<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bio703</td>
<td>Basic Concepts in Plant Sciences</td>
<td>4</td>
</tr>
<tr>
<td>bio765</td>
<td>Current Methods in Plant Sciences - Ecology, Phylogeny</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>and Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>bio655</td>
<td>Ornithology in theoretical Concepts</td>
<td>6</td>
</tr>
<tr>
<td>bio770</td>
<td>Field Methods in Organismal Biology</td>
<td>9</td>
</tr>
<tr>
<td>bio720</td>
<td>Marine Biodiversity</td>
<td></td>
</tr>
<tr>
<td>bio780</td>
<td>Biodiversity of Littoral Communities</td>
<td>11</td>
</tr>
<tr>
<td>bio733</td>
<td>Evolutionary Biology Population Genetics</td>
<td>12</td>
</tr>
<tr>
<td>bio736</td>
<td>Evolutionary Transcriptomics</td>
<td>14</td>
</tr>
<tr>
<td>bio675</td>
<td>Molecular Ecology</td>
<td>15</td>
</tr>
<tr>
<td>bio605</td>
<td>Molecular Genetics and Cell Biology</td>
<td>16</td>
</tr>
<tr>
<td>bio845</td>
<td>Introduction to Development and Evolution</td>
<td>18</td>
</tr>
<tr>
<td>bio846</td>
<td>Lab Exercises in Development and Evolution</td>
<td>19</td>
</tr>
<tr>
<td>bio860</td>
<td>Comparative Developmental Biology</td>
<td>21</td>
</tr>
<tr>
<td>bio695</td>
<td>Biochemical concepts in signal transduction</td>
<td>23</td>
</tr>
<tr>
<td>neu210</td>
<td>Neurosensory Science and Behaviour</td>
<td>24</td>
</tr>
<tr>
<td>neu220</td>
<td>Neurocognition and Psychopharmacology</td>
<td>25</td>
</tr>
<tr>
<td>neu141</td>
<td>Visual Neuroscience - Physiology and Anatomy</td>
<td>27</td>
</tr>
<tr>
<td>neu150</td>
<td>Visual Neuroscience - Anatomy</td>
<td>29</td>
</tr>
<tr>
<td>neu360</td>
<td>Auditory Neuroscience</td>
<td>31</td>
</tr>
<tr>
<td>neu340</td>
<td>Invertebrate Neuroscience - Neurophysiology</td>
<td>32</td>
</tr>
<tr>
<td>neu310</td>
<td>Psychophysics of Hearing</td>
<td>34</td>
</tr>
</tbody>
</table>
bio900 - Biology Research Module ... 37
bio810 - Independent Research ... 39
bio820 - Research Module Fast Track ... 41
bio870 - Communicating Plant Sciences ... 42
bio880 - Skills in Plant Systematics ... 43
bio890 - Current Topics in Biology ... 44
neu730 - Biosciences in the Public Eye and in our Laws ... 45
neu751 - Laboratory Animal Science ... 47
neu760 - Scientific English ... 49
neu780 - Biological Data Analysis with Python ... 51
neu790 - Communicating Neuroscience ... 52
neu800 - Introduction to Matlab ... 54
neu810 - International Meeting Contribution ... 55
bio777 - Objekte in wissenschaftlichen Sammlungen: Konservierung, Management und Forschungsfragen ... 57
bio783 - Object-based Research Projects in Biological Collections ... 59
neu820 - Neuroscience Journal Club ... 61
mam - Master´s Thesis Module ... 62
Background Modules

bio703 - Basic Concepts in Plant Sciences

<table>
<thead>
<tr>
<th>Module label</th>
<th>Basic Concepts in Plant Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio703</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
</tbody>
</table>

Applicability of the module

- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Landscape Ecology (Master) > Basismodule

Responsible persons

- Zotz, Gerhard (module responsibility)
- Albach, Dirk Carl (Module counselling)
- von Hagen, Klaus Bernhard (Module counselling)
- Zotz, Gerhard (authorised to take exams)
- Albach, Dirk Carl (authorised to take exams)
- von Hagen, Klaus Bernhard (authorised to take exams)
- Will, Maria (authorised to take exams)

Prerequisites

- Communicating deeper knowledge in ecology, phylogeny, evolution and genetics of plants
- Communicating scale- and method-overarching thinking
- Communicating deeper theoretic concepts of ecology, evolution and genetics of plants.

- ++ deepened biological expertise
- + deepened knowledge of biological working methods
- + data analysis skills
- + interdisciplinary thinking
- + critical and analytical thinking
- ++ independent searching and knowledge of scientific literature
- + ability to perform independent biological research
- ++ data presentation and discussion in English (written and spoken)
- + teamwork
- ++ ethics and professional behaviour

Module contents

- V: Biodiversity of plants (2 SWS)
- V: Resource acquisition and use by plants (1 SWS)
- S: Phylogeny of plants (2 SWS)
- S: Interactions of plants with environmental parameters (2SWS)

Recommended reading

Languages of instruction

- German, English

Duration (semesters)

- 1 Semester

Module frequency

- winter term

Module capacity

- 12

Reference text

- associated with bio765 (Current Methods in Plant Science) (recommended)

Module level

- MM (Mastermodul / Master module)

Type of module

- Wahlpflicht / Elective

Teaching/Learning method

- Lecture, seminar

Previous knowledge

- Ecology, flora, genetics

Examination

- Examination times

<table>
<thead>
<tr>
<th>Type of examination</th>
<th>Examination times</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Portfolio</td>
<td></td>
</tr>
</tbody>
</table>

Final exam of module

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>4</td>
<td>WiSe</td>
<td>56</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>4</td>
<td>WiSe</td>
<td>56</td>
</tr>
</tbody>
</table>

Total module attendance time

- 112 h
bio765 - Current Methods in Plant Sciences - Ecology, Phylogeny and Molecular Biology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Methods in Plant Sciences - Ecology, Phylogeny and Molecular Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio765</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
</tbody>
</table>
| **Applicability of the module** | - Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Landscape Ecology (Master) > Basismodule |
| **Responsible persons** | - Albach, Dirk Carl (module responsibility)
- Zotz, Gerhard (Module counselling)
- Will, Maria (Module counselling)
- Khan, Gulzar (Module counselling)
- von Hagen, Klaus Bernhard (Module counselling)
- Will, Maria (authorised to take exams)
- Albach, Dirk Carl (authorised to take exams)
- Zotz, Gerhard (authorised to take exams)
- Khan, Gulzar (authorised to take exams)
- von Hagen, Klaus Bernhard (authorised to take exams) |
| **Prerequisites** | |
| **Skills to be acquired in this module** | Acquaintance and practicing ecological, phylogenetic and molecular methods
Communication of scale- and method-overarching thinking and project planning
Knowledge of current methods and questions in plant science
Capacity for teamwork, project- and time management
++ deepened biological expertise
++ deepened knowledge of biological working methods
++ data analysis skills
++ interdisciplinary thinking
+ critical and analytical thinking
+ independent searching and knowledge of scientific literature
+ ability to perform independent biological research
+ data presentation and discussion (written and spoken)
+ teamwork
+ statistics & scientific programming |
| **Module contents** | Ü: Current Methods in Plant Science (8 SWS) |
| **Recommended reading** | |
| **Links** | |
| **Languages of instruction** | German, English |
| **Duration (semesters)** | 1 Semester |
| **Module frequency** | winter term |
| **Module capacity** | 12 |
| **Reference text** | associated with bio703 (Basic Concepts in Plant Sciences) (recommended) |
| **Module level** | MM (Mastermodul / Master module) |
| **Type of module** | Wahlpflicht / Elective |
| **Teaching/Learning method** | Exercise |
| **Previous knowledge** | Ecology, flora, genetics |
| **Examination** | Examination times
Type of examination |
| **Final exam of module** | Portfolio |
| **Type of course** | Exercises |
| **SWS** | 8 |
| **Frequency** | WiSe |
| **On-site workload** | 112 h |
bio655 - Ornithology in theoretical Concepts

Module label	Ornithology in theoretical Concepts
Module abbreviation | bio655
Credit points | 12.0 KP
Workload | 360 h

Applicability of the module
- Master's Programme Biology (Master) > Background Modules

Responsible persons
- Liedvogel, Miriam (module responsibility)
- Bouwhuis, Sandra (Module counselling)
- Köppl, Christine (Module counselling)
- Langemann, Ulrike (Module counselling)
- Mouritsen, Henrik (Module counselling)
- Schmaljohann, Heiko (Module counselling)
- Liedvogel, Miriam (authorised to take exams)
- Bouwhuis, Sandra (authorised to take exams)
- Köppl, Christine (authorised to take exams)
- Langemann, Ulrike (authorised to take exams)
- Mouritsen, Henrik (authorised to take exams)
- Schmaljohann, Heiko (authorised to take exams)

Prerequisites

Skills to be acquired in this module

The aim of the module is to consolidate various aspects of ornithology. The module imparts advanced knowledge on different aspects of ornithology.

