tr>
<th>Modulart</th>
<th>1 VL + 1TPS (Theory-Praxis-Seminar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehr-/Lernform</td>
<td>keine</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Prüfungsform</td>
</tr>
<tr>
<td>Gesamtmodule</td>
<td>Am Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Portfolio</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>SWS</td>
</tr>
<tr>
<td>Theorie-Praxis-Seminaire (TPS)</td>
<td>Angebotsrhythmus</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>Workload Präsenz</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2</td>
</tr>
<tr>
<td>Theorie-Praxis-Seminar (TPS)</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar364 - Zeitreihenanalyse

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Zeitreihenanalyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mar364</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td>Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction</td>
<td></td>
</tr>
<tr>
<td>Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction</td>
<td></td>
</tr>
<tr>
<td>Master Engineering of Socio-Technical Systems (Master) > Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>Master Marine Sensorik (Master) > Mastermodule</td>
<td></td>
</tr>
<tr>
<td>Master Marine Umweltwissenschaften (Master) > Mastermodule</td>
<td></td>
</tr>
<tr>
<td>Master Umweltmodellierung (Master) > Mastermodule</td>
<td></td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Freund, Jan (Modulverantwortung)</td>
<td></td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Keine</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td></td>
</tr>
</tbody>
</table>

Modulinhalte
Charakteristika eines stochastischen Prozesses und deren Schätzer, Komponentenmodell, Trendbereinigung, spektrale Methoden, Filterung, lineare Prozesse, und nichtlineare Prozesse, Einbettungsverfahren, Kenngrößen der nichtlinearen Zeitreihenanalyse, symbolische Dynamik

Literaturempfehlungen
R. Schlittgen: Angewandte Zeitreihenanalyse mit R, Oldenbourg;
R. Schlittgen & B. Streitberg: Zeitreihenanalyse, Oldenbourg;
PJ Brockwell & RA Davis: Time series : theory and methods, Springer;

Links
Unterrichtsprachen Deutsch, Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul jährlich
Aufnahmekapazität Modul unbegrenzt
Modullevel MM (Mastermodul / Master module)
Modulart Wahlpflicht / Elective
Lehr-/Lernform Wahlpflichtbereich Mathematische Modellierung
VL Zeitreihenanalyse Ü Zeitreihenanalyse
Vorkenntnisse Nützlich: Erfahrung im Umgang mit R oder Matlab.
Prüfung Prüfungszeiten Prüfungsform
Gesamtmodul Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzzeit Modul insgesamt 56 h
inf203 - Embedded Systems I

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Embedded Systems I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf203</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Fach-Bachelor Informatik (Bachelor) > Akzentsetzungsbereich - Wahlbereich Informatik
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master of Education (Gymnasium) Informatik (Master of Education) > Wahlpflichtmodule (Technische Informatik)
- Zwei-Fächer-Bachelor Informatik (Bachelor) > Wahlpflicht Technische Informatik (30 KP)

Zuständige Personen
- Fränzle, Martin Georg (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- Grundlagen der technischen Informatik
- Technische Informatik

Kompetenzziele
Das Modul leistet eine Einführung in den Entwurf digitaler eingebetteter Systeme.

Fachkompetenzen
Die Studierenden:
- benennen funktionale und nichtfunktionale Anforderungen zur Spezifikation eingebetteter System
- diskutieren den Entwurfstraum und der damit verbundenen Entwurfsmethodik eingebetteter Systeme
- benennen die grundlegenden Verfahren der Steuerungs- und Regelungstechnik
- charakterisieren die grundlegenden Algorithmen der digitalen Signalverarbeitung

Methodenkompetenzen
Die Studierenden:
- konstruieren mit Modellierungswerkzeugen eingebettete Systeme und Regelungssysteme
- implementieren ein eingebettetes Hardware-/Software-System
- analysieren verschiedene Spezifikationssprachen anhand diverser Eigenschaften

Sozialkompetenzen
Die Studierenden:
- konstruieren Lösungen zu gegebenen Problemen in Gruppen
- präsentieren Lösungen von informatischen Problemen vor Gruppen
- organisieren sich zu einer Gruppe zur Lösung eines größeren Problems mit Hilfe gängiger Projektmanagementmethoden

Selbstkompetenzen
Die Studierenden:
- erkennen die Grenzen ihrer Belastbarkeit bei der Implementierung von Systemen, bzw. Teilaspekten dieser
- lösen die Übungsaufgaben eigenverantwortlich

Modulinhalte
Eingebettete Systeme übernehmen komplexe Regelungs-, Steuerungs- oder Datenverarbeitungsaufgaben in technischen Systemen. Sie bilden somit ein wichtiges Wertschöpfungspotential für Produkte der Telekommunikation, der Produktionssteuerung im Verkehrsbereich und in elektronischen Konsumgütern. Die Funktionalität eingebetteter Systeme wird durch die Integration von Prozessoren, Spezialhardware und Software realisiert. Die Problematik des Entwurfs solcher Systeme ergibt sich durch die Heterogenität...

Literaturempfehlungen

Foliensammlung sowie:

Sekundärliteratur:

- Artikelserie zum MPEG-2-Standard 3/94 10/94 und das Tutorial "Digitale Bildcodierung" 1/92 1/93, beides in "Fernseh- und Kinotechnik" (BIS: Z elt ZA 1536)

Links

Unterrichtssprache Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul jährlich
Aufnahmekapazität Modul unbegrenzt

Hinweise

Das Modul ist für die Studierenden der Vertiefungsrichtung "Eingebettete Systeme und Mikrorobotik" als Pflichtmodul vorgesehen.

"Low Energy System Design" möglich.

| Lehr-/Lernform | 1VL + 1Ü |
| Modulart | |
| Vorkenntnisse | - Grundlagen der technischen Informatik
- Technische Informatik |

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Ende des Semesters</td>
<td>Klausur oder mündliche Prüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3</td>
<td>WiSe</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
inf204 - Embedded Systems II

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Embedded Systems II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf204</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Fach-Bachelor Informatik (Bachelor) > Akzentsetzungsbereich - Wahlbereich Informatik
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master of Education (Gymnasium) Informatik (Master of Education) > Wahlpflichtmodule (Technische Informatik)
- Zwei-Fächer-Bachelor Informatik (Bachelor) > Wahlpflicht Technische Informatik (30 KP)

Zuständige Personen
- Fränzle, Martin Georg (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Kompetenzziele
Das Modul leistet eine Einführung in den Entwurf digitaler eingebetteter Systeme.

Fachkompetenzen
Die Studierenden:
- benennen der Architekturen eingebetteter Systeme
- benennen spezifische Hardwarekomponenten und -architekturentscheidungen, insbes. Prozessoren
- charakterisieren den Entwurfsraum und die damit verbundene Entwurfsmethodik eingebetteter Systeme
- dekomponieren Steuerungs- oder Regelungsaufgaben in Teilkomponenten und setzen diese auf verschiedenen Ebenen des Entwurfsraums um
- partitionieren und bauen gemischte Software-/Hardwarelösungen auf
- beschreiben Architektraprinzipien zur Erzielung von Fehlertoleranz
- beschreiben Analysetechniken zur Bewertung von Echtzeit- und Sicherheitsanforderungen
- charakterisieren die Formalien der Hardwaresynthese

Methodenkompetenzen
Die Studierenden:
- schätzen die Konsequenzen von Entwurfsentscheidungen bzgl. Komponentenallokation und -design in Bezug auf Energieverbrauch, Performanz und Zuverlässigkeit ein
- implementieren ein eingebettetes Hardware-/Software System anhand einer gegebenen Spezifikation
- modellieren Hardware mit einer Hardware-Beschreibungs-Sprache
- analysieren Hardware-/Software Systeme anhand von event basierter Simulation

Sozialkompetenzen
Die Studierenden:
- konstruieren Lösungen zu gegebenen Problemen in Gruppen
- präsentieren Lösungen von Informatischen Problemen vor Gruppen
- organisieren sich zu einer Gruppe, zur Lösung eines größeren Problems, mithilfe von Projektmanagementmethoden

Selbstkompetenzen
Die Studierenden:
- erkennen die Grenzen ihrer Belastbarkeit bei der Implementierung von Systemen, bzw. Teilaspekten dieser
- beschäftigen sich eigenverantwortlich mit den Übungsaufgaben

Modulinhalte

Literaturempfehlungen

Gute Sekundärliteratur:

Links

- Unterrichtssprache: Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: jährlich
- Aufnahmekapazität Modul: unbegrenzt
- Hinweise: Das Modul ist für die Studierenden der Vertiefungsrichtung "Eingebettete Systeme und Mikrorobotik" als Pflicht-Modul vorgesehen.
inf340 - Uncertainty Modeling for Control in Digitalised Energy Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Uncertainty Modeling for Control in Digitalised Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf340</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master Digitalised Energy Systems (Master) > Digitalised Energy System Design and Assessment
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Technische Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen

- Rauh, Andreas (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmeveranlassungen

Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robuster Regelung

Kompetenzziele

Die Studierenden identifizieren die grundlegenden Konzepte der Modellierung von Unsicherheiten in Regelungssystemen sowie problemangepasste Methoden für die Berücksichtigung von Unsicherheiten während Simulation und Beobachtersynthese

Fachkompetenzen

Die Studierenden:

- identifizieren die grundlegenden Konzepte der Modellierung von Unsicherheiten in Regelungssystemen
- charakterisieren problemangepasste Lösungsmethoden für Systeme mit stochastischen und mengenbasierten Unsicherheiten
- erkennen Ansätze für eine softwaretechnische Umsetzung in Simulation, Regelung und Zustandsschätzung

Methodenkompetenz

Die Studierenden:

- analysieren Probleme der regelungsorientierten Unsicherheitsmodellierung dynamischer Systeme
- analysieren grundlegende Lösungsansätze auf theoretischer Basis
- transferieren sowie generalisieren diese eigenständig auf neue forschungsnahe Anwendungsszenarien.

Sozialkompetenz

Die Studierenden:

- erarbeiten in einem vorlesungsbegleitenden Projekt Lösungsideen für reale regelungstechnische Aufgaben in kleinen Gruppen
- vermitteln die von ihnen erzielten Ergebnisse in kurzen Präsentationen

Selbstkompetenz

Die Studierenden:

- reflektieren kritisch die von ihnen in Projektform erarbeiteten Ergebnisse
- erkennen Grenzen unterschiedlicher Ansätze der regelungsorientierten Modellierung von Unsicherheiten.

Modulinhalte

1. Mathematische Modellierung von Unsicherheiten in linearen und nichtlinearen dynamischen Systemmodellen
2. Stochastische Modellierungsansätze
 - Wahrscheinlichkeitsverteilungen
 - Bayes'sche Zustandsschätzung für zeidiskrete Systeme (linear/nichtlinear) und zeidkontinuierliche Systeme (linear)
 - Lineare Schätzverfahren in erweiterten Zustandsräumen (Carleman-Linearisierung für spezielle Systemklassen)
 - Monte-Carlo-Methoden
3. Schätzung von Zuständen, Parametern und Simulation unsicherer Prozesse
Ausblick: Markow-Modelle
Ausblick: Bayes'sche Netze

4. Mengenbasierte Ansätze
- Mengenbasierte Algorithmen: Forward-Backward-Contractor und Bisektionsverfahren
- Intervalmethoden zur verifizierten Lösung gewöhnlicher Differentialgleichungssysteme sowie zur Stabilitätsanalyse unsicherer Systeme
- Schätzung von Zuständen und Parametern sowie Simulation unsicherer Prozesse

5. Ausblick: Syntheseverfahren für Regelungen und Beobachter unter expliziter Beschreibung von Unsicherheiten

Literaturempfehlungen
- Rauh, A. Folien/ Skript zur Vorlesung „Uncertainty Modelling for Control in DES“.

Links

Unterrichtssprache Englisch
Dauer in Semestern 1 Semester Semester
Angebotsrhythmus Modul jedes Wintersemester
Aufnahmekapazität Modul unbegrenzt

Modullevel

Modulart Lehr-/Lernform 1VL + 1Ü
Vorkenntnisse Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung

Prüfung Prüfungszeiten Prüfungsform
Gesamtmodul Am Ende der Veranstaltungszeit Portfolio oder Klausur

Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz
Vorlesung 2 WiSe
Übung 1 WiSe
Projekt 1 WiSe

Präsenzzzeit Modul insgesamt 4 h
inf341 - Robust Control and State Estimation in Digitalised Energy Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Robust Control and State Estimation in Digitalised Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf341</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Technische Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen
- Rauh, Andreas (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung

Kompetenzziele
Die Studierenden identifizieren die grundlegenden Konzepte der robusten Regelung und Zustandsschätzung sowie problemangepasste Lösungsmethoden und deren softwaretechnische Umsetzung.

Fachkompetenz
Die Studierenden:
- identifizieren die grundlegenden Konzepte der robusten Regelung und Zustandsschätzung
- charakterisieren problemangepasste Lösungsmethoden für unterschiedliche Klassen von Unsicherheiten
- erkennen Ansätze für eine verlässliche softwaretechnische Umsetzung.

Methodenkompetenz
Die Studierenden:
- analysieren Probleme der robusten Regelung und Zustandsschätzung dynamischer Systeme
- analysieren grundlegende Lösungsansätze auf theoretischer Basis
- transferieren sowie generalisieren diese eigenständig auf neue Anwendungsszenarien

Sozialkompetenz
Die Studierenden:
- erarbeiten in einem vorlesungsbegleitenden Projekt Lösungsideen für reale regelungstechnische Aufgaben in kleinen Gruppen
- vermitteln die von ihnen erzielten Ergebnisse in kurzen Präsentationen.

Selbstkompetenz
Die Studierenden:
- reflektieren kritisch die von ihnen in Projektform erarbeiteten Ergebnisse
- erkennen Grenzen unterschiedlicher Ansätze der robusten Regelung und Zustandsschätzung.

