Modulhandbuch

Digitalised Energy Systems - Master's Programme

im Wintersemester 2023/2024

erstellt am 24/09/23
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>inf340</td>
<td>Uncertainty Modeling for Control in Digitalised Energy Systems</td>
<td>4</td>
</tr>
<tr>
<td>inf5120</td>
<td>Digitalised Energy System Co-Simulation</td>
<td>6</td>
</tr>
<tr>
<td>inf5122</td>
<td>Learning-Based Control in Digitalised Energy Systems</td>
<td>8</td>
</tr>
<tr>
<td>inf341</td>
<td>Robust Control and State Estimation in Digitalised Energy Systems</td>
<td>10</td>
</tr>
<tr>
<td>inf5112</td>
<td>Digitalised Energy System Modeling and Control</td>
<td>12</td>
</tr>
<tr>
<td>inf5114</td>
<td>Digitalised Energy System Requirements Engineering</td>
<td>14</td>
</tr>
<tr>
<td>inf5118</td>
<td>Decentralised Nonlinear Model-Based Control in Digitalised Energy Systems</td>
<td>16</td>
</tr>
<tr>
<td>inf516</td>
<td>Distributed Operation in Digitalised Energy Systems</td>
<td>18</td>
</tr>
<tr>
<td>inf579</td>
<td>Special Topics in 'Digitalised Energy Systems' I</td>
<td>20</td>
</tr>
<tr>
<td>inf581</td>
<td>Special Topics in 'Digitalised Energy Systems' II</td>
<td>22</td>
</tr>
<tr>
<td>inf584</td>
<td>Special Topics in 'Energy Informatics' I</td>
<td>24</td>
</tr>
<tr>
<td>inf585</td>
<td>Special Topics in 'Energy Informatics' II</td>
<td>26</td>
</tr>
<tr>
<td>inf5100</td>
<td>Digital Technology on Energy Markets</td>
<td>28</td>
</tr>
<tr>
<td>inf5102</td>
<td>Power System Components, Networks, Operation</td>
<td>30</td>
</tr>
<tr>
<td>inf5124</td>
<td>Research Project Digitalised Energy Systems</td>
<td>32</td>
</tr>
<tr>
<td>inf5104</td>
<td>Fundamentals of Game Theory in Energy Systems</td>
<td>34</td>
</tr>
<tr>
<td>inf5106</td>
<td>Optimal and Model-Predictive Control</td>
<td>36</td>
</tr>
<tr>
<td>inf5110</td>
<td>Practical Course (Energy Informatics)</td>
<td>38</td>
</tr>
<tr>
<td>inf514</td>
<td>Simulation-based Smart Grid Engineering and Assessment</td>
<td>40</td>
</tr>
<tr>
<td>inf5126</td>
<td>Digitalised Energy System Cyber-Resilience</td>
<td>42</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>inf5128</td>
<td>AI in Energy Systems</td>
<td>44</td>
</tr>
<tr>
<td>inf5130</td>
<td>Socio-technical Energy Systems</td>
<td>46</td>
</tr>
<tr>
<td>inf586</td>
<td>Current Topics in 'Energy Informatics' I</td>
<td>48</td>
</tr>
<tr>
<td>inf587</td>
<td>Current Topics in 'Energy Informatics' II</td>
<td>50</td>
</tr>
<tr>
<td>inf591</td>
<td>Current Topics in 'Digitalized Energy systems' II</td>
<td>52</td>
</tr>
<tr>
<td>mam</td>
<td>Master Thesis Module Digitalised Energy Systems</td>
<td>54</td>
</tr>
</tbody>
</table>
Modules for Digitalised Energy Systems

Digitalised Energy System Design and Assessment

inf340 - Uncertainty Modeling for Control in Digitalised Energy Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Uncertainty Modeling for Control in Digitalised Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf340</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's programme Digitalised Energy Systems (Master) > Digitalised Energy System Design and Assessment
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
- Rauh, Andreas (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
Basic knowledge of the control of linear time-continuous and/or time-discrete systems and/or robust control

Skills to be acquired in this module
The students identify fundamentals of uncertainty modelling in control systems as well as problem-specific methods for the consideration of uncertainty during simulation and observer synthesis.

Professional competences
The students:
- identify fundamentals of uncertainty modeling in control systems
- characterize problem-specific solution techniques for systems with stochastic and set-based uncertainty
- are aware of software implementations in simulation, control, and state estimation.

Methological competences
The students:
- students identify fundamentals of uncertainty modelling in control systems
- characterize problem-specific solution techniques for systems with stochastic and set-based uncertainty
- are aware of software implementations in simulation, control, and state estimation.

Social competences
The students:
- analyse problems of control-oriented uncertainty modelling
- analyse fundamental solution techniques on a theoretical basis as well as transfer and generalise them independently toward novel research-oriented application scenarios.

Self competences
The students:
- critically reflect the achieved results of their project work
- acknowledge limitations of various approaches for a control-oriented uncertainty modeling.

Module contents

1. Mathematical modeling of uncertainty in linear and nonlinear dynamic systems
2. Stochastic modeling approaches
3. Estimation of states, parameters and simulation of uncertain processes
 - Bayesian state estimation for discrete-time systems (linear/nonlinear) and for continuous-time systems (linear)
 - Linear estimation techniques in an extended state-space (Carleman linearization for special system classes)
 - Monte-Carlo methods

4. Set-based approaches
 - Set-based algorithms: Forward-backward contractor and bisection techniques
 - Interval methods for a verified solution of ordinary differential equations and for a stability proof of uncertain systems
 - Estimation of states and parameters as well as simulation of uncertain processes

5. Outlook: Synthesis of controllers and state observers under an explicit description of uncertainty

Literaturempfehlungen

- Rauh, A. Folien/ Skript zur Vorlesung „Uncertainty Modelling for Control in DES“.

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>every winter term</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td></td>
</tr>
<tr>
<td>Modular / type of module</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>1VL + 1Ü</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

Basic knowledge of the control of linear time-continuous and/or time-discrete systems and/or robust control

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Following the event period</td>
<td>Portfolio or written exam</td>
</tr>
</tbody>
</table>

Form of instruction

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>Wisse</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>Wisse</td>
<td>1</td>
</tr>
<tr>
<td>Project</td>
<td></td>
<td>1</td>
<td>Wisse</td>
<td>1</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

4 h
Successfully completing this lecture will enable the students to mathematically model simple controllable electrical generators and consumers and to simulate them together with appropriate control algorithms within smart grid scenarios. To achieve this goal, student will start with deriving computational models from physical models and by evaluating them. In order to manage the integration of control algorithms, students are taught the principles of cosimulation using the example of the "mosaik" smart grid cosimulation framework. Students are put into the position to understand and apply distributed, agent-based control schemes to decentralised energy generators and/or consumers. As a result, students are able to analyze the requirements for successful application to real power balancing regarding capacity utilization, robustness, and flexibility. In addition, students practically apply the foundations for planning and conducting simulation based experiments as well as the interpretation of the results. Attention is especially paid to a tradeoff between precision and robustness of the results and the necessary efforts (design of experiments) in order to gain as much insight into interdependencies with as few experiments.