The students acquire:

An extended knowledge of behavioural, sensory, morphological and physiological characteristics in birds and relevant fundamental concept in conservation, ecology and evolution morphological and physiological fundamentals and the resulting ecological and behaviour-biological consequences in birds

Knowledge, presentation and discussion of relevant English literature from various fields of ornithology

++ broad and deepened biological expertise

+ deepened in depths knowledge of biological working methods

+ interdisciplinary thinking

+ critical and analytical thinking

+ independent searching and knowledge of scientific literature

++ data presentation and discussion in German and English (written and spoken)

Module contents

The module is composed of the lecture “Ecology, evolution and sensory biology in birds”, a seminar accompanying the lecture “Current Questions in Ornithology”, a seminar “Behavioural Ecology of Birds”, and a seminar "Methods in Field Ornithology".

Lecture “Ecology, evolution and sensory biology in birds”:

This lecture covers in-depth and specific aspects of phylogeny, speciation and hybridisation, bird migration, orientation, behavioural ecology, population biology, life history and sensory systems of birds. Seminar “Current Questions of Ornithology”:

In this seminar, original English publications are presented and discussed which deal with current research results from various fields covered in the lectures. Every student reads a paper on one scientific article, presents the study and discusses the results of that article with the other participants.

Seminar “Behavioural Ecology of Birds” (option 1):
In the seminar, current literature relating to the life history of birds will be reported. During the term, each participant is presenting an original paper in a short talk and the group of students will be guided to critically discuss the paper.

Seminar “Methods in Field Ornithology” (option 2):

The core methods of field ornithology, such as stable isotopes, bird census, ringing, radar, radio tracking, etc., will be introduced with the help of English scientific papers by the students. In the presentations the corresponding methods will be explained in detail with an emphasis on the pros and cons of the method. The aim of this seminar is to learn how to deal with scientific methods in a critical way.

Recommended reading

Bairlein F (2022) Das große Buch vom Vogelzug: Eine umfassende Gesamtdarstellung. AULA-Verlag

Links

Participating Institution: Institute of Avian Research für Vogelforschung

Language of instruction English
Duration (semesters) 1 Semester
Module frequency winter term
Module capacity 30
Reference text associated with bio663
Module level MM (Mastermodul / Master module)
Type of module Wahlpflicht / Elective
Teaching/Learning method Lecture, seminar
Previous knowledge

Examination Examination times Type of examination
Final exam of module exam during final lecture week 3 exams:
- 2 presentations (20% each; the main seminar is mandatory, one of the two options need to be taken in addition)
- 1 written exam or 1 oral exam (60%)
Regular active participation is required for the module to be passed successfully.

Type of course Comment SWS Frequency Workload of compulsory attendance
Lecture 4 WiSe 56
Seminar 4 WiSe 56
Total module attendance time 112 h
bio770 - Field Methods in Organismal Biology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Field Methods in Organismal Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio770</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Landscape Ecology (Master) > Basismodule

Responsible persons
- Zotz, Gerhard (module responsibility)
- Gerlach, Gabriele (Module counselling)
- Albach, Dirk Carl (Module counselling)
- von Hagen, Klaus Bernhard (Module counselling)
- Mouritsen, Henrik (Module counselling)
- Nolte, Arne (Module counselling)
- Zotz, Gerhard (authorised to take exams)
- Gerlach, Gabriele (authorised to take exams)
- Albach, Dirk Carl (authorised to take exams)
- Will, Maria (authorised to take exams)
- von Hagen, Klaus Bernhard (authorised to take exams)
- Mouritsen, Henrik (authorised to take exams)
- Nolte, Arne (authorised to take exams)
- Khan, Gulzar (authorised to take exams)

Prerequisites

Skills to be acquired in this module
- ++ deepened biological expertise
- ++ deepened knowledge of biological working methods
- ++ data analysis skills
- + interdisciplinary thinking
- ++ critical and analytical thinking
- ++ independent searching and knowledge of scientific literature
- ++ ability to perform independent biological research
- + data presentation and discussion (E) (written and spoken)
- ++ project and time management
- ++ statistics & scientific programming

The module aims at enabling students to apply theoretical knowledge to practical, hypothesis-based field studies within the scope of a seminar. The data derived from the individual projects performed are then to be documented and discussed in the form of a written laboratory course report oriented by a scientific publication and to be written in English. Several teachers cooperate to enable interdisciplinary approaches (e.g. botanical-zoological approaches).

Module contents

- S: Biogeographic and ecological classification and characterization of a biome (e.g. Mediterranean region, moist tropics, boreal zone), independent identification and treatment of scientific questions, presentation of scientific results in a "mini symposium" subsequent to the field studies.
- E: Planning and performing a field study project, data analysis, written report in the form of a scientific publication

Recommended reading
- Varies with topic and field locality

Links
- www.uni-oldenburg.de/fun_eco/

Languages of instruction
- German, English

Duration (semesters)
- 1 Semester

Module frequency
- annually in summer term

Module capacity
- 21

Type of module
- MM (Mastermodul / Master module)
- Wahlpflicht / Elective

Teaching/Learning method
- Seminar, exercise

Previous knowledge

Examination Examination times Type of examination

Final exam of module
- 2 Presentations (30 %) Laboratory course report on project work (70 %)

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td></td>
<td>10</td>
<td>SoSe</td>
<td>140</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Type of course Comment</td>
<td>SWS</td>
<td>Frequency</td>
<td>Workload of compulsory attendance</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Seminar (Pflichtveranstaltung für Erstsemester OHNE bisherige Belehrung)</td>
<td></td>
<td>WiSe 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total module attendance time</td>
<td></td>
<td></td>
<td>168 h</td>
<td></td>
</tr>
</tbody>
</table>
bio720 - Marine Biodiversity

Module label: Marine Biodiversity
Module abbreviation: bio720
Credit points: 15.0 KP
Workload: 450 h

Applicability of the module:
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules

Responsible persons:
- Martinez Arbizu, Pedro Miguel (module responsibility)
- Martinez Arbizu, Pedro Miguel (authorised to take exams)
- Wehrmann, Achim (authorised to take exams)
- Rossel, Sven (authorised to take exams)
- Gutt, Julian (authorised to take exams)
- Körncke, Ingrid (authorised to take exams)

Prerequisites:
- BSc (Biology)

Skills to be acquired in this module:
- ** deepened biological expertise
- ** deepened knowledge of biological working methods
- ++ data analysis skills
- ++ interdisciplinary thinking
- ++ critical and analytical thinking
- ++ independent searching and knowledge of scientific literature
- ++ ability to perform independent biological research
- ++ data presentation and discussion (written and spoken) (E)
- ++ teamwork
- + ethics and professional behaviour
- + project and time management
- ++ statistics & scientific programming

Knowledge of fundamentals, topical subjects and methods in Marine Biology and Marine Geology. Studies and critical assessment of the scientific literature.

Module contents:
L: (AW) General Marine Geology E: Biogenic sedimentation, Interaction benthos-sediment, (SS) Plankton of the oceans; (MH) unicellular plankton; (IK) benthos of the North-Sea; (PM) biodiversity in the deep sea and on seamounts; (JG) conceptions and hypotheses of marine biodiversity, biodiversity of marine vertebrates; (GG) animal migrations and dispersal behaviour. Methods and scientific work on research vessels. A lecture comprises the above-mentioned subjects and imparts marine biological theories, research results and methods. In the seminar, research is presented and discussed. In the laboratory course/exercises, subjects are treated in coordination with the contents of the lecture. With the aid of a computer, data are analysed and interpreted statistically.

Recommended reading:
as announced in the lecture

Links:

Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: winter term
Module capacity: unlimited
Module level: MM (Mastermodul / Master module)
Type of module: Wahlpflicht / Elective
Teaching/Learning method: Lecture, seminar, exercise

Previous knowledge

Examination: Examination times
Type of examination

Final exam of module:
Written examination (60 %), portfolio (20 %), short presentation (20 %)
Regular active participation is required for the module to be passed.