Modulinhalte

1. Robustheit linearer Systeme/ Systemanalyse
 - Grenzüberschreitungssatz von Frazer und Duncan
 - Mikhailow-Kriterium
 - Khartonow-Kriterium
 - Frequenzkenlinierverfahren

2. Ausgewählte Regelungsentwurfsverfahren/ Regelungssynthese
 - Parameterraumverfahren von Ackermann und Kaesbauer
 - Eigenwert-/ Eigenwertbereichsvorgabe
 - H-unendlich-Regelung
 - Frequenzkenlinierverfahren (Sensitivitätsfunktionen im Frequenzbereich)

3. Robuste LMI-basierte Regelungsverfahren
 - Ljapunow-Stabilität
 - Polytopbeschreibung von Unsicherheiten
Optimalität von Lösungen
4. Dualität von Regler- und Beobachtersynthese
• Robuste Zustandsschätzung
• Sliding-Mode Beobachter
5. Intervallmethoden: Lösung statischer und dynamischer Probleme
 (Einschließung von Funktionswerten, Branch-and-Bound-Verfahren,
 Verifikationsmethoden für Differentialgleichungen)
6. Grundlagen: Fehlerdetektion sowie fehlertolerante Regelung

Literaturempfehlungen
• Ackermann, J. Robust Control, Springer-Verlag, 2002.
• Gu, D.-W.; Petkov, P.H.; Konstantinov, M.M., Robust Control Design
 with MATLAB, Springer-Verlag, 2013
• Osterlag, E. Mono- and Multivariable Control and Estimation, Springer-
 Verlag, 2011
• Rauh, A. Folien/ Skript zur Vorlesung „Robuste Regelung und
 Zustandsschätzung“.
• Weinmann, A. Uncertain Models and Robust Control, Springer-Verlag, 1991

Links
Unterrichtssprache Englisch
Dauer in Semestern 1 Semester Semester
Angebotsrhythmus Modul jedes Wintersemester
Aufnahmekapazität Modul unbegrenzt
Modullevel
Modulart
Lehr-/Lernform 1VL + 1S
Vorkenntnisse Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder
 zeitdiskreter Systeme bzw. der robuster Regelung
Prüfung
Gesamtdauer
Klausur: am Ende der Veranstaltungszeit
Portfolio oder Klausur
Lehrveranstaltungsform
Vorlesung 2
Seminar 1
Präsenzzeit Modul insgesamt 42 h
inf5122 - Learning-Based Control in Digitalised Energy Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Learning-Based Control in Digitalised Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf5122</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Digitalised Energy Systems (Master) > Digitalised Energy System Design and Assessment
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik

Zuständige Personen
- Rauh, Andreas (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmeveranlassungen
- Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung

Kompetenzziele
- Die Studierenden identifizieren die grundlegenden Konzepte der lernenden Regelung dynamischer Systeme.

Fachkompetenz
- Die Studierenden:
 - identifizieren die grundlegenden Konzepte der lernenden Regelung dynamischer Systeme
 - charakterisieren problemangepasste Lernmethoden
 - erkennen softwaretechnische Umsetzungen für ausgewählte Prüfstände.

Methodenkompetenz
- Die Studierenden:
 - analysieren Probleme der lernenden Regelung
 - generalisieren diese eigenständig auf neue forschungsnahen Anwendungsszenarien.

Sozialkompetenz
- Die Studierenden:
 - erarbeiten in einem vorlesungsbegleitenden Projekt/Praktikum Lösungsideen für reale regelungstechnische Aufgaben in kleinen Gruppen
 - vermitteln die von ihnen erzielten Ergebnisse in kurzen Präsentationen

Selbstkompetenz
- Die Studierenden:
 - reflektieren kritisch die von ihnen in Projektform erarbeiteten Ergebnisse
 - erkennen Grenzen unterschiedlicher Ansätze lernender Regelungen.

Modulinhalte
1. Iterativ-lernende Regelungen
 - Grundlegende 2D-Systemstrukturen
 - Stabilitätskriterien
 - Ausgewählte Optimierungsansätze
2. Datenbasierte Neuronale-Netz- Modellierung vs. physikalisch-orientierte Modelle
 - Statistische Funktionsapproximation
 - NARX-Modelle
3. Entwurf von Reglern mittels Neuronaler Netze
4. Stabilität von Regelungen mittels Neuronaler Netze

Literaturempfehlungen
- Moore, K.L. Iterative Learning Control for Deterministic Systems.
London: Springer-Verlag, 1993
- Jian Xin Xu, Ying Tan. Linear and Nonlinear Iterative Learning Control. Springer-Verlag, 2003
- Rauh, A. Folien/ Skript zur Vorlesung „Learning-Based Control in DES“

Links

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jedes Sommersemester

Aufnahmekapazität Modul
unbegrenzt

Modullevel

Modulart

Lehr-/Lernform
1VL + 1Ü

Vorkenntnisse
Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung

Prüfung

Prüfungszeiten

Gesamtmodul
Im Anschluss an die Veranstaltungszeit

Portfolio oder Klausur

Lehrveranstaltungsform

Kommentar

SWS

Angebotsrhythmus

Workload Präsenz

Vorlesung
2
SoSe
28

Übung
2
SoSe
28

Präsenzzeit Modul insgesamt
56 h
inf5408 - Angewandtes Deep Learning in PyTorch

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Angewandtes Deep Learning in PyTorch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf5408</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Umweltmodellierung (Master) > Mastermodule
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen
- Strodthoff, Nils (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Ein grundlegendes theoretisches Verständnis des maschinellen Lernens und praktische Programmierkenntnisse in Phyton

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- haben einen Überblick über die Komponenten von Deep Learning Frameworks
- kennen Anwendungsbereiche von Deep Learning Methoden in verschiedenen Datenmodalitäten und gängige Lösungsstrategien und Modellarchitekturen
- können Deep Learning Methoden auf neue Problemstellungen in den jeweiligen Bereichen geeignet adaptieren und selbstständig anwenden

Methodenkompetenzen
Die Studierenden:
- erarbeiten sich selbstständig unter Zuhilfenahme von Präsenzveranstaltungen, bereitgestellten Materialien und Fachliteratur theoretische und praktische Konzepte

Sozialkompetenzen
Die Studierenden:
- können Lösungsansätze für Probleme in diesem Bereich im Plenum präsentieren und in Diskussionen verteidigen

Selbstkompetenzen
Die Studierenden:
- können ihre eigene Fach- und Methodenkompetenz einschätzen
- übernehmen die Verantwortung für ihre Kompetenzentwicklung und ihre Lernfortschritte und reflektieren diese selbstständig
- erarbeiten selbstständig die Lerninhalte und können die Inhalte kritisch reflektieren

Modulinhalte

Dabei werden die wichtigsten aktuellen Modellarchitekturen in diesen Bereichen diskutiert, angefangen von Convolutional Neural Networks über Recurrent Neural Networks bis hin zu Transformer-Modellen. Die Vorlesung wird von Übungsgruppen begleitet in denen die Studenten praktische Erfahrungen in PyTorch und zugleich die nötigen Kenntnisse erwerben sollen.
um aktuelle Deep Learning Verfahren in ihren jeweiligen Anwendungsgebieten zum Einsatz zu bringen.

Literaturempfehlungen

Links

Unterrichtssprache Englisch

Dauer in Semestern 1 Semester

Angebotsrhythmus Modul jedes Wintersemester

Aufnahmekapazität Modul unbegrenzt

Modullevel

Modulart

Lehr-/Lernform 1VL + 1Ü

Vorkenntnisse Ein grundlegendes theoretisches Verständnis des maschinellen Lernens und praktische Programmierkenntnisse in Phyton

Prüfung

Prüfungszeiten am Ende der Vorlesungszeit

Prüfungsform Klausur und mündl. Prüfung

Gesamtmulti

Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz

Vorlesung 2 WiSe 0

Übung 2 WiSe 0

Präsenzzeit Modul insgesamt 0 h
inf5452 - Aktuelle Themen des Vertrauenswürdigen Maschinellen Lernen

Modulbezeichnung: Aktuelle Themen des Vertrauenswürdigen Maschinellen Lernen

Modulkürzel: inf5452

Kreditpunkte: 3.0 KP

Workload: 90 h

Verwendbarkeit des Moduls:
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen:
- Strodthoff, Nils (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen:
Grundlagenvorlesung im Bereich Maschinelles Lernen und / oder Deep Learning Vorkenntnisse

Kompetenzziele:

Fachkompetenzen
Die Studierenden:
- haben einen exemplarischen Überblick über Herausforderungen und exemplarische, existierende Lösungsansätze in den jeweiligen Problemfeldern und können diese in den breiteren Methodenkontext einordnen.

Methodenkompentenzen
Die Studierenden:
- können sich selbstständig Themen unter Zuhilfenahme von aktueller Forschungsliteratur erarbeiten und kritisch reflektieren.

Sozialkompetenzen
Die Studierenden:
- können Vor- und Nachteile von existierenden Lösungsmöglichkeiten in der Literatur präsentieren und im Plenum kritisch diskutieren.

Selbstkompetenzen
Die Studierenden:

Modulinhalte:

Literaturempfehlungen

Links

Unterrichtssprache: Englisch

Dauer in Semestern: 1 Semester

Angebotsrhythmus Modul: jedes Wintersemester
<table>
<thead>
<tr>
<th>Aufnahmekapazität Modul</th>
<th>unbegrenzt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modullevel</td>
<td></td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1S</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>Grundlagenvorlesung im Bereich Maschinelles Lernen und / oder Deep Learning Vorkenntnisse</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>Prüfungsform</td>
</tr>
<tr>
<td></td>
<td>am Ende der Vorlesungszeit/ Zwischenprüfungen</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
Systems Engineering

inf300 - Hybride Systeme

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Hybride Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf300</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Technische Informatik
- Master Informatik (Master) > Theoretische Informatik

Zuständige Personen

- Fränzle, Martin Georg (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen

Kompetenzziele

Fachkompetenzen

Die Studierenden:

- charakterisieren die einschlägigen formalen Systemmodelle cyber-physischer Systeme: Hybride Automaten, hybride symbolische Transitionssysteme
- benennen domänentypische Systemanforderungen: Sicherheit im Sinne von "safety", Stabilisierungsbegriffe, Robustheit
- wählen und setzen adäquate Modellierungs- und Analysemethoden für konkrete Anwendungsszenarien ein
- wenden Methoden zur Reduktion großer Zustandsräume und Abstraktionen zur Behandlung zustandsunendlicher Systeme an
- kennen die den Industrie-Standard darstellenden Modellierungswerkzeuge und können sie anwenden

Methodenkompetenzen

Die Studierenden:

- modellieren semiformal heterogene dynamische Systeme mit industriellen Entwurfswerkzeugen, insbes. mit Simulink/Stateflow
- übertragen die erlernten Modellierungs- und Analysetechniken auf andere heterogene Systemdomänen, bspw. soziotechnische Systeme

Sozialkompetenzen

Die Studierenden:

- arbeiten in Teams
- lösen komplexe Modellierungs-, Entwicklungs- und Analyseaufgaben im Team

Selbstkompetenzen

Die Studierenden:

- reflektieren ihr Vorgehen und erkennen die Grenzen der erlernten Methoden hybrider Systeme

Modulinhalte

für die Analyse dieser technisch wichtigen Klasse computerbasierter Systeme
eine eigenständige Theorie wie auch Entwurfsmethodik benötigt, in die diese
VL einführen möchte: Die Theorie der hybrid diskret-kontinuierlichen Systeme.
Die vorlesungsbegleitende Bearbeitung eines Semesterprojekts mit aktuellen
Entwurfs- und Verifikationswerkzeugen dient der Vertiefung des
Vorlesungsstoffs.

Literaturempfehlungen

- Luca P Carloni, Roberto Passerone, Allesandro Pinto & Alberto L Sangiovanni-Vincentelli: Languages and Tools for Hybrid System
- Wassim M. Haddad, Vijay Sekhar Chellaboina & Sergey G. Nersesov: Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and
- Michael Huth, Mark Ryan: Logic in Computer Science: Modelling and
- Christel Baier, Joost-Pieter Katoen: Principles of Model Checking. MIT

Links

Unterrichtssprachen
Englisch, Deutsch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel

Modulart
1VL + 1Ü

Vorkenntnisse
Bachelor in Computing Science oder Kenntnisse gewöhnlicher
Differentialgleichungen
Die Vorlesung setzt Kenntnisse der Modellierung und Analyse reaktiver
Systeme voraus.

Prüfung

<table>
<thead>
<tr>
<th>Prüfungsform</th>
<th>Prüfungszeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>SWS</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>3</td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
inf301 - Hardwarenahe Systementwicklung

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Hardwarenahe Systementwicklung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf301</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Technische Informatik

Zuständige Personen

- Fränzle, Martin Georg (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen

Keine Teilnehmervoraussetzungen

Kompetenzziele

Das Modul liefert den Praxisbezug zum Bereich "Entwurf digitaler eingebetteter Systeme".

Fachkompetenzen

Die Studierenden:

- charakterisieren den praktischen Aufbau eines Mikroprozessorsystems
- benennen Aspekte der zeitkritischen Ansteuerung externer Komponenten
- programmieren leistungsfähige eingebettete Systeme

Methodenkompetenzen

Die Studierenden:

- verwenden Spezifikationen von Datenblättern elektronischer Komponenten

Sozialkompetenzen

Die Studierenden:

- arbeiten im Team
- diskutieren Lösungen im Team

Modulinhalt

Literaturrempfehlungen

Foliensammlungen sowie Handbücher und Datenblätter der verwendeten Hardware und Handbücher der Entwicklungswerkzeuge

Links

Unterrichtsprachen: Deutsch, Englisch
Dauer in Semestern: 1 Semester
Angebotsrhythmus Modul: jährlich
Aufnahmekapazität Modul: unbegrenzt
Modullevel: Modulart
<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>1V + 1P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse</td>
<td>Keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Am Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Praktikum</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
</tr>
</tbody>
</table>
Modulbezeichnung | Fuzzy-Regelung und künstliche neuronale Netze in Robotik und Automation
---|---
Modulkürzel | inf303
Kreditpunkte | 6.0 KP
Workload | 180 h
Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Informatik (Master) > Technische Informatik
Zuständige Personen
- Fatikow, Sergej (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen

Kompetenzziele

Ziels des Moduls
Spezialisten verschiedener Disziplinen lösen ihre anwendungsspezifischen Steuerungs- und Informationsverarbeitungsprobleme durch den Einsatz von Fuzzy-Logik und neuronaler Netze. Wie die gesammelten Erfahrungen zeigten, sind die Robotik und die Automatisierungstechnik prädestinierte Anwendungsbereiche für diese Technologien.