Profesional competence
The student:
- derive and evaluate computational models from physical models
- use the "mosaik" smart grid cosimulation framework
- analyze the requirements for successful application to real power balancing regarding capacity utilization, robustness, and flexibility
- name the foundations for planning and conducting simulation based experiments as well as the interpretation of the results
- are aware to the tradeoff between precision and robustness of the results and the necessary efforts (design of experiments) in order to gain as much insight into interdependencies with as few experiments.

Methological competence
The student:
- model simple controllable electrical generators and consumers
- simulate simple controllable electrical generators and consumers with appropriate control algorithms within smart grid scenarios
- apply distributed agent-based control schemes to decentralised energy generators and/or consumers
- evaluate simulation results
- search information and look into methods to implement models
- propose hypothesis and check their validity with simulation experiments

Social competence
The student:
- apply the development technique pair programming
- discuss design decisions
- identify work packages and take responsibility for it

Self-competence
The student:
- reflect on their own use of the limited resource power
- accept and use criticism to develop their own behaviour

Module contents
In this practical course students:
• mathematically model controllable, modulating electrical energy generators and consumers and translate them to executable simulation models,
• put hands on mosaic (installation, description and configuration of scenarios, conduction of simulations),
• learn the principles of co-simulation of energy systems,
• learn about the challenges of implementing coordination mechanisms (multi-criticality, convergency, quality) on the training,
• apply foundations of design of experiments to practical simulation based experiments.

Literaturempfehlungen

Smart Grids:

Multiagentensysteme

Co-Simulation

Versuchsplanung
- Klein, B.: "Versuchsplanung - DoE", Oldenbourg, 2011

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jedes Sommersemester</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td></td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>1 V 1 Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Programming mit Python, Simulation-based Smart Grid Engineering and Assessment</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture time</td>
</tr>
<tr>
<td>A practical assignment includes the theoretical preparation, set-up and execution of a design task on the basis of a case study or the experiment as well as the written presentation of the work steps, the steps, the process and the results of the experiment and their critical evaluation.</td>
<td></td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
</tr>
</tbody>
</table>
inf5122 - Learning-Based Control in Digitalised Energy Systems

Module label: Learning-Based Control in Digitalised Energy Systems

Modulkürzel: inf5122

Credit points: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's programme Digitalised Energy Systems (Master) > Digitalised Energy System Design and Assessment
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen
- Rauh, Andreas (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
- The students identify fundamentals of learning-based control for dynamic systems.

Professional competences
- The students:
 - identify fundamentals of learning-based control for dynamic systems
 - characterise problem-specific learning techniques
 - are aware of software implementations for selected test rigs.

Methodological competences
- The students:
 - analyse problems of learning-based control
 - generalise them independently toward novel research-oriented application scenarios.

Social competences
- The students:
 - develop solution ideas for real-life control problems within an accompanying project/lab course in small teams
 - explain the obtained results in short presentations.

Self competences
- The students:
 - critically reflect the achieved results of their project work
 - acknowledge limitations of various approaches for learning-based control design.

Module contents

1. Iterative learning control (ILC)
 - Grundlegende 2D-Systemstrukturen
 - Stability criteria
 - Ausgewählte Optimierungsansätze
2. Data-driven neural network modelling vs. first-principle modelling
 - Static function approximations
 - NARX-modelling
3. Design of neural network-based controllers
4. Stability of neural network-based controllers

Literatureempfehlungen
- Jian Xin Xu; Ying Tan. Linear and Nonlinear Iterative Learning

Rauh, A. Folien/Skript zur Vorlesung „Learning-Based Control in DES“

Links

Language of instruction English
Duration (semesters) 1 Semester
Module frequency every summer term
Module capacity unlimited

Modul level / module level

Modulart / type of module 1VL + 1S

Vorkenntnisse / Previous knowledge Basic knowledge of control of linear continuous-time and/or discrete-timesystems and/or robust control

Examination

Prüfungszeiten At the end of the course
Type of examination Portfolio or written exam

Form of instruction Comment SWS Frequency Workload of compulsory attendance

Lecture 2 SoSe 28
Exercises 2 SoSe 28

Präsenzzeit Modul insgesamt 56 h
Digitalised Energy System Automation, Control and Optimisation

inf341 - Robust Control and State Estimation in Digitalised Energy Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Robust Control and State Estimation in Digitalised Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf341</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Technische Informatik
- Master's programme Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering

Zuständige Personen

- Rauh, Andreas (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Basic knowledge of the control of linear continuous-time and/or discrete-time systems or of robust control

Skills to be acquired in this module

The students identify fundamentals of robust control and state estimation as well as problem-specific solution techniques and their corresponding software implementation.

Professional competences

- The students identify fundamentals of robust control and state estimation
- Characterize problem-specific solution techniques for different classes of uncertainty
- Are aware of reliable software implementations.

Methodological competences

- The students analyze problems of robust control and state estimation for dynamic systems
- Analyze fundamental solution techniques on a theoretical basis
- Transfer as well as generalize those independently to new fields of applications.

Social competences

- The students develop solution ideas for real-life control problems within an accompanying project in small teams
- Explain the obtained results in short presentations.

Self competences

- The students critically reflect the achieved results of their project work
- Acknowledge limitations of various approaches for robust control and state estimation.