Type of course: Comment
SWS Frequency Workload of compulsory attendance

Lecture 3 WiSe 42
Exercises 9 WiSe 126
Seminar 1 WiSe 14

Total module attendance time: 182 h

Module contents:
L: (AW) General Marine Geology E: Biogenic sedimentation, Interaction benthos-sediment, (SS) Plankton of the oceans; (MH) unicellular plankton; (IK) benthos of the North-Sea; (PM) biodiversity in the deep sea and on seamounts; (JG) conceptions and hypotheses of marine biodiversity, biodiversity of marine vertebrates; (GG) animal migrations and dispersal behaviour. Methods and scientific work on research vessels. A lecture comprises the above-mentioned subjects and imparts marine biological theories, research results and methods. In the seminar, research is presented and discussed. In the laboratory course/exercises, subjects are treated in coordination with the contents of the lecture. With the aid of a computer, data are analysed and interpreted statistically.

Recommended reading:
as announced in the lecture

Links:

Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: winter term
Module capacity: unlimited
Module level: MM (Mastermodul / Master module)
Type of module: Wahlpflicht / Elective
Teaching/Learning method: Lecture, seminar, exercise

Previous knowledge

Examination: Examination times
Type of examination

Final exam of module:
Written examination (60 %), portfolio (20 %), short presentation (20 %)
Regular active participation is required for the module to be passed.

Type of course: Comment
SWS Frequency Workload of compulsory attendance

Lecture 3 WiSe 42
Exercises 9 WiSe 126
Seminar 1 WiSe 14

Total module attendance time: 182 h

Module contents:
L: (AW) General Marine Geology E: Biogenic sedimentation, Interaction benthos-sediment, (SS) Plankton of the oceans; (MH) unicellular plankton; (IK) benthos of the North-Sea; (PM) biodiversity in the deep sea and on seamounts; (JG) conceptions and hypotheses of marine biodiversity, biodiversity of marine vertebrates; (GG) animal migrations and dispersal behaviour. Methods and scientific work on research vessels. A lecture comprises the above-mentioned subjects and imparts marine biological theories, research results and methods. In the seminar, research is presented and discussed. In the laboratory course/exercises, subjects are treated in coordination with the contents of the lecture. With the aid of a computer, data are analysed and interpreted statistically.

Recommended reading:
as announced in the lecture

Links:
bio780 - Biodiversity of Littoral Communities

Module label
Biodiversity of Littoral Communities

Module abbreviation
bio780

Credit points
15.0 KP

Workload
450 h

Applicability of the module
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules

Responsible persons
- Martinez Arbizu, Pedro Miguel (module responsibility)
- Martinez Arbizu, Pedro Miguel (authorised to take exams)

Prerequisites
Safe apnoediving with aptitude test and medical fitness certificate

Skills to be acquired in this module
+ deepened knowledge of biological working methods
+ ability to perform independent biological research
++ teamwork
+ ethics and professional behaviour
+ project and time management

By actively participating in this module students acquire qualifications in the following fields: Biological oceanography, marine biology and marine ecology: - Geological formation history of the Mediterranean Sea and Atlantic Ocean, respectively, or the Red Sea and adjacent seas - Oceanography and hydrology - Development of the faunal and floral composition of the Atlantic Ocean, the Mediterranean Sea and the Mediterranean region or the Red Sea (biogeography) - Commercial utilization of the seas and its impacts - Biotopes and biotic communities - Evolution, systematics, morphology, modes of life, and ecology of selected animal groups - Applying theoretical knowledge to real-world organisms/systems - Improved and specialized knowledge of species - Adaptation of life cycles - Interaction between organisms and environment - Dynamics of reef-building and reef-degrading processes - Threat to coral reefs/protection of marine environments Methods: - Formulation and definition of scientific approaches and selection of methods - Observation and investigation of organisms and their habitats (snorkelling/diving) - Documentation of small research projects in groups in the style of a scientific publication - Editorial work to prepare a module report - Popular presentation of results to be published by the media and to be presented at the University Further skills: - Social engagement in groups/teamwork in projects - Independent scientific work in groups - Improvement of scientific discussion culture - Consciousness of the threat to coral reefs - Practising English - Dealing with the culture of the visited region Culture: - History, culture, politics, and religion Additionally: - Physiological aspects of apnoediving - Measures in case of accidents (also caused by "poisonous" organisms)

Module contents
Biodiversity of littoral biotic communities – topographical field research

Recommended reading

Links
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: annually in summer term
Module capacity: unlimited
Module level: MM (Mastermodul / Master module)
Type of module: Wahlpflicht / Elective
Teaching/Learning method: Exercise, seminar

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>during the lectures</td>
<td>2 short presentations (30 %), 1 internship report (70 %) (project report in the style of a scientific publication) PLEASE NOTE: Additional conditions regarding attendance and ungraded activities as determined by the persons responsible for the module will apply.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td></td>
<td>9</td>
<td>SoSe</td>
<td>126</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
<tr>
<td>Seminar (Pflichtveranstaltung für Erstsemester OHNE bisherige Belehrung)</td>
<td></td>
<td></td>
<td>WiSe</td>
<td>0</td>
</tr>
</tbody>
</table>

Total module attendance time: 168 h
bio733 - Evolutionary Biology Population Genetics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Evolutionary Biology Population Genetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio733</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>- Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>- Gerlach, Gabriele (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>- Albach, Dirk Carl (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>- Khan, Gulzar (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>- Gerlach, Gabriele (authorised to take exams)</td>
</tr>
<tr>
<td></td>
<td>- Albach, Dirk Carl (authorised to take exams)</td>
</tr>
<tr>
<td></td>
<td>- Khan, Gulzar (authorised to take exams)</td>
</tr>
</tbody>
</table>

Further responsible persons	Levent Khan
Prerequisites	none
Skills to be acquired in this module	+ deepened biological expertise
	++ deepened knowledge of biological working methods
	++ data analysis skills
	++ critical and analytical thinking
	++ independent searching and knowledge of scientific literature
	++ data presentation and discussion (E) (written and spoken)
	+ teamwork
	++ statistics & scientific programming

| Module contents | Lecture conveys knowledge about the fields of population genetics, evolution and speciation. Important laboratory methods regarding DNA sequencing will be learned as well as basics and background information on the analysis of dispersal, distribution, genetic diversity of plant and animal species. Exercise: Data sets and methods will be analysed to determine distribution and genetic exchange between populations. |
| Recommended reading | current papers in Evolutionary Biology Futuyama D. Evolutionary Biology, Elsevier, Hartl & Clark Principles of Population Genetics, Sinauer |

Links	
Languages of instruction	German, English
Duration (semesters)	1 Semester
Module frequency	winter term
Module capacity	12
Reference text	associated with bio736 (Evolutionary Transcriptomics) (recommended)
Module level	MM (Mastermodul / Master module)
Type of module	Wahlpflicht / Elective
Teaching/Learning method	Lecture, exercise
Previous knowledge	Basic knowledge of evolutionary biology

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>portfolio (60%) presentation (40%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>1</td>
<td>WISe</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>3</td>
<td>WISe</td>
<td>42</td>
<td></td>
</tr>
</tbody>
</table>

| Total module attendance time | 56 h |
bio736 - Evolutionary Transcriptomics

Module label: Evolutionary Transcriptomics
Module abbreviation: bio736
Credit points: 6.0 KP
Workload: 180 h

Applicability of the module:
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules

Responsible persons:
- Nolte, Arne (module responsibility)
- Nolte, Arne (authorised to take exams)
- Dennenmoser, Stefan (Module counselling)
- Dennenmoser, Stefan (authorised to take exams)

Prerequisites:
none

Skills to be acquired in this module:
+ deepened biological expertise
++ deepened knowledge of biological working methods
++ data analysis skills;
++ critical and analytical thinking
+ independent searching and knowledge of scientific literature
++ data presentation and discussion in English (written and spoken)
++ statistics & scientific programming

Module contents:
Lecture: Gene expression represents the first step of the translation of genomic information into a phenotype. This phenotype is of broad interest in all disciplines of biology. Gene expression data can reveal how genetic changes at single genes manifest phenotypically and how gene expression is regulated. The same data can also explain differences in life history and adaptation to different environments. Different perspectives can be understood by studying mechanisms of gene regulation as well as broad scale transcriptomics analyses. Exercise: We will generate and analyze gene expression data during the course including wet lab and computational methods. Practicals include the analysis of single-gene expression data as well as RNAseq data representing complete transcriptomes.