Fachkompetenzen
Die Studierenden:
- verstehen die Steuerungs- und Regelprobleme in Robotik und Automation,
- erwerben Grundlagen der Fuzzy-Logik und künstlicher neuronaler Netze,
- vergleichen mit konventionellen und fortgeschrittener Ansätze zur Steuerung und Regelung und
- lernen den Einsatz neuronaler Netze in Kombination mit Fuzzy-Logik kennen,
- ihr Wissen über die praktische Anwendbarkeit beider Verfahren zu vertiefen,
- die erworbenen Kenntnisse später in Studien- oder Diplomarbeiten in der AMiR umzusetzen

Methodische Kompetenzen
Die Studierenden:
- erwerben Kenntnisse über die Werkzeuge, Methoden und Anwendungen der Fuzzy-Logik und ANN
- vertiefen ihre Kenntnisse für die praktische Anwendung der genannten Methoden
- können gängige Softwaretools für den Entwurf und die Anwendung von Fuzzy-Logik und ANN nutzen

Soziale Kompetenzen
Die Studierenden:
- sammeln Erfahrungen im interdisziplinären Arbeiten
- werden in die aktuelle Forschungsarbeit eingebunden Ziel des Moduls / Fähigkeiten:

Selbstkompetenzen
Die Studierenden:
- sind in der Lage, das erworbene Wissen für eine spätere Verwendung in ihrer Abschlussarbeit oder im Studium für AMiR zu transferieren
- können (komplexe) Fuzzy-Logic-Regler und ANN-Systeme entwerfen und
- ihre (Regelungs-)Lösungen mit Hilfe der in dieser Lehrveranstaltung erlerneten Methoden reflektieren

Modulinhalte
Steuerungsprobleme in Robotik und Automation;
Einführung in Fuzzy- und Neuro-Systeme;
Grundlagen der Fuzzy-Logik;
Fuzzy-Logik regelbasierter Systeme;
Modelle neuronaler Netze;
Lernalgorithmen für neuronale Netze;
Mehrschichtige Netze und Backpropagation;
Assoziativspeicher und stochastische Netze;
Selbstorganisierende Netze;
Entwurf klassischer Regler;
Entwurf von Fuzzy-Regelungssystemen;
Praktische Anwendungen der Fuzzy-Logik;
Entwurf von Neuro-Regelungssystemen;
Praktische Anwendungen neuronaler Netze

Literaturrempfehlungen

Essentiell:

- Vorlesungsgriff in Buchform (erhältlich im Sekretariat, A1-3-303)

Empfohlen:

Gute Sekundärliteratur:

- Altrock, M. O. R.: Fuzzy Logic, R. Oldenbourg Verlag, 1993
- Kahler, J. and Hubert, F.: Fuzzy-Logik und Fuzzy-Control, Vieweg, 1993
- Krahzer, K.P.: Neuronale Netze, Carl Hanser, 1993
- Lawrence, J.: Neuronale Netze, Sysehema Verlag, München, 1992
- Patterson, D.W.: Künstliche neuronale Netze, Prentice Hall, 1996
- Zimmermann H.-J. (Hrsg.): Datenanalyse, VDI-Verlag, 1995

Links

Unterrichtsprachen Englisch, Deutsch

Dauer in Semestern 1 Semester
<table>
<thead>
<tr>
<th>Angebotsrhythmus Modul</th>
<th>jährlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Modullevel

Modulart

<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>1VL + 1Ü</th>
</tr>
</thead>
</table>

Vorkenntnisse
Kenntnisse in Regelungstechnik

Prüfung
Prüfungszeiten: Nach Beendigung des Moduls bis zum Anfang des nachfolgenden Semesters
Prüfungsform: Fachpraktische Übungen und mündliche Prüfung

Lehrveranstaltungsform
<table>
<thead>
<tr>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>SoSe</td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzzeit Modul insgesamt
56 h
inf305 - Medizintechnik

Modulbezeichnung
Medizintechnik

Modulkürzel
inf305

Kreditpunkte
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Interdisziplinäre Module
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Hein, Andreas (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Nützliche Kenntnisse in
- Signal und Bildverarbeitung
- Regelungstechnik

Kompetenzziele
Fachkompetenzen
Die Studierenden:
- beschreiben Diagnose- und Therapieformen in der Medizin
- erkennen die Grundkonzepte von Computer-assistierten Eingriffen in der Medizin
- beschreiben die Grundsätze und rechtlichen Rahmenbedingungen für die Entwicklung von Medizinprodukten
- definieren die Rolle von Softwarekomponenten in Medizinprodukten und implementieren diese
- schätzen die komplexen Zusammenhänge/Interaktionen zwischen Medizinprodukt und Patient ab
- arbeiten sich in spezifische Fragen der Entwicklung von Medizinprodukten schnell ein

Methodenkompetenzen
Die Studierenden:
- erkennen interdisziplinäre Herausforderung und reagieren durch Kommunikation mit anderen Disziplinen darauf

Sozialkompetenzen
Die Studierenden:
- präsentieren Lösungsansätze

Selbstkompetenzen
Die Studierenden:
- reflektieren ihre Lösungen und beziehen dabei die gelernten Methoden ein

Modulinhalte

Medizinische Gebiete und Einsatzfelder
- Grundlegende Anforderungen an medizintechnische Systeme (Hygiene, MPG, technische Sicherheit, Materialien)

Medizintechnische Systeme:
- Funktionsdiagnostik (EKG, EMG, EEG)
- Bildgebende Systeme (CT, MRT, Ultraschall, PET, SPECT)
- Therapiegeräte (Laser, HF, Mikrotherapie)
- Signalverarbeitung/Monitoring (kardiovaskulär, hämodynamisch, respiratorisch, metabolisch, zerebral)
- Medizinische Informationsverarbeitung (HIS, DICOM, Telemedizin, VR, Bildverarbeitung)

Literaturempfehlungen
Essentiell:
- Kramme, R.: Medizintechnik. Verfahren, Systeme und
Informationssysteme. Springer Verlag, 2002 (2. Auflage)
- Foliensammlung zur Vorlesung
- Empfohlen:

Gute Sekundärliteratur:

Links
Unterrichtsprachen Englisch, Deutsch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul jährlich
Aufnahmekapazität Modul unbegrenzt
Modullevel
Modulart
Lehr-/Lernform 1VL + 1Ü
Vorkenntnisse Kenntnisse in
 - Signal und Bildverarbeitung
 - Regelungstechnik
Prüfung
Prüfungszeiten Am Ende der Vorlesungszeit
Prüfungsform Semesterbegleitende fachpraktische Übung und Klausur oder mündliche Prüfung
Lehrveranstaltungsform
Kommentar
SWS Angebotsrhythmus Workload Präsenz
Vorlesung 3 WiSe 42
Übung 1 WiSe 14
Präsenzzzeit Modul insgesamt 56 h
inf307 - Robotik

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Robotik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf307</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Interdisziplinäre Module
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Hein, Andreas (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmeveranlassungen
- Keine

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- benennen und erkennen die Funktionsweise und Anwendungsgebiete von Roboter(systemen)
- charakterisieren die Grundkonzepte der Programmierung von Roboter(systemen)
- differenzieren das Zusammenwirken mechanischer, elektrischer und softwaretechnischer Komponenten in einem

Methodenkompetenzen
Die Studierenden:
- definieren Eigenschaften und Komponenten für Roboter(systeme) für eine spezifische Anwendung - entwerfen und implementieren Teilmodule von Robotersteuerungen
- entwerfen und parametrisieren einfache Reglerstrukturen
- planen den Einsatz von Roboter(systemen) und leiten Anforderungen an das System ab
- konstruieren Modelle elektro-mechanischer Systeme
- entwerfen und realisieren einfache Roboter(systeme)

Sozialkompetenzen
Die Studierenden:
- arbeiten gemeinsam an gegebenen Problemstellungen der Robotik

Selbstkompetenzen
Die Studierenden:
- reflektieren ihre Lösungen und beziehen dabei die Methoden der Robotik ein

Modulinhalte
Das Modul vermittelt die folgenden Inhalte:
- Integration in Produktionsanlagen / Ziele / Teilsysteme - Architekturen / Typisierungen (Typisierung von Robotern);
- Komponenten eines Roboters + Rechnersystems zur Programmierung -- Beispiel PA-10 -- Beispiel Lego Mindstorms
- Grundlagen der Kinematik -- Koordinatentransformationen, homogene Koordinaten, Parametrisierung von Koordinatenübergängen, -- Kinematische Gleichungssysteme, Transformation von Vektoren
- Planung / Regelung -- Ansatz der Regelung, Begriffe, Prozess- und Reglerfunktionen, PID-Regler, -- Konzepte und Ansätze zur Planung (On-Line, Off-Line), Planungsverfahren, Montage- und Wegeplanung - Aktoren
Literaturempfehlungen

Essentiell:
- Skript zur Vorlesung

Empfohlen:
- Siegert, H.-J.; Bocionek, S.: Programmierung intelligenter Roboter. Springer Verlag, 1996
- Jiang, X.; Bunke, H.: Dreidimensionales Computersehen (Gewinnung und Analyse von Tiefenbildern), Springer Verlag, 1997

Gute Sekundärliteratur:

Links

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- jährlich

Aufnahmekapazität Modul
- unbegrenzt

Modullevel

Modulart
- 1VL + 1Ü

Vorkenntnisse
- keine

Prüfung
- Prüfungszeiten
- Prüfungsform
- Gesamtmodul
- Am Ende der Vorlesungszeit
- Portfolio oder Klausur oder mündliche Prüfung

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
- 56 h
inf308 - Mikrorobotik II

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Mikrorobotik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf308</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Interdisziplinäre Module
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Fatikow, Sergej (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- Mikrorobotik und Mikrosystemtechnik

Kompetenzziele
Nachdem im Modul "Mikrorobotik und Mikrosystemtechnik" eine fundierte Einführung in die Mikrosystemtechnik und Mikrorobotik gegeben wurde, bietet diese Veranstaltung eine Vertiefung in das komplexe Gebiet der Mikro- und Nanorobotik. Dabei werden alle relevanten Teilbereiche der Mikrorobotik, u.a. auch sämtliche Forschungsthemen der Abteilung für Mikrorobotik und Regelungstechnik (AMiR) präsentiert und analysiert. Dem Student wird u.a. ein tiefer Einblick in die aktuellen Forschungsprojekte der AMiR und anderer Mikrorobotik-Institute weltweit ermöglicht, wobei in erster Linie die Anforderungen der Industrie an die Mikrorobotik diskutiert werden. Die Veranstaltung wird durch praxisnahe Übungen in den Forschungslaboren der AMiR abgerundet.

Fachkompetenzen
Die Studierenden
- benennen und erkennen die Grundkonzepte der Nanotechnologie, insbesondere die Ansätze der Mikro- und Nanorobotik

Methodenkompetenzen
Die Studierenden
- übertragen die erlangten Fähigkeiten in den Bereichen der Regelungstechnik und Bildverarbeitung auf fachübergreifende Problemstellungen.

Sozialkompetenzen
Die Studierenden
- arbeiten im Team

Selbstkompetenzen
Die Studierenden
- reflektieren ihr Vorgehen
- beziehen ihre praktischen Erfahrungen in der Entwicklung, Steuerung/Regelung und Anwendung von mikrorobotischen Systemen in ihre Handlungen ein

Modulinhalte
- Rasterelektronenmikroskopie und Rasterkraftmikroskopie
- Intelligente multifunktionale Mikrorobotik
- Mikroaktoren (Piezo-, Ferrofluid-, SMA-Aktoren) für Mikroroboter
- Echtzeit-Bildverarbeitung in der Mikro- und Nanowelt (REM, AFM, optische Mikroskopie)
- Mikrokraftsensoren und taktil Sensoren für Mikroroboter
- Robotерregelung, u.a. mit Hilfe neuronaler Netze und Fuzzy-Logik
Haptische Benutzeroberfläche zur Steuerung von Mikrorobotern - Roboterbasierte Mikro- und Nanohandhabung (REM, TEM, AFM, optische Mikroskopie)

Anwendungen: Mikro- und Nanomontage, Test von Nanoschichten, Handhabung und Charakterisierung von Kohlenstoffnanoröhren, Handhabung biologischer Zellen

Mehrrobotersysteme in der Mikrowelt: Kommunikation, Steuerung, Kooperation

Literaturrempfehlungen

Vorlesungsskript in Buchform (kann nach Fertigstellung zum Selbstkostenpreis im Sekretariat A1 3-303 erworben werden)

Links

Unterrichtsprachen Englisch, Deutsch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul jährlich
Aufnahmekapazität Modul unbegrenzt

Modullevel

Modulart 1VL + 1Ü
Vorkenntnisse Mikrorobotik und Mikrosystemtechnik
Prüfung Fachpraktische Übungen und mündliche Prüfung

Lehrveranstaltungsform

Kommentar
SWS
Angebotsrhythmus
Workload Präsenz

Vorlesung
3
SoSe
42

Übung
1
SoSe
14

Präsenzzeit Modul insgesamt 56 h
Low Energy System Design

Modulbezeichnung: Low Energy System Design
Modulkürzel: inf311
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls:
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Technische Informatik

Zuständige Personen:
- Fatikow, Sergej (Modulverantwortung)
- Lehrenden, die im Modul (Prüfungsberechtigt)

Kompetenzziele:
Dieses Modul führt ein in die Themengebiete der Verlustleistungsabschätzung, sowie der Verlustleistungsoptimierung.

Fachkompetenzen:
Die Studierenden:
- diskutieren die grundlegende Verlustleistungsproblematik
- charakterisieren den anforderungsgetriebenen Entwurf eingebetteter Systeme
- benennen gängige Verlustleistungsanalyse- und Optimierungsmethoden
- entwerfen eingebettete Systeme mit gängigen Entwurfs- und Analyseeinrichtungen
- entwerfen verlustleistungsoptimierte eingebettete Systeme

Methodenkompetenzen:
Die Studierenden:
- modellieren von Systemen mit einer Hardware-Beschreibungssprache
- analysieren und modellieren Hardwarekomponenten
- nehmen Mehrzieloptimierungen von Systemen vor

Sozialkompetenzen:
Die Studierenden:
- konstruieren Lösungen zu gegebenen Problemen in Gruppen
- diskutieren ihre Ergebnisse fachlich und sachlich angemessen

Selbstkompetenzen:
Die Studierenden:
- erkennen die Grenzen ihrer Belastbarkeit bei der Modellierung von Systemen, bzw. Teilaspekte dieser

Modulinhalte:

Literaturempfehlungen:
- Leakage in Nanometer CMOS Technologies – F. Kesel, R. Bartholomä
- Folien der Veranstaltungen „Eingebettete Systeme I+II“ von Professor
Links

<table>
<thead>
<tr>
<th>Unterrichtsprachen</th>
<th>Englisch, Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Modulart

<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>1VL + 1Ü</th>
</tr>
</thead>
</table>

Vorkenntnisse

Kennenisse in:
- Grundlagen der Technische Informatik,
- Technische Informatik,
- Eingebettete Systeme I+,
- Eingebettete Systeme II

Prüfung

<table>
<thead>
<tr>
<th>Prüfungsform</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Gesamtdauer Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Fachpraktische Übung und mündliche Prüfung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
inf334 - System Level Design

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>System Level Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf334</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Praktische Informatik
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Lehrenden, die im Modul (Prüfungsberechtigt)
- Lehrenden, die im Modul (Modulverantwortung)

Teilnahmevoraussetzungen
Keine Teilnahmeverpflichtungen

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- Fähigkeit zur Beschreibung und Analyse von Systemkomponenten und -architekturen unter Verwendung der Systembeschreibungssprachen SpecC und SystemC
- Fähigkeiten zur Partitionierung und Parallelisierung von Anwendungen

Methodenkompetenzen
Die Studierenden:
- erlangen die Kenntnis der Verfeinerungs- und Transformationstechniken zur Überführung einer ursprünglichen Spezifikation in eine reale Implementierung
- erlangen die Kenntnis der Phasen eines Entwurfsablaufs auf Systemebene
- erlangen Kenntnisse über aktuelle Entwurfsmethoden und -werkzeuge im System-Level-Design
- erlangen Kenntnisse über formale Berechnungsmodelle von Spezifikationssprachen
- erlangen Kenntnisse über aktuelle Forschungsergebnisse und Trends im System-Level-Design
- erlernen die Fähigkeiten zur Partitionierung und Parallelisierung von Anwendungen
- erlernen die Fähigkeit, Entwurfsentscheidungen zu bewerten und zu untersuchen
- erlernen die Fähigkeit, eine vollständige Systementwurfs-zu-Implementierungs-Spezifikation zu implementieren

Sozialkompetenzen
Die Studierenden:
- setzen Lösungen für vorgegebene Probleme im Team um
- diskutieren ihre Ergebnisse in angemessener Weise

Selbstkompetenzen
Die Studierenden:
- erlangen Präsentationsfähigkeiten
- reflektieren ihre Lösungen mit Hilfe der in diesem Kurs erlernten Methoden

Modulinhalte

Literaturempfehlungen

Empfohlene Lektüre:

Wichtigste Lehrbücher:

Optionale Bücher:

Additional reading material posted on Stud.IP

Links

- https://www.uni-oldenburg.de/informatik/ehs/lehre/vorlesungen/system-level-design/

Unterrichtssprache

Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

unbegrenzt

Aufnahmekapazität Modul

unbegrenzt

Modullevel

Modulart

- Lehr-/Lernform: 1VL + 1Ü
- Vorkenntnisse: keine
- Prüfung: Prüfungszeiten
- Prüfungsform: Fachpraktische Übungen und mündliche Prüfung

Gesamtdauer

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
Application Area Automotive

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Application Area Automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf336</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Köster, Frank (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Keine Teilnehmervoraussetzungen

Kompetenzziele
- Dieses Modul führt in den Anwendungsbereich Automotive ein.