Module contents

1. Robustness of linear systems/ system analysis
 - Boundary crossing theorem of Frazer and Duncan
 - Mikhailov criterion
 - Khantyov criterion
 - Frequency response approaches
2. Selected control design techniques/ control synthesis
 - Parameter-space approach of Ackermann and Kaesbauer
 - Eigenvalue and eigenvalue domain assignment
H-infinity control
- Frequency response approaches (Sensitivity function
 approaches in the frequency domain)

3. Robust LMI-based control techniques
- Lyapunov stability
- Polytopic uncertainty modeling
- Optimality of solutions

4. Duality between control and observer synthesis
- Robust state estimation
- Sliding mode observers

5. Interval methods: Solution of static and dynamic problems (Enclosing
 function values, Branch-and-bound techniques, Verification techniques
 for differential equations)

6. Fundamentals: Fault detection and fault-tolerant control

Literaturempfehlungen

- Gu, D.-W.; Petkov, P.H.; Konstantinov, M.M., Robust Control Design
 with MATLAB, Springer-Verlag, 2013
- Osterlag, E. Mono- and Multivariable Control and Estimation, Springer-Verlag, 2011
- Rauh, A. Folien/ Skript zur Vorlesung „Robuste Regelung und
 Zustandsschätzung“.
- Weinmann, A. Uncertain Models and Robust Control, Springer-Verlag, 1991

Links

Language of instruction English
Duration (semesters) 1 Semester Semester
Module frequency every winter term
Module capacity unlimited

Module level / module level

Modulart / typ of module 1VL + 1S

Vorkenntnisse / Previous knowledge Basic knowledge of the control of linear continuous-time and/or discrete-time
 systems or of robust control

Examen / Prüfungszeiten / Type of examination

Final exam of module Written exam: at the end of the lecture period
 Portfolio: during the semester

Form of instruction Comment SWS Frequency Workload of compulsory attendance

| Lecture | 2 | WiSe | 28 |
| Seminar | 1 | WiSe | 14 |

Präsenzzeit Modul insgesamt 42 h
inf5112 - Digitalised Energy System Modeling and Control

Module label: Digitalised Energy System Modeling and Control

Modulekürzel: inf5112

Credit points: 6.0 KP

Workload: 180 h

Verwendbarkeit des Moduls:
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's programme Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation

Zuständige Personen:
- Lehnhoff, Sebastian (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

After successful completion of the course the students should be able to understand the existing structures and technical basis of energy systems to produce, transfer and distribute electricity and their interaction and dependency on each other. They should have developed an understanding for necessary IT- and process control technology components, methods and processes to control and operate electrical energy systems. The students are able to estimate and evaluate the requirements and challenges of ICT and computer science which are caused by the development and integration of unforeseeable fluctuations of decentralised plants.

The students will be able to estimate the influence of distributed control concepts and algorithms for decentralised plants and consumers in the so called Smart Grid energy systems. Regarding the requirements, the students will be able to analyse the safety, reliability, realtime capability and flexibility of Smart Grid energy systems.

Professional competence
The students:

- understand the existing structures and the technical basis of energy systems producing, transferring and distributing electricity and their interaction and dependency on each other.
- develop an understanding for necessary IT- and process control technology components, methods and processes to control and operate electrical energy systems.
- estimate and evaluate the requirements and challenges of ICT and computer science, which are caused by the development, and integration of unforeseeable fluctuations of decentralised plants.

Methodological competence
The students:

- analyse the safety, reliability, realtime capability and flexibility of Smart Grid energy systems
- use advanced mathematical methods to calculate networks

Social competence
The students:

- create solutions in small teams
- discuss their solutions

Self competence
The students:

- reflect their own use of the limited resource power

Module contents

In this course information technology, economical energy industry and technical basic knowledge and methods are analysed by using concrete Smart Grid approaches. The basic calculation methods for an intelligent net management are introduced.
This module deals with the technical and economical framework for a permissable electrical network as well as mathematical modelling and calculation methods to analyse conditions of electrical energy networks (in stationary conditions).

These are:

- the organisation of the EU energy market (regulatory framework, responsibility in liberalisation of electrical energy systems)
- Establishment and operation of electrical energy supply networks (network topology, statutory duties of supply, supply quality/system services, malfunctions and protection systems)
- Network calculation (complex vector representation, effective/idle power, mathematical performance models/net model, transformation: node)
- performance to node voltage and electricity, calculation of conductive current, current flow, fix-point-iteration, Newton-Raphson-Method, voltage drop, transformer model)
- Intelligent network management (Smart Grids), Aggregation forms, machine learning approaches)

Literaturempfehlungen

- Gremmel, H.; ABB Schaltanlagen-handbuch, Cornelsen 2007
- Lehnhoff, S.: Dezentrales vernetztes Energiemanagement, 2010

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>every summer term</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
</tbody>
</table>

Modulart / typ of module

<table>
<thead>
<tr>
<th>Lehr-/Lernform / Teaching/Learning method</th>
<th>1VL + 1Ü</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>none</td>
</tr>
</tbody>
</table>

Examination

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the end of the event</td>
<td>written exam or oral exam</td>
</tr>
</tbody>
</table>

Form of instruction

<table>
<thead>
<tr>
<th>Lecture</th>
<th>3</th>
<th>SoSe oder WiSe</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>1</td>
<td>SoSe und WiSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
inf5114 - Digitalised Energy System Requirements Engineering

<table>
<thead>
<tr>
<th>Module label</th>
<th>Digitalised Energy System Requirements Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf5114</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's programme Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation

Zuständige Personen
- Lehnhoff, Sebastian (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

- The students will learn different approaches to integrate distributed generation, the regulatory framework, relevant standards and architecture concepts of energy management systems and they are able to apply this knowledge.

This module integrates current computer science developments into the informatics program, especially considering the selected focus area, by appropriate study courses.

Professional competence

The students:

- develop and evaluate IT- Architectures for energy management
- model objects of this domain appropriately
- model energy information systems
- realise and differentiate advanced tasks of decentralised energy management

Methodological competence

The students:

- name problems for the energy management, analyse these problems systematically and provide solutions
- apply different simulation approaches of decentralised plants and consumers

Social competence

The students:

- discuss solutions for the energy management together
- develop use cases in teams
- present self-developed solutions

Self competence

The students:

- reflect their actions with regarde to structure and decompose systems
- reflect their own use of the limited resource power

Module contents

This module provides the computer science basics for the energy management. It provides the requirements of energy supply information systems with the focus on technical components and the requirements of decentralised and renewable energy plants.

These are:

- Architectures for energy information systems, e.g. SOA, Seamless Integration Architecture (IEC TC 57, OPC-UA)
- Norms and standards of energy industry data models (CIM, 61850)
- Systematisation of energy information system requirements based on ontologies
- Development, analysis and adaption of energy industry reference models and processes
- Methods and technologies to support energy industry processes
- Methods and algorithms to support decision processes of the
decentralised energy plants control
- Smart Grid plants communication, the load management in particular
- Methods for modelling and simulation of power supply system dynamics

Literaturempfehlungen
- Crastan V.: "Elektrische Energieversorgung II", Springer 2004

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>every winter term</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td></td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>1 VL + 1 Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>none</td>
</tr>
<tr>
<td>Examination Prüfungszeiten</td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>term paper</td>
</tr>
</tbody>
</table>

At the end of the course

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>WSe</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>WSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
inf5118 - Decentralised Nonlinear Model-Based Control in Digitalised Energy Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Decentralised Nonlinear Model-Based Control in Digitalised Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf5118</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's programme Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation

Zuständige Personen
- Rauh, Andreas (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
The students identify fundamentals of control and state estimation for nonlinear systems.