Recommended reading

Languages of instruction: German, English
Duration (semesters): 1 Semester
Module frequency: winter term
Module capacity: 12
Reference text:
associated with bio733: Evolutionary Biology Population Genetics (recommended)

Module level: MM (Mastermodul / Master module)
Type of module: Wahlpflicht / Elective
Teaching/Learning method: Lecture, exercise
Previous knowledge: Basic knowledge of evolutionary biology

Examination: Examination times: Portfolio (60%) presentation (40%)
Type of course Module module

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>3</td>
<td>WiSe</td>
<td>42</td>
</tr>
</tbody>
</table>

Total module attendance time: 56 h
bio675 - Molecular Ecology

Module label: Molecular Ecology
Module abbreviation: bio675
Credit points: 12.0 KP
Workload: 360 h

Applicability of the module:
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Landscape Ecology (Master) > Bassimodule

Responsible persons:
- Nolte, Arne (module responsibility)
- Gerlach, Gabriele (Module counselling)
- Nolte, Arne (authorised to take exams)
- Gerlach, Gabriele (authorised to take exams)
- Dennenmoser, Stefan (authorised to take exams)

Prerequisites:
B.Sc. (Biologie, Umweltwissenschaften) M.Sc. (Biologie, Marine Umweltwissenschaften, Landschaftsökologie)

Skills to be acquired in this module:
The field of molecular ecology strives to identify relationships between species genotypes, phenotypes and ecological factors. It addresses questions about how organisms adapt and explains patterns of distribution and biodiversity. During the course, participants will get to know the biological background to design an experiment in the field of molecular ecology. We will discuss the state of the art according to literature. Participants will perform sampling and conduct steps of the analysis. The course will cover field methods (sampling) and lab methods (behavior experiments, genetic analyses, phenotypic analyses) as well as computer based analyses.

++ deepened biological expertise
++ deepened knowledge of biological working methods
++ data analysis skills
+ interdisciplinary thinking
+ critical and analytical thinking
+ independent searching and knowledge of scientific literature
++ ability to perform independent biological research
++ data presentation and discussion (E) (written and spoken)
+ statistics & scientific programming

Module contents:
Lecture: AN/GG - Molecular ecology background of specific study systems. The lectures will introduce a study system that will be analyzed during the course (study systems may vary from year to year). It is the goal of the lecture to provide students with background information to develop an experimental design of a field study during the practical. Exercise: AN/GG - Mixed course with laboratory and field exercises. Samples will be collected in the field. One goal of the course is to apply modern analyses to understand how organisms are distributed. Another aspect is the application of molecular markers to analyze behavioral experiments.

Recommended reading:
will be announced during the course

Links:
Languages of instruction: German, English
Duration (semesters): 1 Semester
Module frequency: summer term
Module capacity: 15
Reference text: associated with bio890 Current Topics of Biology (Seminar)
Module level: MM (Mastermodul / Master module)
Type of module: Wahlpflicht / Elective
Teaching/Learning method: Lecture, Exercise
Previous knowledge: Reading English literature and presenting seminar topics in English. Basic knowledge of working in a gene laboratory and with a computer.

Examination:
Examination times: Type of examination

Final exam of module:
during the module
Presentations (50%), Portfolio (50%). Regular participation is a prerequisite to pass in the module.

Type of course:
Comment: SWS
Frequency: Workload of compulsory attendance

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>SoSe</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
<td>SWS</td>
<td>Frequency</td>
<td>Workload of compulsory attendance</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>-----</td>
<td>-----------</td>
<td>------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Total module attendance time</td>
<td></td>
<td></td>
<td></td>
<td>112 h</td>
<td></td>
</tr>
</tbody>
</table>
bio605 - Molecular Genetics and Cell Biology

Module label: Molecular Genetics and Cell Biology
Module abbreviation: bio605
Credit points: 12.0 KP
Workload: 360 h

Applicability of the module:
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Molecular Biomedicine (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons:
- Neidhardt, John (module responsibility)
- Neidhardt, John (authorised to take exams)
- Koch, Karl-Wilhelm (authorised to take exams)
- Jüschke, Christoph (authorised to take exams)

Prerequisites:
BSc (Biologie, Biochemie)

Skills to be acquired in this module:
- ++ deepened biological expertise
- ++ deepened knowledge of biological working methods
- + data analysis skills
- ++ interdisciplinary thinking
- + critical and analytical thinking
- + independent searching and knowledge of scientific literature
- + data presentation and discussion (E) (written and spoken)
- + teamwork
- + ethics and professional behaviour
- + project and time management

Addressing students with an emphasis on molecular biology, molecular genetics, cell biology, and neurobiology

Module contents:
Lecture: To improve knowledge in molecular genetics, molecular biology and cell biology in correlation with human diseases. Exercise: Learn to transfer the theoretical knowledge to experiments. Gaining methodological knowledge in molecular genetics, cell biology and therapeutic approaches. Initial training on how to perform research projects. Subjects of the lecture and seminar: Molecular bases of neurodegenerative diseases, structure and function of DNA/RNA/proteins/membranes, cytoskeleton, cell cycle, programmed cell death, cells in the social structure. Exercises: Learning current methods of molecular biology and human genetics; high throughput technologies, introduction to cell cultivation techniques.

Recommended reading:
Textbooks of Cell Biology

Links:
http://www.uni-oldenburg.de/humangenetik/

Language of instruction:
English

Duration (semesters):
1 Semester

Module frequency:
winter term

Module capacity:
15

Reference text:
associated with bio900

Module level:
MM (Mastermodul / Master module)

Type of module:
Wahlpflicht / Elective

Teaching/Learning method:
Lecture, seminar, exercise

Previous knowledge:
Basic knowledge in cell biology, genetics, biochemistry

Examination:
written examination (70 %), paper(s) presentation 30 %; not graded: signed lab protocols, regular active participation is required for the module to be passed.

Type of course:
Lecture: 2 SWS, WiSe 28
Seminar: 1 SWS, WiSe 14
Exercises: 5 SWS, WiSe 70

Total module attendance time: 112 h
bio845 - Introduction to Development and Evolution

<table>
<thead>
<tr>
<th>Module label</th>
<th>Introduction to Development and Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio845</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Molecular Biomedicine (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
- Sienknecht, Ulrike (module responsibility)
- Sienknecht, Ulrike (Module counselling)
- Sienknecht, Ulrike (authorised to take exams)
- Claußen, Maike (authorised to take exams)

Prerequisites

Skills to be acquired in this module
Upon successful completion of this course, students

- know the fundamental problems organisms share in development
- know the common basic steps of ontogenesis after comparing the life cycles of different species (both vertebrates and invertebrates)
- know the fundamentals of the genetic control of cell-fate specification, morphogenesis, and organogenesis
- know the principles of gene regulatory networks in development and are able to explain examples
- are able to explain and discuss mechanisms of development across taxonomic groups and questions about the evolution of developmental mechanisms
- have in-depth knowledge of the development of animal nervous systems, including cellular and net-work properties

skills:
++ deepened biological expertise
+ deepened knowledge of biological working methods
++ interdisciplinary thinking
++ critical and analytical thinking
+ independent searching and knowledge of scientific literature
+ ability to perform independent biological research
+ teamwork

Module contents
Lectures on the fundamentals and concepts of developmental biology, including evolutionary aspects. Parallel seminars matching the topics of the lectures and emphasizing discussion. Lecture topics:

- Introduction to Developmental Biology
- Cell-Cell Communication
- Differential Gene Expression (I and II)
- Early Development of Vertebrates, Gastrulation
- Neurulation
- Brain Development
- Axonal Growth, Target Selection, Synaptogenesis and Refinement
- Neural Crest
- Mesoderm Development
- Morphogenesis
- Developmental Mechanisms of Evolutionary Change
- Model Organisms in Developmental Biology
- Transgenic Mice
- Medical Implications of Developmental Biology

Recommended reading

textbook: Gilbert S.F.: Developmental Biology, Macmillan Publishers Ltd, 11th edition 2016 (current edition); and current literature on course topics

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>winter term</td>
</tr>
<tr>
<td>Module capacity</td>
<td>20 (selection criteria: sequence of registration)</td>
</tr>
<tr>
<td>Reference text</td>
<td>associated with bio846 (neu120) (Lab Exercises in Development and Evolution)</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Lecture, seminar</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>organismic biology, developmental biology, evolutionary biology, neurobiology, genetics, molecular biology</td>
</tr>
</tbody>
</table>

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>same winter term</td>
<td>oral exam of 30 minutes (or written exam)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>WiSe</td>
<td>45</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>3</td>
<td>WiSe</td>
<td>45</td>
</tr>
</tbody>
</table>

Total module attendance time

90 h
bio846 - Lab Exercises in Development and Evolution

<table>
<thead>
<tr>
<th>Module label</th>
<th>Lab Exercises in Development and Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio846</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Applicability of the module | - Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules |
| Responsible persons | - Sienknecht, Ulrike (module responsibility)
- Sienknecht, Ulrike (Module counselling)
- Sienknecht, Ulrike (authorised to take exams)
- Claußen, Maike (authorised to take exams)
- Ebbers, Lena (authorised to take exams) |
| Prerequisites | mandatory prerequisite is the module bio845 (neu110) (Introduction to Development and Evolution) |