Fachkompetenzen
- Die Studierenden
 - Diskussion von Kernkonzepten der Transportdomäne
 - Erörterung verschiedener Verkehrsträger (Schwerpunkt Automobil)
 - Automatisiertes und vernetztes Fahren erörtern (kurze Einführung/Überblick)
 - Erörterung der menschlichen Faktoren im Automobilsektor
 - Erörterung der Verkehrsinfrastruktur (Fokus auf Kreuzungen)
 - Erörterung der Grundprinzipien des Verkehrsmanagements

Methodenkompetenzen
- Die Studierenden
 - analysieren von Fahrzeugsystemen
 - analysieren von Verkehrsinfrastruktur
 - kooperative Fahrzeug-Infrastruktur-Systeme analysieren
 - sozio-technische Systeme analysieren

Sozialkompetenzen
- Die Studierenden:
 - arbeiten in Teams
 - diskutieren ihre Ergebnisse in angemessener Form

Selbstkompetenzen
- Die Studierenden:
 - erkennen die Grenzen ihrer Belastbarkeit bei der Bearbeitung der Themen des Moduls an

Modulinhalte
- Kernkonzepte des Verkehrsbereichs
- Verkehrsträger (Fokus auf den Automobilsektor)
- Automatisiertes und vernetztes Fahren (kurze Einführung/Überblick)
- Menschliche Faktoren im Automobilbereich
- Verkehrsinfrastruktur (Fokus auf Kreuzungen)

Literaturempfehlungen
Kraftfahrzeugtechnik. Vieweg.

<table>
<thead>
<tr>
<th>Links</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unterrichtssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel</td>
<td></td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1 VL + 1 Ü</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gesamtmodul</th>
<th>At the end of the lecture period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Practical work or oral exam</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2 SWS SoSe 28</td>
</tr>
<tr>
<td>Übung</td>
<td>2 SWS SoSe 28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Präsenzzeit Modul insgesamt</th>
<th>56 h</th>
</tr>
</thead>
</table>
inf338 - Design of Autonomous Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Design of Autonomous Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf338</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Lehrenden, Die im Modul (Prüfungsberechtigt)
- Fränzle, Martin Georg (Modulverantwortung)

Teilnahmeverfahren
- Keine Teilnahmeverfahren

Kompetenzziele

Fachkompetenzen
Die Studierenden
- sind in der Lage, autonome Systeme zu analysieren und zu erstellen.

Methodenkompetenzen
Die Studierenden
- kennen Beispiele bestehender autonomer Systeme
- verstehen die Elemente ihres Architekturentwurfs und die Gründe für die Dekomposition des Problems in Pflichten für die jeweiligen Systemkomponenten.
- analysieren bestehende Architekturen für autonome Systeme im Hinblick auf ihre Leistungsfähigkeit und Sicherheit
- lernen, eine Architektur zu zerlegen
- sind in der Lage, Entwursverpflichtungen für seine Komponenten abzuleiten und können einen entsprechenden Sicherheitsfall strukturieren.
- verstehen die zur Erreichung der Systemautonomie notwendigen Software- und Hardwarekomponenten und sind in der Lage, diese zu entwerfen oder zu instanzieren.

Sozialkompetenzen
Die Studierenden:
- erwerben praktische Erfahrungen im Entwurf von Komponenten für autonome Systeme in kleinen Teams und präsentieren die zugrundeliegende Theorie, ihre jeweiligen Entwurfseinscheidungen und ihre persönliche Bewertung vor Mitstudierenden.

Selbstkompetenzen
Die Studierenden:
- können die Angemessenheit ihrer methodischen Fähigkeiten für den Entwurf bestimmter autonomer Lösungen beurteilen
- sind in der Lage, die sicherheitstechnischen Auswirkungen einer solchen Lösung abzuschätzen und können daher eine persönliche ethische Haltung zu deren Realisierung entwickeln

Modulinhalte
Das Modul besteht aus einer Vorlesung und einem Übungsteil

Literaturempfehlungen

Links

Unterrichtssprache
Englisch
<table>
<thead>
<tr>
<th>Dauer in Semestern</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modulevel</td>
<td></td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1VL + 1Ü</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>Second half of semester</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
</tr>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf454 - Kommunizierende und mobile Systeme

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Kommunizierende und mobile Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf454</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering</td>
</tr>
<tr>
<td></td>
<td>- Master Informatik (Master) > Theoretische Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Olderog, Ernst-Rüdiger (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>- Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keine Teilnehmervoraussetzungen</td>
</tr>
</tbody>
</table>

Kompetenzziele

Fachkompetenzen

Die Studierenden:

- kennen die Theorie der operationellen Semantik von CCS und des pi-Kalküls
- führen Äquivalenzbeweise mittels Simulationen und Bisimulationen
- spezifizieren kommunizierende und mobile Systeme mit CCS und dem pi-Kalkül

Methodenkompetenzen

Die Studierenden:

- lernen unterschiedliche Sichtweisen von Mobilität kennen
- erkennen Äquivalenzen als formales Mittel für Systemkorrektheit

Sozialkompetenzen

Die Studierenden:

- arbeiten in kleinen Gruppen an Lösungen von Aufgaben
- präsentieren Lösungen von Aufgaben vor Gruppen

Selbstkompetenzen

Die Studierenden:

- erlernen Ausdauer bei der Bearbeitung schwieriger Aufgaben
- erlernen Präzision bei der Spezifikation von Problemen

Modulinhalte

Themen:

- unterschiedliche Sichtweisen auf Mobilität
- Transitionssysteme mit Simulationen und Bisimulationen
- Milners Calculus of Communicating Systems (CCS) und Milners pi-Kalkül für mobile Systeme, jeweils mit operationeller Semantik, struktureller Kongruenz, starker Äquivalenz und Beobachtungäquivalenz, Zusammenhängen zwischen Reaktionen und Transitionen, Lösbarkeit rekursiver Gleichungen
- formale Spezifikation von Beispielen kommunizierender und mobiler Systeme mit CCS und dem pi-Kalkül
- Beweis von starker Äquivalenz und Beobachtungäquivalenz vorgegebener Prozesse
- Spezifikation von dynamischen Datenstrukturen im pi-Kalkül
Literaturempfehlungen

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unterrichtsprachen</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehr-/Lernform</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>am Ende der Vorlesungszeit</td>
<td>Fachpraktische Übungen und Klausur oder Fachpraktische Übungen und mündliche Prüfung.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>3</td>
<td>WiSe</td>
<td>42</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
</tr>
</tbody>
</table>

| Präsenzzzeit Modul insgesamt | 56 h |
inf456 - Realzeitsysteme

Modulbezeichnung Realzeitsysteme
Modulkürzel inf456
Kreditpunkte 6.0 KP
Workload 180 h

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Theoretische Informatik

Zuständige Personen
- Olderog, Ernst-Rüdiger (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- Theoretische Informatik I + II

Kompetenzziele
Einführung von formalen Methoden zur Spezifikation und Verifikation von zeitkritischen Systemen und deren Kombination.

Fachkompetenzen
Die Studierenden:
- lernen Zeitmodelle und Realzeiteigenschaften kennen
- spezifizieren und verifizieren Realzeitsysteme
- modellieren Realzeitsysteme mit Realzeitautomaten und PLC-Automaten
- wenden den Model-Checker UPPAAL zur Verifikation von Realzeiteigenschaften an
- spezifizieren Realzeitsysteme im Duration Calculus
- lernen Entscheidbarkeits- und Unentscheidbarkeitsresultate für Realzeitsysteme kennen

Methodenkompetenzen
Die Studierenden:
- erkennen Logik und Automaten als adäquate Beschreibungsformen für Realzeitsysteme

Sozialkompetenzen
Die Studierenden:
- arbeiten in kleinen Gruppen an Lösungen von Aufgaben
- präsentieren Lösungen von Aufgaben vor Gruppen

Selbstkompetenzen
Die Studierenden:
- erlernen Ausdauer bei der Bearbeitung schwieriger Aufgaben
- erlernen Präzision bei der Spezifikation von Problemen

Modulinhalte

Themen:
- diskretes und kontinuierliches Zeitmodell
- Logiken und Automatenmodelle zur Spezifikation von Realzeitsystemen
(Prädikatenlogik, Duration Calculus, Timed CTL, Realzeitalautomaten, PLC-Automaten)
• Entscheidbarkeits- und Unentscheidbarkeitsresultate für Realzeitsysteme
• Model-Checker UPPAAL für Realzeitalautomaten,
• formale Spezifikation von Realzeitsystemen im Duration Calculus sowie mit Realzeitalautomaten und PLC-Automaten
• Verifikation konkreter Realzeitalautomaten mit dem Model-Checker UPPAAL
• Transformation von Duration Calculus für diskrete Zeit in reguläre Sprachen
• Implementierbarkeit von Realzeitsystemen auf PLC-ähnlicher Hardware

Literaturnachweise

Essentiell:

Empfohlen:

Links

Unterrichtsprachen Deutsch, Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul unregelmäßig
Aufnahmekapazität Modul unbegrenzt
Modulart
Lehr-/Lernform 1VL + 1Ü
Vorkenntnisse Theoretische Informatik I + II
Prüfung Prüfungszeiten
Gesamtmodul Am Ende der Vorlesungszeit Fachpraktische Übungen und mündliche Prüfung.
Präsenzzeit Modul insgesamt 56 h
inf502 - Simulation

Modulbezeichnung Simulation
Modulkürzel inf502
Kreditpunkte 6.0 KP
Workload 180 h

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen
- Hahn, Axel (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Programmierkenntnisse vornehmlich in Java sind zwingend erforderlich

Kompetenzziele
Simulation ist ein wesentliches Werkzeug für den Erkenntnisgewinn zu Systemen sowie ein zur Prädiktion von Eigenschaften und (zukünftigen) Systemverhalten. Das Modul behandelt mathematische Grundlagen, wie grundlegende Technologien der Simulation und schließt mit Anwendungsbeispielen ab. Durch die Seminar- und Praxisphase bekommen die Studierenden praktische Erfahrungen durch die Entwicklung einer eigenen Simulation.

Fachkompetenzen
Die Studierenden
- haben einen Überblick auf Methoden, Werkzeuge und Einsatzgebiete. So wie Leistungsfähigkeit von Simulation; vornehmlich im Bereich der Transport und Produktionssysteme

Methodenkompetenzen
Die Studierenden
- kennen wesentliche Ansätze der Simulation und der notwendigen Modellbildung.
- verstehen die Behandlung von Zeit und Probleme der Diskretisierung
- durch die praktischen Erfahrungen im Modul wird der selbständige Umgang von Forschungsfragen erprobt und Simulation als wissenschaftliche Methode erlernt

Selbstkompetenzen
Die Studierenden
- sind in der Lage die Nutzung von Simulation für wissenschaftliche Fragestellungen kritisch zu hinterfragen

Sozialkompetenzen
Die Studierenden
- arbeiten in kleinen Arbeitsgruppen um müssen die kooperative Bearbeitung der Aufgabenstellung selbständig koordinieren. Dabei entwickeln Sie Ihre Team- und Sozialkompetenzen weiter.

Modulinhalte
Im Vorlesungsteil werden Grundlagen von Simulationen und praktische Anwendungen vorgestellt. Im Seminar- und Praxisphase setzen die Studierenden mit Simulation theoretisch auseinander und erproben einzelne Aspekte in kleinen Projekten

Literaturempfehlungen
<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unterrichtsprachen</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehr-/Lernform</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
</tr>
<tr>
<td>Prüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gesamtdaten Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anmeldung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Praktikum</td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

| Präsenzzzeit Modul insgesamt | 56 h |
inf537 - Intelligent Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Intelligent Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf537</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Wirtschaftsinformatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Verwendbarkeit des Moduls

- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Wirtschaftsinformatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Zuständige Personen

- Sauer, Jürgen (Modulverantwortung)
- Lehrende, Die im Modul (Prüfungsberechtigt)

Teilnehmervoraussetzungen

Produktionsorientierte Wirtschaftsinformatik

Kompetenzziele

Fachkompetenzen

Die Studierenden:

- benennen den Aufbau intelligenter agentenbasierter Systeme
- verwenden Problemlösungsmethoden für komplexe Probleme
- charakterisieren den Anwendungsbereich Planung/ Ablaufplanung
- bewerten die Eignung von Verfahren für bestimmte Problemstellungen

Methodenkompetenzen

Die Studierenden:

- ordnen Problemlösungsmethoden verschiedenen Problemstellungen zu

Sozialkompetenzen

Die Studierenden:

- implementieren ausgewählte Verfahren in kleinen Teams

Selbstkompetenzen

Die Studierenden:

- entwickeln eigene Lösungsansätze für vorgegebene Problemstellungen

Modulinhalte

In vielen Anwendungsbereichen kommen „intelligente“ Lösungsverfahren zum Einsatz. Diese Lösungsverfahren stehen im Kern der Veranstaltung und sie werden am Beispiel der Anwendungsdomäne Ablaufplanung vorgestellt und vertieft. Im Modul werden intelligente Systeme, in denen KI-Lösungsverfahren verwendet werden, am Beispiel der Anwendungsdomäne Ablaufplanung vorgestellt und vertieft.