Professional competence
The students:
- identify fundamentals of control and state estimation for nonlinear systems, characterise problem-specific solution techniques and are aware of software implementations for selected test rigs

Methodological competence
The students:
- analyse problems of nonlinear control and state estimation and generalise them independently toward novel research-oriented application scenarios

Social competence
The students:
- develop solution ideas for real-life control problems within an accompanying project/lab course in small teams and explain the obtained results in short presentations

Self competence
The students:
- critically reflect the achieved results of their project work and acknowledge limitations of various approaches for nonlinear control design.

Module contents

1. Fundamentals of control-oriented modelling
2. Special properties of nonlinear control systems
 - Finite escape time
 - Chaos
 - Limit cycles
 - Equilibria
3. Stability properties/ Stability analysis
 - Local vs. global Stability
 - Lyapunov methods
 - Stability of limit cycles
 - Criteria for the proof of instability
4. Nonlinear control design
 - Control Lyapunov functions
 - Backstepping control
 - Feedback linearization
 - Flatness-based control
5. Nonlinear observer synthesis

Literatureempfehlungen
- Adamy, J.: Nichtlineare Regelungen; Springer Verlag,
2009.
- Rauh, A. Folien/ Skript zur Vorlesung „Decentralised Nonlinear Model-Based Control in DES“.

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>every summer term</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td></td>
</tr>
</tbody>
</table>

| Lehr-/Lernform / Teaching/Learning method | 1VL + 1P + 1Ü |
| Vorkenntnisse / Previous knowledge | Basic knowledge of the control of linear continuous-time and/or discrete-time systems or of robust control |

<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>written exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Practical training</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
inf516 - Distributed Operation in Digitalised Energy Systems

Module label
Distributed Operation in Digitalised Energy Systems

Modulkürzel
inf516

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's programme Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation

Zuständige Personen
- Nieße, Astrid (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

After successful completion of this course, the students are able to analyze an application problem in cyber-physical energy systems to decide whether a distributed optimization approach could be usefully applied. Fundamentals of self-organizing systems are understood and can be transferred to specific applications.

Furthermore, the basic concepts of distributed methods can be applied safely and transferred to an application case.

Professional competence
The students:
- will be familiar with the basic concepts of distributed optimization and agent systems mentioned above

Methodological competence
The students:
- will be able to present the fundamental concepts of distributed optimization and agent systems mentioned above and apply them to application problems in CPES

Social competence
The students:
- create solutions in small teams
- present and discuss their solutions
- reflect the solutions of others in a constructive manner

Self competence
The students:
- critically question the application of learned methods to a real-world problem

Module contents

In this course, fundamentals of agent-based control with applications in cyber-physical power systems are reviewed, discussed, and reinforced in the accompanying programming exercise.

These are:

1. Multi-agent systems
 - Foundations and definitions
 - MAS architectures
 - Agent communication
 - Cooperative and competitive agents MAS
 - Learning in MAS
2. Distributed Optimization
 - CASIMIR
 - Overview on distributed optimization
 - CSP and COP
 - Distributed SCP und COP
3. Self-organizing energy systems
4. Applications
- Virtual Power Plants
- QEMS and Microgrids
- DSM and DR
- Energy market applications
- Swarms for storage management
- Multi-purpose examples
5. Programming part
- Agent framework mango
- Co-simulation framework mosaik
- Power grid simulation pandapower

Literaturempfehlungen

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>every winter term</td>
</tr>
<tr>
<td>Module capacity</td>
<td>50</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td></td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>1VL + 1Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Fundamentals of Optimization, Fundamentals of Digitized Energy Systems</td>
</tr>
</tbody>
</table>

Examination | Prüfungszeiten | Type of examination |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>In the current semester and at the end of the event</td>
<td>Portfolio or oral exam or written exam</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Comment</td>
<td>SWS</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
info579 - Special Topics in 'Digitalised Energy Systems' I

Module label
Special Topics in 'Digitalised Energy Systems' I

Modulkürzel
info579

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's programme Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation

Zuständige Personen
- Nieße, Astrid (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
No participant requirements

Skills to be acquired in this module
This module integrates current developments in the field of Digitalised Energy Systems in adequate study courses.

Competencies
This module integrates current developments in the field of Digitalised Energy Systems in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or
- evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools technology and methods
- sophisticatedly combine new and original approaches and methods
- creatively evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support Team process by their abilities

Self competences
The students:
- pursue the overall and special computer science development critically implement innovative professional activities effectively and independently

Module contents
See assigned course description

Literaturempfehlungen
Word om der Veranstaltung bekannt gegeben

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
unregelmäßig

Module capacity
unlimited

Modullevel / module level

Modulart / typ of module

Lehr-/Lernform / Teaching/Learning method
1VL + 1Ü
<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture term</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf581 - Special Topics in 'Digitalised Energy Systems' II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Digitalised Energy Systems' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf581</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's programme Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation

Zuständige Personen
- Nieße, Astrid (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
No participant requirements

Skills to be acquired in this module
This module integrates current developments in the field of Digitalised Energy Systems in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or
- evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The Students:
- evaluate tools, technologies and methods
- sophisticatedly combine new and original approaches and methods
- creatively evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The Students:
- support team process by their abilities

Self-competences
The Students:
- pursue the overall and special computer science development
- critically implement innovative professional activities effectively and independently

Module contents
See assigned course description

Literaturempfehlungen
Will be announced in the course

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
irregular

Module capacity
unlimited

Modullevel / module level

Lehr-/Lernform / Teaching/Learning method
2 events from VL, Ü, S, PR

Vorkenntnisse / Previous knowledge
none

Examination
Prüfungszeiten
Type of examination
Portfolio or presentation or oral examination