Skills to be acquired in this module

Upon successful completion of this course, students have skills in methods of developmental biology:

- are capable of performing live embryo husbandry
- are able to carry out in-ovo stainings
- are familiar with the use of embryonic stage discrimination standards for model organisms
- document the observed embryonic stages by drawings with anatomical labelling
- are familiar with tissue preparation (including cryosectioning), the use of different molecular markers, and immunohistological staining methods
- microscopy, data analysis, and photographic data documentation
- know the standards of proper documentation of research data and the universal format of a lab notebook
- know how to carry out formal laboratory reports (and the structure of a scientific paper)
- have basic knowledge in the field of auditory system development
- have basic knowledge of the organisation of the auditory system across vertebrate groups
- have basic knowledge of the development of the middle and inner ear, as well as selected auditory brain centres

are able to summarize current hypotheses about the evolution of the auditory system in vertebrates skills:

++ deepened biological expertise
++ deepened knowledge of biological working methods
++ data analysis skills
++ critical and analytical thinking
+ independent searching and knowledge of scientific literature
++ ability to perform independent biological research
+ data presentation and discussion (written and spoken)
+ teamwork
+ ethics and professional behaviour
+ project and time management

Module contents

Lab exercises in developmental biology of auditory research model organisms, such as chicken and mouse embryos. Practical introduction to methods, such as in-ovo live observation; developmental stage discrimination and description, tissue preparation for histology, sectioning, staining, and microscopy, including data analyses. Seminars in the field of auditory system development and methods based on current literature

Recommended reading

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>winter term</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Module capacity</td>
<td>6 (selection criteria: advance of studies in MA program)</td>
</tr>
<tr>
<td>Reference text</td>
<td>Associated with bio845 (neu110) (Introduction to Development and Evolution)</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Exercise, lecture, seminar</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>organismic biology, experience with lab work</td>
</tr>
<tr>
<td>Examination</td>
<td>Examination times</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>same winter term</td>
</tr>
<tr>
<td>Type of course</td>
<td>Exercises</td>
</tr>
<tr>
<td>SWS</td>
<td>6</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>On-site workload</td>
<td>84 h</td>
</tr>
</tbody>
</table>
bio860 - Comparative Developmental Biology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Comparative Developmental Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio860</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>• Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td></td>
<td>• Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>• Sienknecht, Ulrike (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>• Sienknecht, Ulrike (authorised to take exams)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>++ deepened biological knowledge</td>
</tr>
<tr>
<td></td>
<td>++ deepened knowledge of techniques in biology</td>
</tr>
<tr>
<td></td>
<td>++ knowledge in data analysis and presentation</td>
</tr>
<tr>
<td></td>
<td>+ cross-disciplinary knowledge and thinking</td>
</tr>
<tr>
<td></td>
<td>++ critical and analytical thinking</td>
</tr>
<tr>
<td></td>
<td>+ independent searching and knowledge of scientific literature</td>
</tr>
<tr>
<td></td>
<td>++ ability to perform independent biological research</td>
</tr>
<tr>
<td></td>
<td>++ data presentation and discussion (E) (written and spoken)</td>
</tr>
<tr>
<td></td>
<td>+ team work</td>
</tr>
<tr>
<td></td>
<td>+ ethics and professional behaviour</td>
</tr>
<tr>
<td></td>
<td>++ project and time management</td>
</tr>
<tr>
<td>Module contents</td>
<td>Lectures and Lab exercises in topics of evolutionary developmental biology, i.e. comparative develop-mental biology, such as the development of sensory systems in different species.</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>summer term</td>
</tr>
<tr>
<td>Module capacity</td>
<td>6 (Reihenfolge der Anmeldungen)</td>
</tr>
<tr>
<td>Reference text</td>
<td>associated with bio845 Introduction to Development and Evolution</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Lecture, exercise, seminar</td>
</tr>
<tr>
<td>Previsous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Examination times</td>
<td></td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>same summer term</td>
</tr>
<tr>
<td>Examination times</td>
<td>1 portfolio</td>
</tr>
<tr>
<td>Type of course</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Workload of compulsory</td>
<td></td>
</tr>
<tr>
<td>attendance</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>1</td>
</tr>
<tr>
<td>Experiences</td>
<td>3</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td>56 h</td>
</tr>
<tr>
<td>Workload of compulsory</td>
<td></td>
</tr>
<tr>
<td>attendance</td>
<td></td>
</tr>
</tbody>
</table>
bio695 - Biochemical concepts in signal transduction

Module label: Biochemical concepts in signal transduction

Module abbreviation: bio695

Credit points: 12.0 KP

Workload: 360 h

Applicability of the module:
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Molecular Biomedicine (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons:
- Koch, Karl-Wilhelm (module responsibility)
- Koch, Karl-Wilhelm (authorised to take exams)
- Scholten, Alexander (authorised to take exams)
- Scholten, Alexander (Module counselling)

Prerequisites:
none

Skills to be acquired in this module:
++ deepened knowledge of biological working methods
++ methods: protein expression and purification, functional assays, enzyme kinetics, spectroscopic techniques
++ data analysis skills
+ interdisciplinary thinking
++ critical and analytical thinking
+ independent searching and knowledge of scientific literature
+ ability to perform independent biological research
++ data presentation and discussion in German and English (written and spoken)
++ team work
+ project and time management

Module contents:
Lecture: Molecular fundamentals of cellular signal processes Seminar: Signal transduction Exercises: Experiments on cellular signal transduction and enzymology
Mechanisms of biochemical signal transduction are imparted theoretically and experimentally

Recommended reading:
Textbooks of cell biology and biochemistry. Current literature on topics of signal transduction (as announced in the preparatory meeting).

Language of instruction:
English

Duration (semesters):
1 Semester

Module frequency:
winter term

Module capacity:
20

Module level:
MM (Mastermodul / Master module)

Type of module:
Wahlpflicht / Elective

Teaching/Learning method:
Lecture, seminar, exercise

Previous knowledge:

Examination:

Examination times:

Type of examination:
written examination (50%), protocols (50%)
Prerequisite for passing the module is active participation: Presentation(s) in the seminar

Type of course:

Lecture
Seminar
Exercises

SWS
1
1
6

Frequency
WiSe
WiSe
WiSe

Workload of compulsory attendance
14
14
84

Total module attendance time:
112 h
neu210 - Neurosensory Science and Behaviour

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neurosensory Science and Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu210</td>
</tr>
<tr>
<td>Credit points</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td></td>
<td>4 SWS Lecture (VO) “Neuroethology” and “Behavioural ecology”</td>
</tr>
<tr>
<td></td>
<td>Total workload 180h: 56h contact/ 60h background reading/ 64h exam preparation</td>
</tr>
<tr>
<td></td>
<td>2 SWS Seminar (SE) “Current issues of ethology”</td>
</tr>
<tr>
<td></td>
<td>Total workload 90h: 28h contact/ 30h literature reading/ 32h preparation of presentation</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Neuroscience (Master) > Background Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Langemann, Ulrike (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Mouritsen, Henrik (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Klump, Georg Martin (authorised to take exams)</td>
</tr>
<tr>
<td></td>
<td>Mouritsen, Henrik (authorised to take exams)</td>
</tr>
<tr>
<td></td>
<td>Langemann, Ulrike (authorised to take exams)</td>
</tr>
<tr>
<td></td>
<td>Albert, Jörg (authorised to take exams)</td>
</tr>
<tr>
<td></td>
<td>Clemens, Jan (authorised to take exams)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Fundamentals of Neurobiology, Behavioural Biology, Evolution, Ecology</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>++ Neurosci. knowlg. + Expt. methods + Independent research + Scient.</td>
</tr>
<tr>
<td></td>
<td>literature + Social skills ++ Interdiscipl. knowlg. Maths/Stats/Progr. + Data present./disc.</td>
</tr>
<tr>
<td></td>
<td>+ Scientific Ethics</td>
</tr>
<tr>
<td></td>
<td>Upon successful completion of this course, students</td>
</tr>
<tr>
<td></td>
<td>• know the fundamentals of behavioural ecology and neuroethology</td>
</tr>
<tr>
<td></td>
<td>• are able to present and critically assess scientific data and approaches</td>
</tr>
<tr>
<td>Module contents</td>
<td>The lecture "Neuroethology" provides an introduction to the mechanisms</td>
</tr>
<tr>
<td></td>
<td>underlying the behaviour of animals. Subjects are, e.g., the mechanisms of</td>
</tr>
<tr>
<td></td>
<td>perception, control of movement patterns, mechanisms of learning, orientation</td>
</tr>
<tr>
<td></td>
<td>and navigation.</td>
</tr>
<tr>
<td></td>
<td>The lecture "Behavioural ecology" provides an introduction to topics such as</td>
</tr>
<tr>
<td></td>
<td>predator-prey interactions, optimal food utilization, spatial and temporal</td>
</tr>
<tr>
<td></td>
<td>distribution of animals, social relations and group formation, mating systems and</td>
</tr>
<tr>
<td></td>
<td>reproductive strategies, sexual selection, investment of parents in offspring, and</td>
</tr>
<tr>
<td></td>
<td>communication.</td>
</tr>
<tr>
<td></td>
<td>In the seminar "Current issues of Ethology", current original literature relating to</td>
</tr>
<tr>
<td></td>
<td>behavioural biology is reported and discussed.</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>30 (</td>
</tr>
<tr>
<td></td>
<td>Recommended in combination with: neu220 BM “Neurocognition and Psychopharmacology”</td>
</tr>
<tr>
<td></td>
<td>Shared course components with (cannot be credited twice): bio610 (5.02.611</td>
</tr>
<tr>
<td></td>
<td>“Neuroethologie”, 5.02.612 “Verhaltensökologie”, 5.02.613 “Aktuelle Themen der Ethologie”</td>
</tr>
<tr>
<td>Reference text</td>
<td>Course in the second half of the semester</td>
</tr>
<tr>
<td></td>
<td>Regular active participation is required to pass the module.</td>
</tr>
<tr>
<td>Module level</td>
<td></td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
</tr>
</tbody>
</table>