Dazu gehören

- eine kurze Einführung in die KI

Literaturrempfehlungen

- Russel/Norvig: Künstliche Intelligenz, Pearson, 2004
- Ghallab/Nau/Traverso: Automated Planning, Morgan Kaufman, 2004

Links

- www.wi-ol.de

Unterrichtsprachen

Deutsch, Englisch
<table>
<thead>
<tr>
<th>Dauer in Semestern</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Hinweise</td>
<td>Dieses Modul ist im Rahmen der Projekte FiF und FoL konzipiert worden</td>
</tr>
<tr>
<td>Modullevel</td>
<td></td>
</tr>
<tr>
<td>Module</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1VL + 1Ü</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>Produktionsorientierte Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamttmodul</td>
<td>Am Ende des Semesters</td>
</tr>
<tr>
<td>Fachpraktische Übungen und mündliche Prüfung oder Fachpraktische Übungen und Klausur oder Portfolio</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf604 - Business Intelligence I

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Business Intelligence I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf604</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Applied Economics and Data Science (Master) > Data Science
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master of Education (Wirtschaftspädagogik) Informatik (Master of Education) > Akzentsetzungsbereich
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul _ Bereich Wirtschaftsinformatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Zuständige Personen
- Marx Gómez, Jorge (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevereinbarkeit
Keine Teilnahmevereinbarkeit

Kompetenzziele

Ziele des Moduls/Kompetenzen:

Fachkompetenzen
Die Studierenden:
- benennen und erkennen die Aufgaben des Business Intelligence im unternehmerischen Handeln
- analysieren die Vor- und Nachteile der unterschiedlichen Ansätze und Methoden für die Analyse von Daten und werden in die Lage versetzt diese für einfache Fallbeispiele anzuwenden
- erhalten theoretische Kenntnisse über die Datenbeschaffung und -modellierung sowie den dabei anzuwendenden Vorgehensweisen

Methodenkompetenzen
Die Studierenden:
- führen Aufgaben des Business Intelligence durch und erweitern hierbei ihr Verständnis zu den verschiedenen Ansätzen und Methoden
- erlernen anhand der Durchführung der Methoden Vor- und Nachteile der unterschiedlichen Methoden und können diese Methoden anhand des erworbenen Wissen optimiert einsetzen

Sozialkompetenzen
Die Studierenden:
- konstruieren Lösungen zu gegeben Fallstudien in der Gruppe z.B. zur Lösung des Problems der faktentlosen Faktentabelle
- diskutieren die Lösungen auf fachlicher Ebene
- präsentieren die Lösungen der Fallstudien im Rahmen der Übungen

Selbstkompetenzen
- die bereitgestellten Daten und Informationen kritisch prüfen

Modulinhalte
- Gewinnung von Einblicken in die Arbeitsweisen und Ziele des Data
Warehousing
• Kenntnisse über die Durchführung von Data Warehouse Projekten
• Datenmodellierung, Datenbeschaffung und Reporting in Data Warehouses praktische Anwendung des erworbenen Wissens am Beispiel des SAP BusinessInformation Warehouse in den vorlesungsbegleitenden Übungen anhand durchgängiger Fallstudien
• Phasen der Datenmodellierung, Datenbeschaffung und des Reporting im Zusammenhang mit einem plausiblen Szenario

Literaturneupfehlungen
• Marx Gómez, Rautenstrauch, Cissek (2008): Einführung in die Business Intelligence mit SAP NetWeaver 7.0.
• Moss, Atre (2000): Business Intelligence Roadmap, Addison-Wesley, Boston.
• Loshin (2003): Business Intelligence, Kaufmann, Amsterdam.
• Müller, Lenz (2013): Business Intelligence.

Links
www.wi-ol.de

Unterrichtsprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel
Modular

Lehr-/Lernform
1VL + 1Ü

Vorkenntnisse
keine

Prüfung
Prüfungszeiten
Prüfungsform

Gesamtdauer
Am Ende der Vorlesungszeit
Klausur von max. 120 Minuten

Lehrveranstaltungsform
Kommentar
SWS
Angebotsrhythmus
Workload Präsenz

Vorlesung
2
WiSe
28

Übung
2
WiSe
28

Präsenzzeit Modul insgesamt
56 h
inf607 - Business Intelligence II

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Business Intelligence II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf607</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Applied Economics and Data Science (Master) > Data Science
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule Bereich Wirtschaftsinformatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen
- Marx Gómez, Jorge (Prüfungsberechtigt)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmeveranstaltungen
Keine Teilnahmeveranstaltung

Kompetenzziele
Das Modul vermittelt fortgeschrittene Kenntnisse und Aufgaben von Business Intelligence und Data Science in Unternehmen anhand von Big Data und Data Analytics. Die Studierenden erhalten einen Einblick in aktuelle Forschungsfragen und Entwicklungen bei der Beschaffung und Analyse von Daten.

Fachkompetenzen
- benennen und erkennen die Aufgaben von Data Analytics / Data Science im unternehmerischen Handeln
- analysieren die Vor- und Nachteile der unterschiedlichen Ansätze und Methoden für die Analyse von Daten und werden in die Lage versetzt, diese für einfache Fallbeispiele anzuwenden
- erhalten theoretische Kenntnisse über die Datenbeschaffung und -modellierung sowie den dabei anzuwendenden Vorgehensweisen

Methodenkompetenzen
- bearbeiten Data Analytics-Aufgabenstellungen und erweitern hierbei Ihr Verständnis zu den verschiedenen Ansätzen und Methoden
- erlernen anhand der Durchführung der Methoden Vor- und Nachteile dieser und können diese Methoden anhand des erworbenen Wissen optimiert einsetzen

Sozialkompetenzen
- konstruieren Lösungen zu gegebenen Fallstudien in der Gruppe z.B. Erstellung eines Regressionsmodells anhand eines gegebenen Datasets
- diskutieren diese Lösungen auf fachlicher Ebene
- präsentieren die Lösungen der Fallstudien im Rahmen der Übungen

Selbstkompetenzen
- kritisch überprüfen angebotene Informationen

Modulinhalte
Die Studierenden verfügen nach der Veranstaltung über vertiefende Kenntnisse im Bereich Business Intelligence und Data Analytics. Die Studierenden erhalten einen Überblick in aktuelle Forschungsthemen im Bereich Business Intelligence und Data Analytics z.B. in Memory Computing Ansätze, Data Mining und Machine Learning, Big Data Verarbeitung mit verteilten Systemen (z.B. Apache Hadoop / Spark) anhand aktueller Anwendungen und Praxisvorträge. Die Studierenden verfügen über Wissen und erhalten praktische Kenntnisse über Business Intelligence und Data Science Projekte. Die vermittelten Kenntnisse und Fähigkeiten entsprechen den aktuellen Bedürfnissen des Arbeitsmarktes mit dem Fokus Business Intelligence und Data Science. Hierbei werden durch Nähe zur Praxis vertiefte Kenntnisse erworben, die als entscheidender Vorteil bei der späteren...
Arbeitsplatzsuche zu werten sind.

Literaturempfehlungen

- Jürgen Cleve, Uwe Lämmel (2014): "Data mining" (Deutsch)
- Max Bramer (2013): "Principles of data mining" (Englisch)
- Ian Witten, Eibe Frank, Mark Hall (2011): "Data mining : practical machine learning tools and techniques" (Englisch)
- Jure Leskovec, Anand Rajaraman, Jeffrey Ullman (2014): "Mining of massive datasets" (Englisch)

Links

www.wi-ol.de

Unterrichtsprachen

Deutsch, Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

jährlich

Aufnahmekapazität Modul

unbegrenzt

Modullevel

Modulart

Lehr-/Lernform

Nach Ankündigung zu Beginn der Veranstaltung (2 SWS V + 2 SWS Ü oder Blockveranstaltung)

Vorkenntnisse

keine

Prüfung

Prüfungszeiten

Prüfungsform

Gesamtmodul

Am Ende der Veranstaltungszeit

Klausur oder mündliche Prüfung oder Hausarbeit oder Referat oder Portfolio oder fachpraktische Übungen und Klausur oder frachpraktische Übungen und mündliche Prüfung.

Lehrveranstaltungsform

Kommentar

SWS

Angebotsrhythmus

Workload Präsenz

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
inf650 - Transportsysteme

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Transportsysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf650</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule Bereich Wirtschaftsinformatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen
- Sauer, Jürgen (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmeveräussetzungen
Produktionsorientierte Wirtschaftsinformatik

Kompetenzziele

Fachkompetenzen

- benennen die Grundlagen der Planung und Steuerung der betrieblichen Logistik.
- bewerten Transportsysteme im Unternehmenskontext
- benennen Methoden und Ansätze zur informatischen Unterstützung von Transportsystemen und ordnen diese ein
- charakterisieren Software zur Planung komplexer logistischer Abläufe

Methodenkompetenzen

- bilden die Fragestellungen und Konzepte von Verkehrssysteme ab
- simulieren Transport und Verkehrssystemen mit geeigneten Methoden

Sozialkompetenzen

- Bearbeiten Fragestellungen in Gruppen
- Diskutieren die Ergebnisse sachlich angemessen

Selbstkompetenzen

- erkennen die Grenzen Ihrer Belastbarkeit in einem Projekt mit Modellierung und Implementierungsanteil
- reflektieren die Vermittlung ihrer Ergebnisse

Inhalte des Moduls:

- Verkehrs- und Logistikkonzepte
- Betriebliche Datenerfassung in der Logistik
- Planungs- und Simulationssoftware für komplexe Logistik- und Verkehrsprozesse
- Energie- und Ressourceneffiziente Transportsysteme
- Ressourcenorientierte Transportkostenrechnung (z.B. nach CO2, Lärmbelastung)
- Planungsmodele für Verkehrsanlagen

Literaturnachweise

- Verkehrsdynamik und -simulation: Daten, Modelle und Anwendungen

178 / 213
<table>
<thead>
<tr>
<th>Links</th>
<th>http://www.wi-ol.de</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unterrichtsprachen</td>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Hinweise</td>
<td>Dieses Modul ist im Rahmen der Projekte FiF und FoL konzipiert worden</td>
</tr>
<tr>
<td>Modullevel</td>
<td></td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1VL + 1Ü</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>Produktionsorientierte Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td></td>
</tr>
<tr>
<td>Ende der Vorlesungszeit</td>
<td>Fachpraktische Übungen und Klausur</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td></td>
</tr>
<tr>
<td>Kommentar</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenz</td>
<td></td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2</td>
</tr>
<tr>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
</tr>
<tr>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
</tbody>
</table>
Inf657 - Product Engineering

Modulbezeichnung: Product Engineering
Modulkürzel: inf657
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul
- Bereich Wirtschaftsinformatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Zuständige Personen
- Sauer, Jürgen (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Keine Teilnahmeverpflichtungen

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- erlernen und erproben den Umgang mit virtuellen und physikalischen Produkt Prototypen
- erlernen und erproben das konstruieren und validieren von virtuellen Produkt Prototypen mit Hilfe von CAD Programmen
- erlernen grundlegende Entwicklungsverfahren und Prinzipien verschiedener Fachrichtungen wie Maschinenbau, Mikroelektronik, Regelungstechnik und Softwaretechnik, sowie die Fähigkeit diese in einem Entwicklungsprozess zu verknüpfen

Methodenkompetenzen
Die Studierenden:
- erlernen und erproben Methoden des Projektmangements
- erlernen und erkennen die Zusammenhänge zwischen den Entwicklungsmethoden verschiedener Fachrichtungen, wie Maschinenbau, Mikroelektronik, Regelungstechnik und Softwaretechnik
- entwickeln eigene Produktdenken anhand von kreativitätstechniken
- planen und organisieren eigenständig die Produkterstellung mit Hilfe von Projektmanagement techniken
- erlernen das systematische Verfeinern der eigenen Produktdenken mittels SysML
- entwerfen und überprüfen die entwickelten Produkte mit Hilfe von aktuellen CAD Programmen

Sozialkompetenzen
Die Studierenden:
- vermitteln die Struktur und Wirkweise eines eigenen Produktes an andere
- arbeiten in kleinen Teams, um ein eigenes Produkt zu entwickeln
- präsentieren ihre Lösungssentzen vor der Gruppe
- integrieren fachliche und sachliche Kritik in ihre Lösungssentzen
- unterstützen andere Gruppen durch fachliche und sachliche Kritiken

Selbstkompetenzen
Die Studierenden:
- erkennen die Grenzen ihrer Belastbarkeit bei der Einarbeitung und der Durchführung eines Projektes in einer zunächst unbekannten Anwendungsdomain (z.B. Maritimer Anlagenbau)

Literaturempfehlungen

- Ehrlenspiel (2003): Integrierte Produktentwicklung

Links

www.wi-ol.de

Unterrichtssprachen

Deutsch, Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

jährlich

Aufnahmekapazität Modul

unbegrenzt

Hinweise

Das Vorlesungsmaterial enthält englische Passagen

Modullevel

Modulart

1VL + 1Ü

Vorkenntnisse

keine

Prüfung

Zum Ende der Veranstaltungszeit

Klausur oder mündliche Prüfung oder Hausarbeit oder Referat oder Portfolio

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
inf663 - Application Area Maritime

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Application Area Maritime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf663</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik

Zuständige Personen
- Hahn, Axel (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Keine Teilnehmervoraussetzungen

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- verstehen letzteres als einen wesentlichen Beitrag zur Organisation der Navigation als hierarchisches Teamkonzept eines sicherheitskritischen soziotechnischen Systems.
- sind sich der besonderen technischen und physikalischen Herausforderungen der Navigation bewusst.

Methodenkompetenzen
Die Studierenden:
- können Methoden der Systemtechnik anwenden, um maritime Systeme zu beschreiben, zu analysieren und zu entwerfen.
- durch die Betrachtung des maritimen Verkehrs gewinnen sie übertragbares Wissen über andere cyber-physikalische Systeme.
- lernen, wie Systeme mit rauen Umweltbedingungen resilient umgehen können.

Sozialkompetenzen
Die Studierenden:
- erwerben Verständnis für diese Transportsysteme und ihre technischen und systemischen Herausforderungen.
- kennen nach Abschluss dieses Moduls die Konzepte des Seeverkehrs und seine Rolle in internationalen Transportnetzwerken.

Selbstkompetenzen
Die Studierenden:
- umfassen insbesondere ein Verständnis des Seeverkehrs als System mit hohen Anforderungen an Zuverlässigkeit, Verlässlichkeit und Sicherheit in Kombination mit Effizienz, um in einer globalen Wirtschaft wettbewerbsfähig zu sein.