Final exam of module
At the end of the lecture period
<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td></td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td></td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
inf584 - Special Topics in 'Energy Informatics' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in 'Energy Informatics' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf584</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master's Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td></td>
<td>• Master's programme Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>• Lehnhoff, Sebastian (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>No participant requirements</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td></td>
<td>Professional competences</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>• recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>• identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>• apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>• are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>• discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td>Methodological competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• evaluate and apply tools, technology and methods</td>
</tr>
<tr>
<td></td>
<td>• sophisticatedly combine new and original approaches and methods creatively</td>
</tr>
<tr>
<td></td>
<td>• evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td>Social competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• support team process by their abilities</td>
</tr>
<tr>
<td>Self-competences</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>• implement innovative professional activities effectively and independently</td>
</tr>
</tbody>
</table>

Module contents See assigned course description

Literaturempfehlungen As announced in course

Links

Language of instruction English
Duration (semesters) 1 Semester
Module frequency irregular
Module capacity unlimited

Modullevel / module level

Modulart / typ of module

Lehr- / Lernform / Teaching / Learning method 2 events from VL, S, Ü, P, PR

Vorkenntnisse / Previous knowledge none

Examination Prüfungszeiten Type of examination
Final exam of module At the end of the lecture period Portfolio or presentation or oral exam
<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>VA-Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf585 - Special Topics in 'Energy Informatics' II

Module label
Special Topics in 'Energy Informatics' II

Modulkürzel
inf585

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's programme Digitalised Energy Systems (Master) > Digitalised Energy System Automation, Control and Optimisation

Zuständige Personen
- Lehnhoff, Sebastian (Module responsibility)
- Lehrende, Die im Modul (Prüfungsberechtigt)

Prerequisites
No participant requirements

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences
The students:
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences
The students:
- evaluate and apply tools, technology and methods sophisticatedly
- combine new and original approaches and methods creatively
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research

Social competences
The students:
- support team process by their abilities

Self-competences
The students:
- pursue the overall and special computer science development critically
- implement innovative professional activities effectively and independently

Module contents
See assigned course description

LiteratureEmpfehlungen
As announced in course

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
irregular

Module capacity
unlimited

Modullevel / module level

<table>
<thead>
<tr>
<th>Modulart / typ of module</th>
<th>Lehr-/Lernform / Teaching/Learning method</th>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 events form V, S, Ü, P, PR</td>
<td>none</td>
<td></td>
<td></td>
<td>Portfolio or presentation or oral exam</td>
</tr>
</tbody>
</table>

Final exam of module
At the end of the lecture period
<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>VA-Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
Automation and Electrical Engineering

inf5100 - Digital Technology on Energy Markets

<table>
<thead>
<tr>
<th>Module label</th>
<th>Digital Technology on Energy Markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf5100</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's programme Digitalised Energy Systems (Master) > Automation and Electrical Engineering

Zuständige Personen

- Staudt, Philipp (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

This module integrates current computer science developments into the informatics program, especially considering the selected focus area, by appropriate study courses

Professional competence
The students:

- will be able to follow scientific work in the application area of digitalised energy markets, and thus be able to reflect on the current state of research in this area

Methological competence
The students:

- are able to classify energy markets and judge new technological developments based on this classification

Social competence
The students:

- create solutions in small teams
- present and discuss their solutions
- reflect the solutions of others in a constructive manner

Self competence
The students:

- evaluate new technologies regarding their relevance for current energy-economic topics.

Module contents

In this module, theoretical concepts for understanding energy markets are presented and reflected with respect to the questions, how digitalisation of cyber-physical energy systems (CPES) is impacting the development of these markets.

Fundamental concepts are discussed using easy-to-follow examples.

These are:

- Overview on Energy Markets
- Consecutive markets and different time horizons
- Smart Grids and energy markets
- Push-effect of digital technologies on energy market development
- Digitalised processes on energy markets
- Market integration of renewable energy resources

Literatureempfehlungen

Links
<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annual</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td></td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>1VL + 1Ü (4 SWS)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>none previous knowledge</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Following the event period</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Präsenzzzeit Modul insgesamt</td>
<td></td>
</tr>
</tbody>
</table>
inf5102 - Power System Components, Networks, Operation

Module label: Power System Components, Networks, Operation
Modulkürzel: inf5102
Credit points: 6.0 KP
Workload: 180 h

Verwendbarkeit des Moduls: Master's programme Digitalised Energy Systems (Master) > Automation and Electrical Engineering
Zuständige Personen: Lehrende, Die im Modul (Module responsibility) Gawlik, Wolfgang (Module responsibility)

Prerequisites

Skills to be acquired in this module
The students know the components of electrical energy systems with their individual properties and can assess the mutual dependencies and relationships in the systemic context.

Professional competence
The students:

- can describe components of electrical energy systems and understand their mutual interactions and dependencies in a systemic context.

Methodological competence
The students:

- can model components of the electrical energy system and perform calculations to determine the model parameters and using the model parameters and model properties
- can analyze operating processes, operating states and faults in the electrical energy system and identify mutual interactions
- can dimension operating resources in a systemic context

Social competence
The students:

- can explain the components of electrical energy systems to each other and jointly discuss solutions for typical operating processes and problems in electrical energy systems
- can work together on problems and challenges of the electrical energy system across subjects and disciplines.

Self competence
The students:

- are able to critically reflect on the requirements for components of electrical energy systems and to assess their importance for system operation within the systemic context.

Module contents

Power System Components
Lines, transformers and rotating electrical machines
Power electronics and FACTS
Switchgear and substations
Network structures, AC and DC systems
Power plants and distributed generation
Energy storage and sector coupling
Power System Operation
Load flow, short circuits and protection
Interconnected power systems and Microgrids
Active power and load/frequency control
Reactive power and voltage control
Emergency operation and network restoration

Literaturempfehlungen

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>every winter term</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td></td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>1 VL (4SWS)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Fundamentals of electrical engineering, electrodynamics</td>
</tr>
<tr>
<td>Examination Prüfungszeiten</td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Following the event period</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Lecture</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
inf5124 - Research Project Digitalised Energy Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Research Project Digitalised Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf5124</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's programme Digitalised Energy Systems (Master) > Automation and Electrical Engineering</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Lehrende, Die im Modul (Module responsibility) > Rauh, Andreas (Module responsibility)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>The students identify fundamental research concepts of modelling, control, state estimation, simulation, and optimisation of digitalised energy systems</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>Professional competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• identify fundamental concepts for design and operation of digitalised energy systems, characterise different solution approaches and recognise the implementation of selected aspects such as simulation and optimisation</td>
</tr>
<tr>
<td></td>
<td>Methodological competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• develop solution ideas in a research-oriented environment.</td>
</tr>
<tr>
<td></td>
<td>Social competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• develop solution ideas in small project teams of typically 3 persons, document their results in written form, and explain the obtained results in short presentations</td>
</tr>
<tr>
<td></td>
<td>Self competence</td>
</tr>
<tr>
<td></td>
<td>The students:</td>
</tr>
<tr>
<td></td>
<td>• critically reflect the achieved results of their project and acknowledge limitations of approaches used.</td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td>Will be announced in the course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>regular summer and winter term</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel / module level</td>
<td></td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>1 PR</td>
</tr>
<tr>
<td>Lehr-Lernform / Teaching/Learning method</td>
<td>It is recommended to take the Research Project only after having completed the other modules of the two areas "Foundations of Digitised Energy Systems" and "Fundamental Competences"</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>accompanying the event</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Practical training</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>SWS</td>
<td>10</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>140 h</td>
</tr>
</tbody>
</table>
inf5104 - Fundamentals of Game Theory in Energy Systems