Total module attendance time

84 h
neu220 - Neurocognition and Psychopharmacology

Module label: Neurocognition and Psychopharmacology
Module abbreviation: neu220
Credit points: 6.0 KP
Workload: 180 h
- 3 SWS Lecture (VO) "Introd. to Cognitive Neuroscience" and "Psychopharmacol." Total workload 135h: 45h contact/ 45 background reading/ 45h exam preparation
- 1 SWS Supervised exercise (UE) Total workload 45h: 14h contact/ 31h paper reading

Applicability of the module
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Molecular Biomedicine (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
- Thiel, Christiane Margarete (module responsibility)
- Thiel, Christiane Margarete (Module counselling)
- Gießing, Carsten (authorised to take exams)

Prerequisites

Skills to be acquired in this module
++ Neurosci. knowlg. + Expt. methods Independent research + Scient. literature + Social skills
++ Interdiscipl. knowlg. Maths/Stats/Progr. + Data present./disc. + Scientific English Ethics

Upon successful completion of this course, students
- know the fundamentals of neurotransmission
- know the basic neural mechanisms underlying attention, learning, emotion, language and executive functions
- understand the relationship between disturbances in neurotransmitter systems, cognitive functions and psychiatric disease
- know the principles of drug treatment for psychiatric disorders
- have in-depth knowledge in selected areas of these topics
- are able to understand, explain and critically assess neuroscientific approaches in animals and humans
- are able to understand and critically assess published work in the area of cognitive neuroscience

Module contents
The lecture "Introduction to Cognitive Neuroscience" gives a short introduction into neuroanatomy and cognitive neuroscience methods and then covers different cognitive functions.
Lecture topics:
- History of cognitive neuroscience
- Methods of cognitive neuroscience
- Attention
- Learning
- Emotion
- Language
- Executive functions.
The supervised exercises either deepen knowledge by excercises or discussions of recent papers/ talks on the respective topic covered during that week.
The lecture "Psychopharmacology" illustrates the connection between neurotransmitters and behaviour and its links to psychiatric disease. The lecture contains several interactive parts to consolidate and critically evaluate the acquired knowledge.
Lecture topics:
- Introduction to Terms and Definitions in Drug Research
- Dopaminergic and Noradrenergic System
- Cholinergic and Serotonergic System
- GABAergic and Glutamatergic System
- Addiction
- Depression
- Schizophrenia
- Anxiety
- Alzheimer's Disease

Recommended reading
Press

Links

Language of instruction English
Duration (semesters) 1 Semester
Module frequency jährlich
Module capacity 30 (Recommended in combination with neu210 "Neurosensory Science and Behaviour", neu300 "Functional MRI data analysis" Shared course components with (cannot be credited twice): bio610 and psy181 (5.02.614 "Introduction to Cognitive Neuroscience", 5.02.615 "Psychopharmacology")

Reference text
Course in the second half of the semester
Regular active participation is required to pass the module.

Module level

Type of module

Teaching/Learning method

Previous knowledge

Examination times Type of examination
Final exam of module as agreed, usually in the break after the winter term 100% written exam (content of the lectures)

Type of course Comment SWS Frequency Workload of compulsory attendance
Lecture 3 -- 42
Exercises 1 -- 14
Total module attendance time 56 h
neu141 - Visual Neuroscience - Physiology and Anatomy

<table>
<thead>
<tr>
<th>Module label</th>
<th>Visual Neuroscience - Physiology and Anatomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu141</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
</tbody>
</table>

Workload

- 3 SWS Lecture (VO)
 - Total workload 90 h: 30h contact / 60h background literature reading and preparation for sh
- 1 SWS Seminar (SE)
 - Total workload 30h: 10h contact / 20h literature reading and preparation of result presentation
- 8 SWS Supervised exercise (UE)
 - Total workload 240h: 200h contact / 40h results analysis, writing of short reports for portfolio

Applicability of the module

- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Molecular Biomedicine (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons

- Greschner, Martin (module responsibility)
- Greschner, Martin (authorised to take exams)
- Ahlers, Malte (authorised to take exams)
- Dedek, Karin (authorised to take exams)
- Dömer, Patrick (authorised to take exams)

Prerequisites

Basic knowledge of neurobiology

Skills to be acquired in this module

- ++ Neurosci. knowlg.
- ++ Expt. Methods
- + Independent research
- ++ Scient. Literature
- + Social skills
- + Maths/Stats/Progr.
- ++ Data present./disc.
- + Scientific English
- + Ethics

Upon successful completion of this course, students

- have basic knowledge of electrophysiological techniques used in neuroscience research
- have acquired first practical skills in some electrophysiological techniques
- have acquired basic skills in data analysis
- have knowledge on retinal physiology and anatomy of the visual system
- have basic knowledge of brain structures and their function
- have profound knowledge of the architecture and circuits of the vertebrate retina
- have acquired basic skills in histological techniques (tissue fixation, embedding, sectioning, staining procedures, immunohistochemistry)
- have acquired fundamental skills in microscopy (differential interference contrast microscopy, phase-contrast microscopy, confocal microscopy)

Module contents

The background module Neurophysiology consists of two weeks of theoretical introduction and two weeks of hands-on lab exercises in patch or extracellular recordings and two weeks of hands-on lab exercises in anatomy.

The seminars cover the following topics:

- Visual system
- Introduction to electrophysiological methods
- Introduction into methods used in neuranatomy and neurochemistry
- Introduction into microscopy and image analysis
- Presentation and discussion of results relating to the literature

Recommended reading

Course scripts and mandatory scientific literature discussed in the seminar will be available in Stud.IP.
Background and seminar literature will be available in Stud.IP.

Links

Language of instruction: English

Duration (semesters): 1 Semester

Module frequency: annually, summer term, first half (full time)

Module capacity: 12 - with Visual Neuroscience: Anatomy

Shared course components with (cannot be credited twice):
neu151 BM Visual Neuroscience: Anatomy

Module level

Type of module

Teaching/Learning method

Previous knowledge

Examination

Examination times

Type of examination

Final exam of module
during the course (summer semester, first half)
In addition, mandatory but ungraded: seminar presentation

PF

Type of course

Comment

SWS

Frequency

Workload of compulsory attendance

Lecture

2

SoSe oder WiSe

28

Seminar

2

SoSe oder WiSe

28

Exercises

2

SoSe oder WiSe

28

Total module attendance time

84 h
neu150 - Visual Neuroscience - Anatomy

<table>
<thead>
<tr>
<th>Module label</th>
<th>Visual Neuroscience - Anatomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu150</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Molecular Biomedicine (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
- Janssen-Bienhold, Ulrike (module responsibility)
- Dedek, Karin (Module counselling)
- Janssen-Bienhold, Ulrike (authorised to take exams)
- Dedek, Karin (authorised to take exams)
- Ahlers, Malte (authorised to take exams)

Prerequisites
- attendance in pre-meeting

Skills to be acquired in this module
Neurosci. knowlg. Expt. methods Independent research + Scient. literature + Social skills
Interdiscipl. knowlg. Maths/Stats/Progr. + Data present./disc. + Scientific English Ethics
Theory: Improved theoretical and methodological knowledge in neurobiology. Discussion of scientific work and presentation of own results. Practice: Performing neuroanatomical experiments. Gaining modern methodological skills.