Modulinhalte
Seminar: Abdeckung der Aspekte des Seeverkehrs

Literaturempfehlungen
- Bernhard Berking, Werner Huth (Herausgeber), Handbuch Nautik 1: Navigatorische Schiffsführung, Seehafen Verlag, 2010

Links
<table>
<thead>
<tr>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Modullevel

<table>
<thead>
<tr>
<th>Modulart</th>
<th>Lehr-/Lernform</th>
<th>Vorkenntnisse</th>
<th>Prüfung</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1VL + 1S</td>
<td>keine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vorkenntnisse

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Am Ende der Vorlesungszeit</td>
<td>Mündliche Prüfung und Dokumentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

<table>
<thead>
<tr>
<th></th>
<th>56 h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

183 / 213
inf900 - Projektgruppe

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Projektgruppe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf900</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>24.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>720 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Kernmodule
- Master Wirtschaftsinformatik (Master) > Kernmodule

Zuständige Personen
- Peter, Andreas (Modulverantwortung)
- Marx Gómez, Jorge (Modulverantwortung)
- Boll-Westermann, Susanne (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- Programmieraufgaben
- Softwaretechnik
- Soft Skills

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- erkennen und beurteilen die in ihrem Spezialgebiet anzuwendenden Techniken und Methoden und deren Grenzen
- entwerfen Lösungen für komplexe, möglicherweise ungenaue definierter oder ungewöhnliche Aufgaben aus dem Bereich der Informatik und bewerten derartige Vorschläge nach dem Stand der Technik
- identifizieren, strukturieren und lösen Probleme auch in neuen oder erst im Entstehen begriffene Bereichen ihrer Disziplin
- wenden dem Stand der Wissenschaft entsprechende und innovative Methoden bei der Untersuchung und Lösung von Problemen an, gegebenenfalls unter Rückgriff auf andere Disziplinen
- setzen Wissen verschiedener Disziplinen zueinander in Beziehung und wenden diese Synergien in komplexen Situationen an
- entwickeln komplexe informative Systeme, Prozesse und Datenmodelle
- erkennen die Grenzen des heutigen Wissenstands und der heutigen Technik und tragen zur weiteren wissenschaftlichen und technologischen Entwicklung der Informatik bei
- diskutieren aktuelle Entwicklungen der Informatik und beurteilen deren Bedeutung

Methodenkompetenzen
Die Studierenden:
- finden und entwerfen einen oder mehrerer Lösungszugänge
- evaluieren Werkzeuge, Technologien und Methoden und wenden diese differenziert an
- untersuchen Probleme anhand technischer und wissenschaftlicher Literatur verfasst nach wissenschaftlichen Gesichtspunkten einen Artikel und präsentieren ihre Ergebnisse in einem wissenschaftlichen Vortrag
- planen zeitliche Abläufe und andere Ressourcen
- wenden Techniken des Projektmanagements an
- entwickeln kreativ neue und originäre Vorgehensweisen und Methoden

Sozialkompetenzen
Die Studierenden:
- integrieren Kritik in ihr eigenes Handeln
- respektieren die im Team erarbeiteten Entscheidungen
- kommunizieren überzeugend mündlich und schriftlich mit Anwendern und Fachleuten
- identifizieren Teilaufgaben und übernehmen Verantwortung für diese

Selbstkompetenzen
Die Studierenden:
übernehmen Leitungsaufgaben im Team
verfolgen die weitere Entwicklung in der Informatik allgemein und in ihrem Spezialgebiet kritisch
führen innovative Tätigkeiten in ihrem Berufsfeld erfolgreich und eigenverantwortlich aus
erkennen die Grenzen ihrer Kompetenz und erweitern diese zielgerichtet
reflektieren ihr Selbstbild und Handeln unter fachlichen, methodischen und sozialen Gesichtspunkten
entwickeln und reflektieren eigene Theorien zu selbständig aufgestellten Hypothesen
arbeiten in ihrem Berufsfeld eigenständig

Modulinhalte	Gemeinsame Bearbeitung einer größeren Aufgabe aus dem Bereich der Informatik, deren Lösungen in der Regel die (Weiter-)Entwicklung eines entsprechenden Hard- oder Softwaresystems beinhaltet.
Literaturempfehlungen	Wird entsprechend des konkreten Themas spezifiziert
Links	https://www.uni-oldenburg.de/informatik/studium-lehre/infos-zum-studium/projektgruppen-im-masterstudium/
Unterrichtsprachen	Deutsch, Englisch
Dauer in Semestern	2 Semester
Angebotsrhythmus Modul	halbjährlich
Aufnahmekapazität Modul	unbegrenzt
Hinweise	Dieses Modul ist im Rahmen der Projekte FliF und FoL konzipiert worden
Modullevel	
Modulart	
Lehr-/Lernform	PG
Vorkenntnisse	- Programmierkurs
- Softwaretechnik
- Soft Skills |
| Prüfung | Prüfungszeiten
Prüfungsform |
| Gesamtmodul | Im Stud.IP nach Bekanntgabe der einzelnen Gruppen und Themen
Projekt |
| Lehrveranstaltungsform | Projektgruppe |
| SWS | 8 |
| Angebotsrhythmus | SoSe und WiSe |
| Workload Präsenzzeit | 112 h |
inf903 - Forschungsprojekt I

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Forschungsprojekt I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf903</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td>Master Engineering of Socio-Technical Systems (Master) > Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>Master Informatik (Master) > Kernmodule</td>
<td></td>
</tr>
<tr>
<td>Master Wirtschaftsinformatik (Master) > Kernmodule</td>
<td></td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Marx Gómez, Jorge (Modulverantwortung)</td>
<td></td>
</tr>
<tr>
<td>Peter, Andreas (Modulverantwortung)</td>
<td></td>
</tr>
<tr>
<td>Boll-Westermann, Susanne (Modulverantwortung)</td>
<td></td>
</tr>
<tr>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
<td></td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Keine Teilnehmervoraussetzungen</td>
</tr>
</tbody>
</table>

Kompetenzziele

Das Modul übt wissenschaftliche Kompetenzen in Vorbereitung auf die Masterarbeit. Es ist auch beabsichtigt, die Projektgruppe durch die beiden Module "Forschungsprojekt" zu ersetzen, um die Studierbarkeit zu gewährleisten und den Studierenden die Durchführung von Forschungsprojekten an ausländischen Universitäten zu ermöglichen. Zusätzlich soll der Studierende in die Forschungsaktivitäten des Betreuers eingebunden werden, um nach Abschluss des Programms selbst eine mögliche Doktorarbeit vorzubereiten.

Fachkompetenz
Die Studierenden
- erweitern ihre Kompetenzen in den erforderlichen Technologien des Forschungsbereichs.

Methodenkompetenz
Die Studierenden
- erweitern ihre Kompetenzen in wissenschaftlichen Methoden und Werkzeugen in Bezug auf das Forschungsgebiet.

Sozialkompetenz
Die Studierenden
- werden in die Arbeitsgruppe des Betreuers der Arbeit eingebunden und müssen ihre Ergebnisse mindestens innerhalb der Arbeitsgruppe präsentieren und diskutieren.

Selbstkompetenz
Die Studierenden
- Erkennen ihre Fähigkeiten und erweitern sie gezielt
- Reflektieren ihre Selbstwahrnehmung und Handlungen in Bezug auf professionelle, methodische und soziale Aspekte
- Entwickeln und reflektieren selbstentwickelte Hypothesen zu Theorien unabhängig voneinander
- Arbeiten in ihrem Bereich unabhängig

Modulinhalte
Definition einer Forschungsfrage, Identifizierung des Stands der Technik, Entwicklung eines Forschungsplans, Durchführung von Forschungsaufgaben, wissenschaftliches Schreiben, Präsentation der Ergebnisse.

Literaturempfehlungen
Empfehlungen werden in Abhängigkeit vom Thema durch den Betreuer der Arbeit ausgesprochen.

Links
- Englisch, Deutsch

Unterrichtssprachen
Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jedes Semester

Aufnahmekapazität Modul
unbegrenzt

Modullevel

Lehr-/Lernform
P

Vorkenntnisse
keine
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td></td>
<td>Projekt</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Projekt</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe und WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>84 h</td>
<td></td>
</tr>
</tbody>
</table>
mar364 - Zeitreihenanalyse

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Zeitreihenanalyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mar364</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Marine Sensorik (Master) > Mastermodule
- Master Marine Umweltwissenschaften (Master) > Mastermodule
- Master Umweltmodellierung (Master) > Mastermodule

Zuständige Personen
- Freund, Jan (Modulverantwortung)

Teilnahmevoraussetzungen
- Keine

Kompetenzziele

Modulinhalte
Charakteristika eines stochastischen Prozesses und deren Schätzer, Komponentenmodell, Trendbereinigung, spektrale Methoden, Filterung, lineare Prozesse, und nichtlineare Prozesse, Einbettungsverfahren, Kenngrößen der nichtlinearen Zeitreihenanalyse, symbolische Dynamik

Literaturempfehlungen
- R. Schlittgen: Angewandte Zeitreihenanalyse mit R. Oldenbourg;
- R. Schlittgen & B. Streitberg: Zeitreihenanalyse. Oldenbourg;

Links
- Unterrichtsprachen: Deutsch, Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: jährlich
- Aufnahmekapazität Modul: unbegrenzt
- Modullevel: MM (Mastermodul / Master module)
- Modulart: Wahlpflicht / Elective
- Lehr-/Lernform: Wahlpflichtbereich Mathematische Modellierung
- VL Zeitreihenanalyse
- Ü Zeitreihenanalyse
- Vorkenntnisse: Nützlich: Erfahrung im Umgang mit R oder Matlab.
- Prüfung: Prüfungszeiten
- Prüfungsform: Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung
Prüfung | Prüfungszeiten | Prüfungsform
---|---|---
oder Portfolio nach Maßgabe der Dozentin oder des Dozenten

1 benotete Prüfungsleistung.
Klausur oder fachpraktische Übung (testierte Übungsaufgaben) oder mündliche Prüfung

Aktive Teilnahme

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Präsenzzzeit Modul insgesamt 56 h
inf203 - Embedded Systems I

Modulbezeichnung: Embedded Systems I
Modulkürzel: inf203
Kreditpunkte: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls
- Fach-Bachelor Informatik (Bachelor) > Akzentsetzungsbereich - Wahlbereich Informatik
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master of Education (Gymnasium) Informatik (Master of Education) > Wahlpflichtmodule (Technische Informatik)
- Zwei-Fächer-Bachelor Informatik (Bachelor) > Wahlpflicht Technische Informatik (30 KP)

Zuständige Personen
- Fränzle, Martin Georg (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- Grundlagen der technischen Informatik
- Technische Informatik

Kompetenzziele
Das Modul leistet eine Einführung in den Entwurf digitaler eingebetteter Systeme.

Fachkompetenzen
Die Studierenden:
- benennen funktionale und nichtfunktionale Anforderungen zur Spezifikation eingebetteter System
- diskutieren den Entwurfsraum und der damit verbundenen Entwurfsmethodik eingebetteter Systeme
- benennen die grundlegenden Verfahren der Steuerungs- und Regelungstechnik
- charakterisieren die grundlegenden Algorithmen der digitalen Signalverarbeitung

Methodenkompetenzen
- Die Studierenden:
- konstruieren mit Modellierungswerkzeugen eingebettete Systeme und Regelungssysteme
- implementieren ein eingebettetes Hardware-/Software-System
- analysieren verschiedene Spezifikationssprachen anhand diverser Eigenschaften

Sozialkompetenzen
Die Studierenden:
- konstruieren Lösungen zu gegebenen Problemen in Gruppen
- präsentieren Lösungen von informatischen Problemen vor Gruppen
- organisierten sich zu einer Gruppe zur Lösung eines größeren Problems mit Hilfe gängiger Projektmanagementmethoden

Selbstkompetenzen
Die Studierenden:
- erkennen die Grenzen ihrer Belastbarkeit bei der Implementierung von Systemen, bzw. Teilsystemen dieser
- lösen die Übungsaufgaben eigenverantwortlich

Modulinhalte

Literaturempfehlungen

- Artikelserie zum MPEG-2-Standard 3/94 10/94 und das Tutorial "Digitale Bildcodierung" 1/92 1/93, beides in "Fernseh- und Kinotechnik" (BIS: Z elt ZA 1536)

Foliensammlung sowie:

- Sekundärliteratur:
 - Artikelserie zum MPEG-2-Standard 3/94 10/94 und das Tutorial "Digitale Bildcodierung" 1/92 1/93, beides in "Fernseh- und Kinotechnik" (BIS: Z elt ZA 1536)

Links

Unterrichtssprache Englisch

Dauer in Semestern 1 Semester

Angebotsrhythmus Modul jährlich

Aufnahmekapazität Modul unbegrenzt

Hinweise

Das Modul ist für die Studierenden der Vertiefungsrichtung "Eingebettete Systeme und Mikrorobotik" als Pflichtmodul vorgesehen.

Verknüpft mit den Modulen:

"Low Energy System Design" möglich.

<table>
<thead>
<tr>
<th>Modullevel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1VL + 1Ü</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>Grundlagen der technischen Informatik</td>
</tr>
<tr>
<td></td>
<td>Technische Informatik</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td>Prüfungsform</td>
</tr>
<tr>
<td>Ende des Semesters</td>
<td>Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>3</td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
<tr>
<td>SWS</td>
<td>WiSe</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload</td>
<td>42</td>
</tr>
<tr>
<td>Präsenz</td>
<td>14</td>
</tr>
<tr>
<td>Angebotshorizont</td>
<td>42</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
</tbody>
</table>
Modulbezeichnung: Embedded Systems II

Modulkürzel: inf204

Kreditpunkte: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls:
- Fach-Bachelor Informatik (Bachelor) > Akzentsetzungsbereich - Wahlbereich Informatik
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master of Education (Gymnasium) Informatik (Master of Education) > Wahlpflichtmodule (Technische Informatik)
- Zwei-Fächer-Bachelor Informatik (Bachelor) > Wahlpflicht Technische Informatik (30 KP)

Zuständige Personen:
- Fränzle, Martin Georg (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmeveraussetzungen:
- Keine Teilnahmeveraussetzungen

Kompetenzziele:

Fachkompetenzen:
Die Studierenden:
- benennen der Architekturen eingebetteter Systeme
- benennen spezifische Hardwarekomponenten und -architekturentscheidungen, insbes. Prozessoren
- charakterisieren den Entwurfsraum und die damit verbundene Entwurfsmethodik eingebetteter Systeme
- dekomponieren Steuerungs- oder Regelungsaufgaben in Teilkomponenten und setzen diese auf verschiedenen Ebenen des Entwurfsraums um
- partitionieren und bauen gemischte Software-/Hardwarelösungen auf
- beschreiben Architekturprinzipien zur Erzielung von Fehlertoleranz
- beschreiben Analysetechniken zur Bewertung von Echtzeit- und Sicherheitsanforderungen
- charakterisieren die Formalien der Hardwaresynthese

Methodenkompetenzen:
Die Studierenden:
- schätzen die Konsequenzen von Entwurfsentscheidungen bzgl. Komponentenallokation und -design in Bezug auf Energieverbrauch, Performanz und Zuverlässigkeit ein
- implementieren ein eingebettetes Hardware-/Software System anhand einer gegebenen Spezifikation
- modellieren Hardware mit einer Hardware-Beschreibungs-Sprache
- analysieren Hardware-/Software Systeme anhand von event basierter Simulation

Sozialkompetenzen:
Die Studierenden:
- konstruieren Lösungen zu gegebenen Problemen in Gruppen
- präsentieren Lösungen von Informatischen Problemen vor Gruppen
- organisieren sich zu einer Gruppe, zur Lösung eines größeren Problems, mithilfe von Projektmanagementmethoden

Selbstkompetenzen:
Die Studierenden:
- erkennen die Grenzen ihrer Belastbarkeit bei der Implementierung von Systemen, bzw. Teilaspekten dieser
- beschäftigen sich eigenverantwortlich mit den Übungsaufgaben

Modulinhalte:

Literaturrempfehlungen

Gute Sekundärliteratur:

Links

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Das Modul ist für die Studierenden der Vertiefungsrichtung "Eingebettete Systeme und Mikrorobotik" als Pflicht-Modul vorgesehen.