Module label
Fundamentals of Game Theory in Energy Systems

Modulkürzel
inf5104

Credit points
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's programme Digitalised Energy Systems (Master) > Computer Science and Energy Informatics

Zuständige Personen
- Nieße, Astrid (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites
none

Skills to be acquired in this module

Upon successful completion of the course, students can understand fundamental concepts of game theory, and the relevance of these concepts to applications in energy informatics research.

Professional competence
The students:
- will be able to follow game-theoretic work in the application area of energy systems, and thus be able to reflect on the current state of research in this area

Methodological competence
The students:
- can classify and formalise games and apply solution concepts for the presented types of games. Application examples can be examined for game types and the necessary simplifications can be evaluated.

Social competence
The students:
- create solutions in small teams
- present and discuss their solutions
- reflect the solutions of others in a constructive manner

Self competence
The students:
- derive connections between everyday situations and their game theory conceptualization.

Module contents

In this module, theoretical concepts from game theory are prepared and presented with connections to the application in cyber-physical energy systems (CPES).

Fundamental concepts are discussed using easy-to-follow examples.

These are:
- Game theory and decision theory
- Interdependencies
- Cooperative and non-cooperative game theory
- Utility, discrete and continuous strategy, dominant strategy
- Axioms of game theory
- Theorems of game theory
- Solution concepts for games, e.g. iterated elimination, backward induction
- Multi-step and repeated games
- Partial game perfection
- Discount factor
- Mechanisms design, markets and auctions

In CPES-application examples, references are made to distributed artificial intelligence and multi-agent systems, strategy learning, and operating in markets in energy applications.

Literaturempfehlungen

- Fudenberg, Tirole: Game Theory. MIT Press, 1991

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>every summer term</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulart / typ of module</th>
<th>1VL + 1Ü (4 SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>1VL + 1Ü (4 SWS)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>none previous knowledge</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Following the event period</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
</tbody>
</table>
Module Contents

1. Parameter optimization
 - Unconstrained optimization
 - Optimization under equality/inequality constraints
2. Dynamic optimisation (structural optimisation)
 - Bellman’s optimality principle
 - Maximum principle of Pontryagin
 - Special optimisation problems: Minimum time problems, minimum energy, LQR
3. Linear model-predictive control
4. Nonlinear model-predictive control
5. Receding horizon state estimation

Literature recommendations

- Papageorgiou, M.; Leibold, M.; Buss, M.: Optimierung. Statische, dynamische, stochastische Verfahren für die Anwendung. 3. Aufl.,
Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>every summer term</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td></td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehr-/Lernform / Teaching/Learning method</th>
<th>1VL + 1Ü (4 SWS)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Useful previous knowledge: Basic knowledge of control of linear continuous-time and/or discrete-time systems or robust control.</th>
</tr>
</thead>
</table>

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Prüfungszahlen</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>at the end of the lecture period</td>
<td></td>
<td>Portfolio or projekt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Präsenzzzeit Modul insgesamt</th>
<th>56 h</th>
</tr>
</thead>
</table>
inf5110 - Practical Course (Energy Informatics)

<table>
<thead>
<tr>
<th>Module label</th>
<th>Practical Course (Energy Informatics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf5110</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's programme Digitalised Energy Systems (Master) > Computer Science and Energy Informatics</td>
</tr>
</tbody>
</table>
| Zuständige Personen | Lehnhoff, Sebastian (Module responsibility)
| | Rauh, Andreas (Module responsibility)
| | Lehrenden, Die im Modul (Prüfungsberechtigt) |

Prerequisites

Skills to be acquired in this module

The aim of the module is to impart practical competences required in energy informatics for the implementation of control and regulation approaches in the field on plants and in the grid.

Professional competence
The students:

- know basic modelling approaches for components in power systems.
- know procedures for parameter identification
- know linear and non-linear methods for closed-loop and optimised control of technical systems
- know basic procedures for dealing with faults and technical malfunctions in control systems
- know the challenges of implementing control approaches on resource-constrained engineered systems in the field

Methodological competence
The students:

- select appropriate modelling approaches
- apply methods for parameter identification
- apply methods for the control of technical operating parameters
- implement these approaches on a (virtual) embedded system

Social competence
The students:

- discuss the model selection used approaches in the team
- present and discuss results with other students

Self competence
The students:

- reflect on the abstract modelling of complex technical systems and processes
- reflect on problems and uncertainties and errors
- recognise the limitations of embedded systems in the field
- accept criticism and understand it as a suggestion for the further development of their own actions

Module contents

Modelling of components in DES
- Battery cells (equivalent circuit modelling, thermal model)
- Step-down converter circuits
- Electric drive systems (modelling of complete drive train, including mechanics)

Parameter identification in DES
- Design of identification experiments
- Parameter optimisation (time domain/ frequency domain, impedance spectroscopy)
- Design of state observers and (Extended) Kalman Filters
Linear Control

- Output feedback control of electric drive train (PID, including anti-windup)
- Observer-based state feedback control
- Disturbance estimation and compensation

Nonlinear control/ Variable-structure control

- Lyapunov methods for control design
- Flatness-based control techniques
- Robustness analysis
- Real-time implementation of methods for chattering reduction

Optimal control/ MPC

- Charging under state constraints
- Energy optimal battery charging
- Minimum-time solutions
- State of charge equalization
- Thermal state constraints

Fault detection and isolation

- Sensor vs. actuator faults
- Observer-based approaches for inverter circuits
- Observer-based approaches for drive trains
- Fault-tolerant control structures, control reconfiguration

Implementation Studies

- Implementation of a controller on practically relevant hardware
 (vRTU/vIED programming of a network or plant controller)
- Hardware-in-the-loop simulation of the controller (Simulink modelling of the RT environment and compilation on the RT target)