Module contents
Lecture: 14 h Introduction to current neurobiological approaches and results.
Seminar: 14 h Discussion of background literature and results of own experiments.
Lab course: 3 weeks, each 24 h neuroanatomical experiments in small groups on vertebrate retina and brain.

Recommended reading
Background and seminar literature will be available in Stud.IP

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Reference text
Course in the first half of the semester
Regular active participation and presentation(s) within the scope of the seminar are required to pass the module

Module level

Type of module

Teaching/Learning method

Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>summer semester, first half</td>
<td>Portfolio (75 %), report (25%)</td>
</tr>
</tbody>
</table>

Type of course

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Practical training</td>
<td></td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
</tbody>
</table>

Total module attendance time
70 h
neu360 - Auditory Neuroscience

Module label: Auditory Neuroscience
Module abbreviation: neu360
Credit points: 6.0 KP
Workload: 180 h
(1 SWS Lecture (VO)
Total workload 45h: 14 h contact / 31 h background reading
1 SWS Seminar (SE)
Total workload 45h: 14 h contact / 15 h background reading / 16 h preparation and presentation
2 SWS Supervised excercise (UE)
Total workload 90h: 10 h contact / 20 h literature search / 60 h work on essay paper)

Applicability of the module
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
- Köppl, Christine (module responsibility)
- Klump, Georg Martin (authorised to take exams)
- Köppl, Christine (authorised to take exams)

Prerequisites
Recommended previous knowledge/skills: Basics of Neurosensory Science and Behavioural Biology

Skills to be acquired in this module
++ Neurosci. knowlg
+ Expt. methods
++ Scient. Literature
+ Social skills
++ Interdiscipl. knowlg
++ Data present./disc.
++ Scientific English
+ Ethics

Introduction to Auditory Physiology. May serve as preparation for a Research Module in this area.

Upon successful completion of this course, students
- have profound knowledge on auditory sensory processing at several levels (including cochlear transduction mechanisms, central auditory processing)
- have basic knowledge of the large range of techniques used in auditory research
- are able to read and critically report to others on an original research paper in auditory neuroscience
- are able to research and review a specific topic in auditory neuroscience

Module contents
One week introductory block course, comprised of a lecture series and matching seminar that emphasizes discussion.
Topics:
Hair cells: structure, transduction mechanism, receptor potential, synaptic transmission
Basilar papilla / cochlea: structure, micromechanics, amplification; otoacoustic emissions
Auditory nerve: phase locking, rate coding. Excitation patterns
Ascending auditory pathways: wiring, principles of excitation/inhibition, examples of cellular/molecular specialisations
Sound localisation in birds and mammals
Central auditory processing: imaging techniques, auditory streams, cortex, primates
Relation between psychophysics and neurophysiology

The introductory block is followed by a supervised literature search and individually written term paper on a specific topic in auditory neuroscience.

Recommended reading
About 20 selected original papers (selection varies)
Pickles JO (2012) An Introduction to the Physiology of Hearing. Brill, Netherlands
Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually, summer term, second half</td>
</tr>
<tr>
<td>Module capacity</td>
<td>15 (BM neu211 "Neurosensory Science and Behaviour" or BM neu270 "Neurocognition and Psychophysics" or skills module biox "Current Topics in Hearing Science")</td>
</tr>
</tbody>
</table>

Reference text

Registration procedure / selection criteria: StudIP, final acceptance after assignment of seminar presentation

Module level

Type of module

Teaching/Learning method

Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>within a few weeks of the end of summer term lecture period</td>
<td></td>
<td>HA</td>
</tr>
</tbody>
</table>

Type of course

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total module attendance time

56 h
neu340 - Invertebrate Neuroscience - Neurophysiology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Invertebrate Neuroscience - Neurophysiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu340</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(</td>
</tr>
<tr>
<td></td>
<td>2 SWS Seminar (SE)</td>
</tr>
<tr>
<td></td>
<td>Total workload 72h: 28h contact / 44h background literature reading, preparation for short tests, portfolio assignments and results presentation</td>
</tr>
<tr>
<td></td>
<td>3 SWS Supervised exercise (UE)</td>
</tr>
<tr>
<td></td>
<td>Total workload 108h: 42h contact / 66h data analysis and preparation of portfolio assignments</td>
</tr>
<tr>
<td></td>
<td>)</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>* Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td></td>
<td>* Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td></td>
<td>* Master's Programme Neuroscience (Master) > Background Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>* Kretzberg, Jutta (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>* Kretzberg, Jutta (authorised to take exams)</td>
</tr>
<tr>
<td></td>
<td>* Albert, Jörg (authorised to take exams)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>attendance in pre-meeting</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>++ Neurosci. knowlg.</td>
</tr>
<tr>
<td></td>
<td>++ Expt. Methods</td>
</tr>
<tr>
<td></td>
<td>+ Scient. Literature</td>
</tr>
<tr>
<td></td>
<td>+ Social skills</td>
</tr>
<tr>
<td></td>
<td>+ Maths/Stats/Progr.</td>
</tr>
<tr>
<td></td>
<td>+ Independent Research</td>
</tr>
<tr>
<td></td>
<td>+ Data present./disc.</td>
</tr>
<tr>
<td></td>
<td>+ Scientific English</td>
</tr>
<tr>
<td></td>
<td>+ Ethics</td>
</tr>
<tr>
<td>Upon successful completion of this course, students</td>
<td>* have knowledge on invertebrate neuronal systems in comparison to vertebrate systems</td>
</tr>
<tr>
<td></td>
<td>* have discussed an overview of experimental and theoretical methods of invertebrate neurosciences</td>
</tr>
<tr>
<td></td>
<td>* have acquired first practical skills in intracellular recordings from invertebrate neurons</td>
</tr>
<tr>
<td></td>
<td>* have acquired basic skills in data analysis</td>
</tr>
<tr>
<td></td>
<td>* have acquired an intuitive understanding of membrane potential and action potential generation based on computer simulations</td>
</tr>
</tbody>
</table>

Module contents

The module consists of three weeks of seminar and hands-on lab exercises on intracellular recordings from leech neurons, as well as computer simulations to study the basis of membrane potential and action potential generation.

The seminar covers the following topics:

* Invertebrate neuronal systems in comparison to vertebrate systems
* Ion channels, membrane potential and action potential generation
* Introduction to electrophysiological methods
* Introduction to data analysis methods

In the practical exercises, portfolio assignments will be performed on:

* Qualitative electrophysiological classification of different cell types in the leech nervous system
* Quantitative analysis (stimulus - response relationship) of at least one cell type
* Action potential generation: Comparison of model simulations and experiments
Planning a small individual team-work project based on the techniques taught in this module, that can be used as basis for the module neu345

<table>
<thead>
<tr>
<th>Recommended reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course scripts and mandatory scientific literature (3 review articles) discussed in the seminar will be available in Stud.IP Background and seminar literature will be available in Stud.IP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching/Learning method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous knowledge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>during the course (summer term, second half)</td>
<td>Portfolio consisting of short tests, short reports (according to portfolio assignments) and seminar presentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
</tbody>
</table>

Total module attendance time 70 h
neu310 - Psychophysics of Hearing

Module label Psychophysics of Hearing
Module abbreviation neu310
Credit points 12.0 KP
Workload 360 h
\
5 SWS Practical (PR) "Experiments in Hearing" Total workload 225h: 70h contact / 110h experimental work / 45h exam preparation
1 SWS Supervised exercise (UE) "Fundamentals in psychoacoustic data analysis" Total workload 45h: 15h contact / 30h practising data analysis (incl. SPSS)
2 SWS Seminar (SE) "Hearing" Total workload 90h: 30h contact / 60h background reading
\
Applicability of the module
\
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules
\
Responsible persons
\
- Klump, Georg Martin (module responsibility)
- Klump, Georg Martin (authorised to take exams)
- Langemann, Ulrike (authorised to take exams)
- Beutelmann, Rainer (authorised to take exams)
\
Prerequisites
\
Skills to be acquired in this module
\
+ Neurosci. knowlg.
++ Expt. Methods
+ Social skills
++ Maths/Stats/Progr.
+ Data present.idisc.
+ Scientific English
\
- Students will learn the basics about performing a psychoacoustic experiment. Based on an experiment in which they study their own hearing, they will learn how to conduct a behavioural study in hearing and analyze the data. In addition, they will be be provided with an overview of the mechanisms of auditory perception.
\
Module contents
\
The modul comprises (i) a seminar "Hearing" [2 SWS] (ii) an exercise "Fundamentals in psychoacoustic data analysis" [1 SWS], and a (iii) practical course [7 SWS] including aspects of planning and conducting psychoacoustic experiments.
\
Recommended reading
\
Plack, Christopher J. (2005) The sense of hearing. Mahwah, NJ [u.a.] : Erlbaum (sufficient number of copies available in the university library)
\
Links
\
Language of instruction English
Duration (semesters) 1 Semester
Module frequency annually, summer term, second half
Module capacity 6 (in total with bio640)
Module level ---
Type of module je nach Studiengang Pflicht oder Wahlpflicht
Teaching/Learning method
\
Previous knowledge
\
Examination Examination times
Final exam of module end of summer term
70% report or oral exam, 30% presentation In addition, mandatory but ungraded: regular active participation
\
Type of course Comment SWS
Exercises 1
SoSe
Seminar 2
SoSe
Practical training 5
SoSe 70
Lecture SoSe
0
Total module attendance time 112 h