Modullevel

Modulart
1VL + 1Ü

Vorkenntnisse
keine

Prüfung
Klausur oder mündliche Prüfung

Gesamtmodul

Kommentar
SWS
Lehrveranstaltungsform
Angebotsrhythmus
Workload Präsenz
Vorlesung
3
SoSe
42
Übung
1
SoSe
14

Präsenzzeit Modul insgesamt
56 h
inf339 - Industry 4.0: Digitalization in Industrial Manufacturing

Modulbezeichnung	Industry 4.0: Digitalization in Industrial Manufacturing
Modulkürzel | inf339
Kreditpunkte | 6.0 KP
Workload | 180 h

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Informatik (Master) > Technische Informatik

Zuständige Personen
- Fränzle, Martin Georg (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Keine Teilnehmervoraussetzungen

Kompetenzziele

Fachkompetenzen
Die Studierenden
- erkennen grundlegende Zusammenhänge der Digitalisierung der industriellen Produktion
- erlangen Wissen über Schlüsselkompetenzen im Rahmen der Digitalisierung der industriellen Produktion
- erarbeiten praktisches Wissen über spezielle Themenbereiche in der Digitalisierung der industriellen Produktion
- stellen konkrete Ansätze zur Diskussion

Methodenkompetenzen
Die Studierenden
- erfassen benötigte Informationen und analysieren diese
- bereiten die erfassten Informationen zielgruppengerecht auf
- bilden ein Verständnis der Digitalisierung der industriellen Produktion

Sozialkompetenzen
Die Studierenden:
- präsentieren und diskutieren die eigenen Ausarbeitungen auf fachlicher Ebene

Selbstkompetenzen
Die Studierenden:
- versteht analysierend ihren eigenen Kenntnisstand
- erlernen das Aufbereiten und Vorstellen einer speziellen Thematik

Modulinhalte
Das Modul vermittelt grundlegendes Wissen zur Digitalisierung der industriellen Produktion (Industrie 4.0). Neben einem Überblick über wirtschaftliche und technische Aspekte und Möglichkeiten der Digitalisierung der Produktion liegt der Schwerpunkt des Moduls auf Technologien zur Datenerfassung, Kommunikation und Steuerung in Produktionsanlagen. Vernetzte Werkzeugmaschine, Produktionsplanung und –steuerung, Organisation, Qualität und IT-Systeme für Planung und Betrieb, Gentelligente Werkstücke, Intelligente Werkzeuge, Transfersysteme, Montage 4.0, Cyber-
Security, Wandelbare modulare Automatisierungssysteme, Strategie zur Transformation der Produktion, Geschäftsmodelle

Literaturempfehlungen

- Handbuch Industrie 4.0 – Geschäftsmodelle, Prozesse, Technik", Gunther Reinhart, 2017
- Handbuch Industrie 4.0 Bd.1 – Produktion", Birgit Vogel-Heuser, Thomas Bauernhansl, Miachel ten Hompel, 2017
- Handbuch Industrie 4.0 Bd.2 – Automatisierung", Birgit Vogel-Heuser, Thomas Bauernhansl, Miachel ten Hompel, 2017
- Handbuch Industrie 4.0 Bd.3 – Logistik", Birgit Vogel-Heuser, Thomas Bauernhansl, Miachel ten Hompel, 2017
- Handbuch Industrie 4.0 Bd.4 – Allgemeine Grundlagen", Birgit Vogel-Heuser, Thomas Bauernhansl, Miachel ten Hompel, 2017

Links

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- jedes Wintersemester

Aufnahmekapazität Modul
- unbegrenzt

Modullevel

Modulart

Lehr-/Lernform
- 1VL + 1S

Vorkenntnisse
- keine

Prüfung

Prüfungszeiten

Prüfungsform

Gesamtmodul
- Am Ende der Vorlesungszeiten
- Mündliche Prüfung

Lehrveranstaltungsform

Kommentar

SWS

Angebotsrhythmus

Workload Präsenz

Vorlesung
- 2
- SoSe oder WiSe
- 28

Seminar
- 2
- SoSe oder WiSe
- 28

Präsenzzeit Modul insgesamt
- 56 h
inf340 - Uncertainty Modeling for Control in Digitalised Energy Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Uncertainty Modeling for Control in Digitalised Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf340</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Digitalised Energy Systems (Master) > Digitalised Energy System Design and Assessment</td>
</tr>
<tr>
<td></td>
<td>• Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction</td>
</tr>
<tr>
<td></td>
<td>• Master Engineering of Socio-Technical Systems (Master) > Systems Engineering</td>
</tr>
<tr>
<td></td>
<td>• Master Informatik (Master) > Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>• Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>• Rauh, Andreas (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>• Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/or zeitdiskreter Systeme bzw. der robusten Regelung</td>
</tr>
</tbody>
</table>

Kompetenzziele

Die Studierenden identifizieren die grundlegenden Konzepte der Modellierung von Unsicherheiten in Regelungssystemen sowie problemangepasste Methoden für die Berücksichtigung von Unsicherheiten während Simulation und Beobachtersynthese.

Fachkompetenzen

Die Studierenden:

• identifizieren die grundlegenden Konzepte der Modellierung von Unsicherheiten in Regelungssystemen
• charakterisieren problemangepasste Lösungsmethoden für Systeme mit stochastischen und mengenbasierten Unsicherheiten
• erkennen Ansätze für eine softwareschließlich Umsetzung in Simulation, Regelung und Zustandsschätzung

Methodenkompetenz

Die Studierenden:

• analysieren Probleme der regelungssorientierten Unsicherheitsmodellierung dynamischer Systeme
• analysieren grundlegende Lösungsansätze auf theoretischer Basis
• transferieren sowie generalisieren diese eigenständig auf neue forschungsnahe Anwendungsszenarien.

Sozialkompetenz

Die Studierenden:

• erarbeiten in einem vorlesungsbegleitenden Projekt Lösungsideen für reale regelungstechnische Aufgaben in kleinen Gruppen
• vermitteln die von ihnen erzielten Ergebnisse in kurzen Präsentationen

Selbstkompetenz

Die Studierenden:

• reflektieren kritisch die von ihnen in Projektform erarbeiteten Ergebnisse
• erkennen Grenzen unterschiedlicher Ansätze der regelungssorientierten Modellierung von Unsicherheiten.

Modulinhalte

1. Mathematische Modellierung von Unsicherheiten in linearen und nichtlinearen dynamischen Systemmodellen
2. Stochastische Modellierungsansätze
 • Wahrscheinlichkeitsverteilungen
 • Bayes'sche Zustandsschätzung für zeitdiskrete Systeme (linear/nichtlinear) und zeitkontinuierliche Systeme (linear)
 • Lineare Schätzverfahren in erweiterten Zustandsräumen (Carleman-Linearisierung für spezielle Systemklassen)
 • Monte-Carlo-Methoden
3. Schätzung von Zuständen, Parametern und Simulation unsicherer Prozesse
Ausblick: Markow-Modelle
Ausblick: Bayes'sche Netze
4. Mengenbasierte Ansätze
 Mengenbasierte Algorithmen: Forward-Backward-Contractor und Bisektionsverfahren
 Intervalmethoden zur verifizierten Lösung gewöhnlicher Differentialgleichungssysteme sowie zur Stabilitätsanalyse unsicherer Systeme
 Schätzung von Zuständen und Parametern sowie Simulation unsicherer Prozesse
5. Ausblick: Syntheseverfahren für Regelungen und Beobachter unter expliziter Beschreibung von Unsicherheiten

Literaturempfehlungen
- Rauh, A. Folien/ Skript zur Vorlesung „Uncertainty Modelling for Control in DES“.

Links
Unterrichtssprache: Englisch
Dauer in Semestern: 1 Semester
Angebotsrhythmus Modul: jedes Wintersemester
Aufnahmekapazität Modul: unbegrenzt
Modullevel
Lehr-/Lernform: 1VL + 1Ü
Vorkenntnisse: Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung
Prüfung: Gesamtmodul
Prüfungszeiten: Am Ende der Veranstaltungszeit
Prüfungsform: Portfolio oder Klausur

Lehrveranstaltungsform
Vorlesung	2	WiSe	2
Übung	1	WiSe	1
Projekt	1	WiSe	1

Präsenzzeit Modul insgesamt: 4 h
inf341 - Robust Control and State Estimation in Digitalised Energy Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Robust Control and State Estimation in Digitalised Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf341</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Technische Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Zuständige Personen
- Rauh, Andreas (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmeverursachungen
Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung

Kompetenzziele
Die Studierenden identifizieren die grundlegenden Konzepte der robusten Regelung und Zustandsschätzung sowie problemangepasste Lösungsmethoden und deren softwarethinformatische Umsetzung.

Fachkompetenz
Die Studierenden:
- identifizieren die grundlegenden Konzepte der robusten Regelung und Zustandsschätzung
- charakterisieren problemangepasste Lösungsmethoden für unterschiedliche Klassen von Unsicherheiten
- erkennen Ansätze für eine verlässliche softwarethinformatische Umsetzung.

Methodenkompetenz
Die Studierenden:
- analysieren Probleme der robusten Regelung und Zustandsschätzung dynamischer Systeme
- analysieren grundlegende Lösungsansätze auf theoritischer Basis
- transferieren sowie generalisieren diese eigenständig auf neue Anwendungsszenarien

Sozialkompetenz
Die Studierenden:
- erarbeiten in einem vorlesungsbegleitenden Projekt Lösungsideen für reale regelungstechnische Aufgaben in kleinen Gruppen
- vermitteln die von ihnen erzielten Ergebnisse in kurzen Präsentationen.

Selbstkompetenz
Die Studierenden:
- reflektieren kritisch die von ihnen in Projektform erarbeiteten Ergebnisse
- erkennen Grenzen unterschiedlicher Ansätze der robusten Regelung und Zustandsschätzung.

Modulinhalte
1. Robustheit linearer Systeme/ Systemanalyse
 - Grenzüberschreitungssatz von Frazer und Duncan
 - Mikhailow-Kriterium
 - Khartyonow-Kriterium
 - Frequenzkenlinienverfahren
2. Ausgewählte Regelungsentwurfsverfahren/ Regelungssynthese
 - Parameterraumverfahren von Ackermann und Kaesbauer
 - Eigenwert/- Eigenvorberechnungsverfahren
 - H-unendlich-Regelung
 - Frequenzkenlinienverfahren (Sensitivitätsfunktionen im Frequenzbereich)
3. Robuste LMI-basierte Regelungssverfahren
 - Ljapunow-Stabilität
 - Polytopbeschreibung von Unsicherheiten
Optimalität von Lösungen
4. Dualität von Regler- und Beobachtersynthese
 - Robuste Zustandsschätzung
 - Sliding-Mode Beobachter
5. Intervallmethoden: Lösung statischer und dynamischer Probleme
 (Einschließen von Funktionswerten, Branch-and-Bound-Verfahren, Verifikationsmethoden für Differentialgleichungen)
6. Grundlagen: Fehlerdetektion sowie fehlertolerante Regelung

Literaturrempfehlungen

- Osterfat, E. Mono- and Multivariable Control and Estimation, Springer-Verlag, 2011
- Rauh, A. Foliens/ Skript zur Vorlesung „Robuste Regelung und Zustandsschätzung“.
- Weinmann, A. Uncertain Models and Robust Control, Springer-Verlag, 1991

Links

Unrichtsprache Englisch
Dauer in Semestern 1 Semester Semester
Angebotsrhythmus Modul jedes Wintersemester
Aufnahmekapazität Modul unbegrenzt
Modullevel
Modulart
Lehr-/Lernform 1VL + 1S
Vorkenntnisse Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung
Prüfung
Gesamtmodul Klausur: am Ende der Veranstaltungszeit
Portfolio: semesterbegleitend
Portfolio oder Klausur

Lehrveranstaltungsform
Kommentar Portfolio: semesterbegleitend
SWS
Angebotsrhythmus
WiSe
Workload Präsenz

Vorlesung 2 WiSe 28
Seminar 1 WiSe 14

Präsenzzeit Modul insgesamt 42 h
inf5122 - Learning-Based Control in Digitalised Energy Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Learning-Based Control in Digitalised Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf5122</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Digitalised Energy Systems (Master) > Digitalised Energy System Design and Assessment
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik

Zuständige Personen
- Rauh, Andreas (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung

Kompetenzziele

Die Studierenden identifizieren die grundlegenden Konzepte der lernenden Regelung dynamischer Systeme.

Fachkompetenz
Die Studierenden:
- identifizieren die grundlegenden Konzepte der lernenden Regelung dynamischer Systeme
- charakterisieren problemangepasste Lernmethoden
- erkennen softwaretechnische Umsetzungen für ausgewählte Prüfstände.

Methodenkompetenz
Die Studierenden:
- analysieren Probleme der lernenden Regelung
- generalisieren diese eigenständig auf neue forschungsnahe Anwendungsszenarien.

Sozialkompetenz
Die Studierenden:
- erarbeiten in einem vorlesungsbegleitenden Projekt/Praktikum Lösungsидеen für reale regelungstechnische Aufgaben in kleinen Gruppen
- vermitteln die von ihnen erzielten Ergebnisse in kurzen Präsentationen

Selbstkompetenz
Die Studierenden:
- reflektieren kritisch die von ihnen in Projektform erarbeiteten Ergebnisse
- erkennen Grenzen unterschiedlicher Ansätze lernender Regelungen.