<table>
<thead>
<tr>
<th>Literatureempfehlungen</th>
<th>Will be announced in the course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>regular</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td></td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>1 PR (4SWS)</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>MATLAB/Simulink, programming basics in Java or Python, development on embedded systems</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>accompanying the event</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Practical training</td>
</tr>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>0 h</td>
</tr>
</tbody>
</table>
inf514 - Simulation-based Smart Grid Engineering and Assessment

<table>
<thead>
<tr>
<th>Module label</th>
<th>Simulation-based Smart Grid Engineering and Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf514</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | • Master's Programme Computing Science (Master) > Angewandte Informatik
 • Master's programme Digitalised Energy Systems (Master) > Computer Science and Energy Informatics |
| Zuständige Personen | • Lehnhoff, Sebastian (Module responsibility)
 • Lehrenden, Die im Modul (Prüfungsberechtigt) |
| Prerequisites | Basic programming in Java or Python |
| Skills to be acquired in this module | **Competencies**
Goal of this module is to teach mathematical and methodological foundations of energy informatics and for conducting large-scale simulation studies
Professional competence
The students:
• know methods to analyze black-box objective functions
• recognize the relation between precision and reliability of expected results and the necessary surplus effort
• know methods to determine cause-effect relations between input parameters with small numbers of simulations (experiments)
• evaluate the significance of simulation results
• characterize (distributed) algorithms by their properties
• transfer proving techniques to distributed problems
Methodological competence
The students:
• choose suitable statistical methods to interpret simulation results
• apply methods from design of experiments
• apply significance tests to compare algorithms
• generate arbitrarily distributed input data
• present results from algorithm evaluation statistically sound
Social competence
The students:
• discuss the own algorithm choice
• present their results and discuss with other students
Self-competence
The students:
• reflect their own usage of the scarce resource energy
• reflect problems and uncertainties when using statistical methods
• recognize the limits of simulation studies and their responsibility for choosing correct statistical methods
• accept criticism and understand it as a suggestion for the further development of their own actions |
<p>| Module contents | The goal of this module is to teach mathematical and methodological foundations of energy informatics and especially for conducting large-scale simulation studies. |
| Literatureempfehlungen | Will be announced in the lecture |
| Links | |
| Language of instruction | English |
| Duration (semesters) | 1 Semester |
| Module frequency | every winter term |
| Module capacity | unlimited |
| Modullevel / module level | |
| Modulart / typ of module | |
| Lehr-/Lernform / Teaching/Learning method | 1 VL + 1 Ü |
| Vorkenntnisse / Previous knowledge | Basic programming in Java or Python |</p>
<table>
<thead>
<tr>
<th>Examination</th>
<th>Prüfungszeiten</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture term</td>
<td>Written exam or oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
Innovation Topics and Smart Grids

inf5126 - Digitalised Energy System Cyber-Resilience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Digitalised Energy System Cyber-Resilience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf5126</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's programme Digitalised Energy Systems (Master) > Innovation Topics and Smart Grids

Zuständige Personen
- Lehnhoff, Sebastian (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Professional competences

The students
- recognise the entailed problems and challenges of new digitalization trends such as billion devices on the internet connected to our power grid (televisions, baby monitors, alexa, etc.), smart services, cloud services, outsourcing, Artificial Intelligence, Big Data etc.
- evaluate fraud/ intrusion detection methods
- identify security flaws and vulnerabilities of the energy system

Methodological competences

The students
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems of cyber resilience in energy systems
- schedule time processes and resources.

Social competences

The students
- communicate with colleagues and experts convincingly.

Self competences

The students
- reflect the problems of cyber resilience of energy systems critically and pursue different possible solution strategies.
- reflect self-developed hypotheses and theories independently.

Module contents

- Energy system as critical infrastructure (KRITIS)
- Propagation of phenomena and their dynamics
- Omnipresent conflicts of objectives
- Susceptibility of the energy system to new effects, such as the occurrence of "classic" IT challenges (errors, update management, interactions, ...) and to sophisticated cyber-attacks

Literaturempfehlungen

Will be announced in the course

Links

Language of instruction
- English

Duration (semesters)
- 1 Semester
<table>
<thead>
<tr>
<th>Module frequency</th>
<th>irregular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td></td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>1 VL oder 1 S</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>none</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Type of examination</td>
<td>term paper</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>at the end of the lecture period</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
</tbody>
</table>

| Präsenzzelt Modul insgesamt | 28 h |
inf5128 - AI in Energy Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>AI in Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf5128</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master's Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td></td>
<td>Master's programme Digitalised Energy Systems (Master) > Innovation Topics and Smart Grids</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Bremer, Jörg (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

The students learn to understand the energy system as self-organizing, self-optimizing and self-healing cyber physical system and how equip the components with of a cyber physical energy system with intelligence and autonomy.

Professional competences

The students

- contrast different methods of AI
- define modern use cases of AI applications in energy systems
- identify appropriate AI methods to achieve a given control goal in the energy system
- evaluate risks and drawbacks of AI in energy systems
- apply AI to selected problems

Methodological competences

The students

- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems of AI in energy systems
- schedule time processes and resources

Social competences

The students

- communicate with colleagues and experts convincingly

Self competences

The students

- pursue and reflect the integration of AI into energy systems critically
- reflect self-developed hypotheses to theories independently

Module contents

This module integrates current developments in artificial intelligence (AI) and its application to energy systems.

<table>
<thead>
<tr>
<th>Literatureempfehlungen</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>irregular</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>1VL oder 1S</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>none</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>at the end of the lecture period</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Course or seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf5130 - Socio-technical Energy Systems

Module label: Socio-technical Energy Systems
Modulkürzel: inf5130
Credit points: 3.0 KP
Workload: 90 h

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's programme Digitalised Energy Systems (Master) > Innovation Topics and Smart Grids

Zuständige Personen
- Lehnhoff, Sebastian (Module responsibility)
- Bremer, Jörg (Module responsibility)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

The students learn to consider human needs right from the beginning in the design process of Human Cyber Physical Energy Systems. A human-centered design is at the core as an approach to interactive systems development that aims to make systems usable and useful by focusing on the users; and to develop systems that are aware of (NOT rationally acting) humans when making decision.