Modulinhalte

1. Iterativ-lernende Regelungen
 - Grundlegende 2D-Systemstrukturen
 - Stabilitätskriterien
 - Ausgewählte Optimierungsansätze
2. Datenbasierte Neuronale-Netz- Modellierung vs. physikalisch-orientierte Modelle
 - Statistische Funktionsapproximation
 - NARX-Modelle
3. Entwurf von Reglern mittels Neuronaler Netze
4. Stabilität von Regelungen mittels Neuronaler Netze

Literaturempfehlungen
- Moore, K.L. Iterative Learning Control for Deterministic Systems.
London: Springer-Verlag, 1993
- Jian Xin Xu; Ying Tan. Linear and Nonlinear Iterative Learning Control. Springer-Verlag, 2003
- Rauh, A. Folien/ Skript zur Vorlesung „Learning-Based Control in DES“

Links
Unterrichtssprache Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul jedes Sommersemester
Aufnahmekapazität Modul unbegrenzt
Modullevel
Modulart
Lehr-/Lernform 1VL + 1Ü
Vorkenntnisse Grundkenntnisse der Regelung linearer zeitkontinuierlicher und/oder zeitdiskreter Systeme bzw. der robusten Regelung

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Im Anschluss an die Veranstaltungszeit</td>
<td>Portfolio oder Klausur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
Modulbezeichnung	Computational Intelligence I
Modulkürzel | inf535
Kreditpunkte | 6.0 KP
Workload | 180 h

Verwendbarkeit des Moduls
- Master Applied Economics and Data Science (Master) > Data Science
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Umweltmodellierung (Master) > Mastermodule
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen
- Kramer, Oliver (Modulverantwortung)
- Lehrende, Die im Modul (Prüfungsberechtigt)

Teilnahmeverwaltungsplanung
Grundlagen der Statistik

Kompetenzziele
Nach erfolgreichem Abschluss der Lehrveranstaltung sollen Studierende die Fähigkeit erworben haben, die vorgestellten Methoden sicher in Theorie und Praxis zu beherrschen. Dabei sollen entsprechende Problembewältigungen der Optimierung und Datenanalyse von den Studierenden selbst erkannt, modelliert und die Methoden zielsicher eingesetzt werden.

Fachkompetenzen
Die Studierenden:
- erkennen Optimierungsprobleme
- implementieren einfache Algorithmen der heuristischen Optimierung - diskutieren kritisch Lösungsansätze und Methodenauswahl
- vertiefen bekannte Kenntnisse aus Analysis und linearen Algebra

Methodenkompetenzen
Die Studierenden:
- vertiefen Programmierkenntnisse
- wenden Modellierungsfähigkeiten an
- lernen den Zusammenhang zwischen Problemklasse und Methodenauswahl

Sozialkompetenzen
Die Studierenden:
- implementieren gemeinsam in der Vorlesung vorgestellte Algorithmen
- evaluieren eigene Lösungen und vergleichen diese mit denen Ihrer Kommilitonen

Selbstkompetenzen
Die Studierenden:
- schätzen ihre Fach- und Methodenkompetenz im Vergleich zu Kommilitonen ein.
- erkennen die eigenen Grenzen passen ihr eigenes Vorgehen unter Bezugnahme der Methodenkompetenzen an nötige Anforderungen an

Modulinhalte
Das Gebiet der Computational Intelligence umfasst intelligente und lernfähige Verfahren zur Optimierung und Datenanalyse. Schwerpunkt der Lehrveranstaltung "Computational Intelligence I" sind Methoden der evolutionären Optimierung und heuristischen Algorithmen. In den Übungen werden praktische Aspekte der Implementierung und Anwendung von Verfahren anhand beispielhafter Aufgabenstellungen vorgestellt und vertieft.

Die Inhalte der Vorlesung umfassen im Einzelnen:
- Grundlagen der Optimierung
- genetische Algorithmen und Evolutionsstrategien
- Parametersteuerung und Selbstadaptation
- Läufzeitanalyse
- Schwarmalgorithmen
- restringierte Optimierung
Mehrzieloptimierung
Meta-Modelle

Literaturempfehlungen

- KRAMER, O.: Computational Intelligence. Springer, 2009

Links

Unterrichtsprachen Englisch, Deutsch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul jährlich
Aufnahmekapazität Modul unbegrenzt
Modullevel
Modulart
Lehr-/Lernform 1VL + 1Ü
Vorkenntnisse - Grundlagen der Statistik
Prüfung Prüfungszeiten Prüfungsform
Gesamtmodul Am Ende der Vorlesungszeit Mündliche Prüfung oder Klausur
Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenz
Vorlesung 2 WiSe 28
Übung 2 WiSe 28
Präsenzzeit Modul insgesamt 56 h
inf536 - Computational Intelligence II

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Computational Intelligence II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf536</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Applied Economics and Data Science (Master) > Data Science
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Umweltmodellierung (Master) > Mastermodule
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Zuständige Personen
- Kramer, Oliver (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmeveranerfassungen
nützliche Vorkenntnisse: Lineare Algebra, Stochastik

Kompetenzziele
In der Vorlesung „Convolutional Neural Networks“ lernen die Grundlagen von Convolutional Neural Networks, vom methodischen Verständnis bis zur Implementierung.

Fachkompetenzen
Die Studierenden:
- erlernen die Fachkompetenz im Bereich Deep Learning, die wesentliche Qualifikationen als KI-Experte und Data Scientist darstellen

Methodenkompetenzen
Die Studierenden:
- lernen die genannten Methoden sowie die Implementierung in Python, Numpy und Keras

Sozialkompetenzen
Die Studierenden:
- werden dazu angehalten, in Gruppen die gelehrten Inhalte zu diskutieren und gemeinsam die Programmieraufgaben in den Übungen zu implementieren

Selbstkompetenzen
Die Studierenden:
- werden zur eigenständigen Recherche zu weiterführenden Methoden angeleitet, da sich der Lehrbereich dynamisch ändert

Modulinhalte
Die Studierenden lernen die Grundlagen maschinellen Lernens und insbesondere die Themen vollvernetzte Schichten, Cross-Entropy, Backpropagation, SGD, Momentum, Adam, Batch Normalisierung, Regularisierung, Convolution, Pooling, ResNet, DenseNet und Convolutional SOMs

Literaturrempfehlungen
- Deep Learning von Aaron C. Courville, Ian Goodfellow und Yoshua Bengio

Links
<table>
<thead>
<tr>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jedes Sommersemester</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Modulart

<table>
<thead>
<tr>
<th>Lehr-/Lernform</th>
<th>1VL + 1Ü</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse</td>
<td>nützliche Vorkenntniss: Lineare Algebra, Stochastik</td>
</tr>
</tbody>
</table>

Prüfung

<table>
<thead>
<tr>
<th>Gesamtmodul</th>
<th>Vorlesungsfreie Zeit im Anschluss des Semesters</th>
<th>Klausur, e-Klausur</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
inf5408 - Angewandtes Deep Learning in PyTorch

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Angewandtes Deep Learning in PyTorch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf5408</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | • Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
• Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
• Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
• Master Informatik (Master) > Angewandte Informatik
• Master Umweltmodellierung (Master) > Mastermodule
• Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik |
| Zuständige Personen | • Strodthoff, Nils (Modulverantwortung)
• Lehrenden, Die im Modul (Prüfungsberechtigt) |
| Teilnahmvoraussetzungen | Ein grundlegendes theoretisches Verständnis des maschinellen Lernens und praktische Programmierkenntnisse in Phyton |

Kompetenzziele

Fachkompetenzen
Die Studierenden:
• haben einen Überblick über die Komponenten von Deep Learning Frameworks
• kennen Anwendungsbereiche von Deep Learning Methoden in verschiedenen Datenmodalitäten und gängige Lösungsstrategien und Modellarchitekturen
• können Deep Learning Methoden auf neue Problemstellungen in den jeweiligen Bereichen geeignet adaptieren und selbstständig anwenden

Methodenkompetenzen
Die Studierenden:
• erarbeiten sich selbstständig unter Zuhilfenahme von Präsenzveranstaltungen, bereitgestellten Materialien und Fachliteratur theoretische und praktische Konzepte

Sozialkompetenzen
Die Studierenden:
• können Lösungsansätze für Probleme in diesem Bereich im Plenum präsentieren und in Diskussionen verteidigen

Selbstkompetenzen
Die Studierenden:
• können ihre eigene Fach- und Methodenkompetenz einschätzen
• übernehmen die Verantwortung für ihre Kompetenzentwicklung und ihre Lernfortschritte und reflektieren diese selbstständig
• erarbeiten selbstständig die Lerninhalte und können die Inhalte kritisch reflektieren

Modulinhalte

Dabei werden die wichtigsten aktuellen Modellarchitekturen in diesen Bereichen diskutiert, angefangen von Convolutional Neural Networks über Recurrent Neural Networks bis hin zu Transformer-Modellen. Die Vorlesung wird von Übungsgruppen begleitet in denen die Studenten praktische Erfahrungen in PyTorch und zugleich die nötigen Kenntnisse erwerben sollen,
um aktuelle Deep Learning Verfahren in ihren jeweiligen Anwendungsgebieten zum Einsatz zu bringen.

Literaturempfehlungen

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unterrichtssprache</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
</tr>
</tbody>
</table>

Modullevel

<table>
<thead>
<tr>
<th>Modulart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehr-/Lernform</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
</tr>
</tbody>
</table>

Prüfung

<table>
<thead>
<tr>
<th>Gesamtmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>am Ende der Vorlesungszeit</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>WiSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>WiSe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>0 h</td>
</tr>
</tbody>
</table>
inf5452 - Aktuelle Themen des Vertrauenswürdigen Maschinellen Lernen

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Aktuelle Themen des Vertrauenswürdigen Maschinellen Lernen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf5452</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master Informatik (Master) > Angewandte Informatik
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodul der Informatik

Zuständige Personen
- Strodthoff, Nils (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Grundlagenvorlesung im Bereich Maschinelles Lernen und / oder Deep Learning Vorkenntnisse

Kompetenzziele

Fachkompetenzen
Die Studierenden:
- haben einen exemplarischen Überblick über Herausforderungen und exemplarische, existierende Lösungsansätze in den jeweiligen Problemfeldern und können diese in den breiteren Methodenkontext einordnen.

Methodenkompetenzen
Die Studierenden:
- können sich selbstständig Themen unter Zuhilfenahme von aktueller Forschungsliteratur erarbeiten und kritisch reflektieren.

Sozialkompetenzen
Die Studierenden:
- können Vor- und Nachteile von existierenden Lösungsmöglichkeiten in der Literatur präsentieren und im Plenum kritisch diskutieren.

Selbstkompetenzen
Die Studierenden:

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jedes Wintersemester
<table>
<thead>
<tr>
<th>Aufnahmekapazität Modul</th>
<th>unbegrenzt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modullevel</td>
<td></td>
</tr>
<tr>
<td>Modulart</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform</td>
<td>1S</td>
</tr>
<tr>
<td>Vorkenntnisse</td>
<td>Grundlagenvorlesung im Bereich Maschinelles Lernen und / oder Deep Learning Vorkenntnisse</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>mündl. Prüfung / Portfolio / Referat am Ende der Vorlesungszeit/ Zwischenprüfungen</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
Abschlussmodul

mam - Masterarbeitsmodul

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Masterarbeitsmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mam</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering of Socio-Technical Systems (Master) > Abschlussmodul

Zuständige Personen
- der Informatik, Lehrende (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- keine Teilnehmervoraussetzungen

Kompetenzziele

Das Begleitseminar dient dazu, die Masterarbeit methodisch und inhaltlich zu diskutieren. Im Seminar wird durch den Austausch von Forschungs- und Praxiserfahrungen die Fähigkeit der Studierenden gefördert, ihre Arbeit mit anderen Studierenden und Experten zu diskutieren und zu bewerten. Die Masterarbeit wird durch ein Kolloquium abgeschlossen.

Fachkompetenzen
Die Studierenden:
- erkennen und bewerten angewandte Techniken und Methoden ihres Faches und sind sich ihrer Grenzen bewusst
- entwerfen Lösungen für komplexe, ggf. unscharf definierte oder ungewöhnliche Informatikaufgaben/-probleme und bewerten diese unter Bezugnahme auf den Stand der Informatik und Technik
- identifizieren, strukturieren und lösen Probleme/Aufgaben, auch in neuen oder sich entwickelnden Fachgebieten
- wenden zur Problemlösung aktuelle und innovative Methoden an, setzen Wissen aus verschiedenen Disziplinen in Beziehung und wenden dieses neue Wissen in komplexen Situationen an
- entwickeln komplexe Computersysteme, Verfahren und Datenmodelle
- sind sich der aktuellen Grenzen bewusst und tragen zur Entwicklung der Informatikforschung und -technologie bei
- diskutieren und bewerten aktuelle Entwicklungen in der Informatik

Methodenkompetenzen
Die Studierenden:
- identifizieren und entwickeln eine oder mehrere Lösungen
- bewerten und wenden Werkzeuge, Technologien und Methoden differenziert an
- untersuchen Aufgaben mit Fach- und Forschungsliteratur, verfassen einen wissenschaftlichen Artikel und präsentieren ihre Lösungen wissenschaftlich - Planen Prozesse und Ressourcen
- wenden Projektmanagementtechniken an
- kombinieren neue und originelle Ansätze und Methoden kreativ
- bewerten Probleme/Aufgaben, auch neue oder sich entwickelnde Themenbereiche ihrer Disziplin und wenden Informatikmethoden zur Lösung und Recherche an

Sozialkompetenzen
Die Studierenden:
- kommunizieren überzeugend mit Anwendern und Experten
- treffen begründete Entscheidungen

Selbstkompetenzen
Die Studierenden:
- verfolgen die allgemeine und spezielle Informatikentwicklung kritisch
- setzen innovative berufliche Tätigkeiten effektiv und selbständig um
- erkennen ihre Fähigkeiten und erweitern sie zielgerichtet
- reflektieren ihr Selbstverständnis und Handeln in fachlicher, methodischer und sozialer Hinsicht
- entwickeln und reflektieren selbst entwickelte Hypothesen zu Theorien
Der Inhalt dieses Moduls ist eine eigenständige Themenforschung. Die Forschungsergebnisse werden in einem Masterarbeitskolloquium vorgestellt und diskutiert.

Modulinhalte

Selbständig arbeiten selbständig in ihrem Bereich

Literaturempfehlungen

Links

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul

Aufnahmekapazität Modul
unbegrenzt

Modullevel

Modulart

Lehr-/Lernform
1MA + 1S

Vorkenntnisse
keine

Prüfung
Gesamtmodul

Prüfungsform
Masterarbeit, Präsentation und Diskussion.

Lehrveranstaltungsform
Seminar

SWS
2

Angebotsrhythmus
SoSe und WiSe

Workload Präsenzzeit
28 h