Professional competences
The students
- recognise the energy system as a human cyber physical system with a steadily growing degree of autonomy
- identify the potential for conflict that arises when humans interact with cyber physical systems
- model human-system-interaction
- recognise, evaluate and contrast approaches to self-explaining AI

Methodological competences
The students
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems of socio-technical energy system
- schedule time processes and resources

Social competences
The students
- communicate with colleagues and experts convincingly

Self competences
The students
- pursue the integration of humans and human behaviour into cyber physical energy systems critically
- develop and reflect self-developed hypotheses to theories independently

Module contents

- Simulation (and prediction) of human behaviour and decisions
- Modeling user behaviour in human cyber physical systems
- Self-explaining and justifying AI

Literaturempfehlungen
Will be announced in the course

Links

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: irregular
Module capacity: unlimited
<table>
<thead>
<tr>
<th>Modullevel / module level</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart / typ of module</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>1VL oder 1S</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>none</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>at the end of the lecture period</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Course or seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf586 - Current Topics in 'Energy Informatics' I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Energy Informatics' I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf586</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's programme Digitalised Energy Systems (Master) > Innovation Topics and Smart Grids

Zuständige Personen
- Lehnhoff, Sebastian (Module responsibility)
- Lehrende, Die im Modul (Prüfungsberechtigt)

Prerequisites
No participant requirements

Skills to be acquired in this module
This module integrates current developments in the field in adequate study courses.

Professional competences

The students
- define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general
- recognise and evaluate applied techniques and methods of their subject and are aware of their limits
- identify, structure and solve problems/tasks, also in new or developing subject areas
- apply state of the art and innovative methods to solve problems, if necessary from other disciplines
- are aware of the current limits and contribute to the development of computer science research and technology
- discuss and evaluate recent computer science developments

Methodological competences

The students
- examine tasks with technical and research literature, write an academic article and present their solutions academically
- evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research
- schedule time, processes and resources

Social competences

The students
- communicate with users and experts convincingly

Self competences

The students
- pursue the overall and special computer science development critically
- develop and reflect self-developed hypotheses to theories independently

Module contents
See assigned course description

Literatureempfehlungen
Depending on the assigned course

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
irregular

Module capacity
unlimited

Modullevel / module level

Modular / typ of module

Lehr-/Lernform / Teaching/Learning method
1S or 1VL
Previous knowledge

Vorkenntnisse / Previous knowledge: none

<table>
<thead>
<tr>
<th>Examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungszeiten</td>
<td>Presentation or oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>At the end of the lecture period</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Form of instruction</th>
<th>Course or seminar</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SWS</th>
<th>2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th>SoSe oder WiSe</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload Präsenzzeit</th>
<th>28 h</th>
</tr>
</thead>
</table>
inf587 - Current Topics in 'Energy Informatics' II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in 'Energy Informatics' II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf587</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Master's Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td></td>
<td>• Master's programme Digitalised Energy Systems (Master) > Innovation Topics and Smart Grids</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lehnhoff, Sebastian (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>• Lehrenden, Die im Modul (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>No participant requirements</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>This module integrates current developments in the field in adequate study courses.</td>
</tr>
<tr>
<td></td>
<td>Professional competences</td>
</tr>
<tr>
<td></td>
<td>The students</td>
</tr>
<tr>
<td></td>
<td>• define and contrast a computer science part, in which they are specialised, in detail or evaluate computer science in general</td>
</tr>
<tr>
<td></td>
<td>• recognise and evaluate applied techniques and methods of their subject and are aware of their limits</td>
</tr>
<tr>
<td></td>
<td>• identify, structure and solve problems/tasks, also in new or developing subject areas</td>
</tr>
<tr>
<td></td>
<td>• apply state of the art and innovative methods to solve problems, if necessary from other disciplines</td>
</tr>
<tr>
<td></td>
<td>• are aware of the current limits and contribute to the development of computer science research and technology</td>
</tr>
<tr>
<td></td>
<td>• discuss and evaluate recent computer science developments</td>
</tr>
<tr>
<td></td>
<td>Methological competences</td>
</tr>
<tr>
<td></td>
<td>The students</td>
</tr>
<tr>
<td></td>
<td>• examine tasks with technical and research literature, write an academic article and present their solutions academically</td>
</tr>
<tr>
<td></td>
<td>• evaluate problems/tasks, including new or developing subject areas of their discipline and apply computer science methods for solutions and research</td>
</tr>
<tr>
<td></td>
<td>• schedule time, processes and resources</td>
</tr>
<tr>
<td></td>
<td>Social competences</td>
</tr>
<tr>
<td></td>
<td>The students</td>
</tr>
<tr>
<td></td>
<td>• communicate with users and experts convincingly</td>
</tr>
<tr>
<td></td>
<td>Self competences</td>
</tr>
<tr>
<td></td>
<td>The students</td>
</tr>
<tr>
<td></td>
<td>• pursue the overall and special computer science development critically</td>
</tr>
<tr>
<td></td>
<td>• develop and reflect self-developed hypotheses to theories independently</td>
</tr>
<tr>
<td>Module contents</td>
<td>See assigned course description</td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td>Will be announced in the course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>irregular</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel/module level</td>
<td></td>
</tr>
<tr>
<td>Modulart/typ of module</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform/Teaching/Learning method</td>
<td>1VL or 1S</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>none</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
<tr>
<td>Type of examination</td>
<td>Written exam or portfolio or presentation or oral exam</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Course or seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
Module contents

- See assigned course description

Literatureempfehlungen

- Will be announced in the course

Language of instruction

- English

Duration (semesters)

- 1 Semester

Module frequency

- irregular

Module capacity

- unlimited

Modulelevel / module level

- Modulart / typ of module

- Lehr-/Lernform / Teaching/Learning method

- 1S or 1VL
<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>none</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Written exam or portfolio or presentation or oral exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form of instruction</td>
<td>Course or seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
Abschlussmodul

mam - Master Thesis Module Digitalised Energy Systems

<table>
<thead>
<tr>
<th>Modulkürzel</th>
<th>mam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master's programme Digitalised Energy Systems (Master) > Abschlussmodul</td>
</tr>
</tbody>
</table>

Zuständige Personen

Prerequisites

Skills to be acquired in this module

Module contents

Literaturempfehlungen

Links

Language of instruction | German |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
</tbody>
</table>

Modullevel / module level

Modulart / typ of module

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Examination

Form of instruction | Colloquium |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>G</td>
</tr>
</tbody>
</table>

SWS

Frequency | SoSe oder WiSe |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload Präsenzzeit</td>
<td>0 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration (semesters)</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modullevel / module level</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart / typ of module</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>G</td>
</tr>
<tr>
<td>Form of instruction</td>
<td>Colloquium</td>
</tr>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>0 h</td>
</tr>
</tbody>
</table>