36 / 63
Research Modules

bio900 - Biology Research Module

<table>
<thead>
<tr>
<th>Module label</th>
<th>Biology Research Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio900</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Biology (Master) > Research Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Zotz, Gerhard (module responsibility)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
</tbody>
</table>

Skills to be acquired in this module

Students will learn to plan, perform and analyse a study in a biological field. Topics will be chosen in close coordination with teaching staff. Depending on the particular project, knowledge in statistics, molecular biology, physiology, modelling, or ethology will be necessary. Results will be related to the current biological literature in a written report and be presented in the seminar of the hosting working group.

- + deepened knowledge of biological working methods
 - ++ data analysis skills
 - ++ critical and analytical thinking
 - ++ independent searching and knowledge of scientific literature
 - ++ ability to perform independent biological research
 - ++ data presentation and discussion in German and English (written and spoken)
 - + teamwork
 - ++ project and time management
 - + statistics & scientific programming

Module contents

The students develop an empirical investigation, carry it out and analyse the results. The students present and discuss their project both orally and in writing.

Recommended reading

https://uol.de/en/biology/groups-our-research

Links

https://uol.de/fk5/studium/studiengaenge/pruefungsberechtigte

Reference text

Students can choose between many options of individual projects, offered by the different groups involved in the MScBiology study program. All members of the regular IBU Biology faculty at the University of Oldenburg can act as local supervisor (see list of examiners, https://uol.de/fk5/studium/studiengaenge/pruefungsberechtigte). Please refer to the list of options in Stud.IP and contact potential supervisors directly.

Within the Modul bio900 is it possible to take several courses as long as their contents differ substantially. When taking the course group 5.02.960 it is mandatory to choose two courses out of the group A – D.

Module level

MM (Mastermodul / Master module)

Type of module

Wahlpflicht / Elective

Teaching/Learning method

Project-based component

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>internship report</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
<td>SoSe oder WiSe 0</td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
<td>SWS</td>
<td>Frequency</td>
<td>Workload of compulsory attendance</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
<td>-----</td>
<td>-----------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
<td>SoSe oder WiSe</td>
<td>0</td>
</tr>
<tr>
<td>Projektorientiertes Modul</td>
<td></td>
<td>10</td>
<td>SoSe und WiSe</td>
<td>140</td>
</tr>
</tbody>
</table>

Total module attendance time

140 h
bio810 - Independent Research

<table>
<thead>
<tr>
<th>Module label</th>
<th>Independent Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio810</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>• Master's Programme Biology (Master) > Research Modules</td>
</tr>
<tr>
<td></td>
<td>• Master's Programme Biology (Master) > Research Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>• Zotz, Gerhard (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>• Zotz, Gerhard (authorised to take exams)</td>
</tr>
<tr>
<td></td>
<td>• der Biologie, Lehrende (authorised to take exams)</td>
</tr>
</tbody>
</table>

Prerequisites

External research projects are done on an individual basis. They are supervised by one person from Oldenburg (see list of examiners, https://uol.de/fk5/studium/studiengaenge/pruefungsberechtigte) and a local supervisor at any university or research institution in Germany and abroad. Please contact Gerhard Zotz (Gerhard.zotz@uol.de) for details. See https://uol.de/ibu/studium-und-lehre/fach-master-biology/downloads-und-links/ (Learning Agreement for External Research Module)

Skills to be acquired in this module

++ deepened biological expertise
++ deepened knowledge of biological working methods
++ data analysis skills
++ critical and analytical thinking
++ independent searching and knowledge of scientific literature
++ ability to perform independent biological research
++ data presentation and discussion (written and spoken)
++ teamwork
++ project and time management
++ statistics & scientific programming

Students perform individual research projects to learn:
• planning and organization of a research project in a group outside of University of Oldenburg
• formulate a scientific hypothesis
• planning, performing and analyzing experiments and / or simulations
• working with scientific background literature on the specific context of the project
• oral presentation and discussion of backgrounds and results in the lab seminar
• write a scientific report in publication format
• prepare and present a scientific poster

Module contents

Students are introduced to independent research in a specific area of biology by a scientific working group outside of the regular IBU Biology faculty at the University of Oldenburg (usually a university research institute in Germany or abroad). The content and venue of this module is chosen in close coordination with the Prüfungsausschuss Master Biologie, possibly with consultations of other professors. Course work should cover all parts of a scientific project, i.e. data collection, data analysis and the presentation of the results. Irrespective of the particular venue (universities, research institutes) the student has to report to a professor in Oldenburg in form of a written report and an oral presentation, both in English.

Note:
• all members of the regular IBU Biology faculty at the University of Oldenburg can act as local supervisor (see list of examiners, https://uol.de/fk5/studium/studiengaenge/pruefungsberechtigte), students should contact appropriate supervisors individually
• prior to project start, external and local supervisors must fill the learning agreement form
• the supervisor at the host institution is invited to submit a short written statement of assessment, final grading is done by the local supervisor
• participation in a joint poster presentation of concurrent research modules is highly recommended.

Recommended reading

varies with chosen topic

Languages of instruction

English, German

Duration (semesters)

1 Semester

Module frequency

Summer and winter term

Module capacity

unlimited

Module level

MM (Mastermodul / Master module)

Type of module

Wahlpflicht / Elective

Teaching/Learning method

Project-based component

Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>internship report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>1</td>
<td></td>
<td>SoSe und WiSe</td>
<td>14</td>
</tr>
<tr>
<td>Projektorientieres Modul</td>
<td>10</td>
<td></td>
<td>SoSe und WiSe</td>
<td>140</td>
</tr>
</tbody>
</table>

Total module attendance time 154 h
bio820 - Research Module Fast Track

<table>
<thead>
<tr>
<th>Module label</th>
<th>Research Module Fast Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio820</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Biology (Master) > Research Modules</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Biology (Master) > Research Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Klump, Georg Martin (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Klump, Georg Martin (authorised to take exams)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>[nop] ++ deepened biological expertise ++ deepened knowledge of biological working methods ++ data analysis skills ++ critical and analytical thinking ++ independent searching and knowledge of scientific literature ++ ability to perform independent biological research ++ data presentation and discussion in German and English (written and spoken) ++ teamwork ++ project and time management ++ statistics & scientific programming [nop]</td>
</tr>
</tbody>
</table>

Module contents

Recommended reading

Links

Languages of instruction | German, English
Duration (semesters) | 1 Semester
Module frequency | irregular
Module capacity | unlimited
Module level | MM (Mastermodul / Master module)
Type of module | Wahlpflicht / Elective
Teaching/Learning method | Project-based component

Previous knowledge

Examination

Examination times

Type of examination

Final exam of module

Internship report

Type of course

Seminar

SWS

Frequency

--

On-site workload

0 h
Skills Modules

bio870 - Communicating Plant Sciences

<table>
<thead>
<tr>
<th>Module label</th>
<th>Communicating Plant Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio870</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Biology (Master) > Skills Modules

Responsible persons
- Zotz, Gerhard (module responsibility)
- Albach, Dirk Carl (Module counselling)
- Schmaljohann, Heiko (Module counselling)
- Zotz, Gerhard (authorised to take exams)
- Albach, Dirk Carl (authorised to take exams)
- Schmaljohann, Heiko (authorised to take exams)
- Nolte, Arne (authorised to take exams)
- Will, Maria (authorised to take exams)

Prerequisites
Communicating and practicing scientific presentation techniques (talk, publication, poster) Presentation of data and discussion in spoken and written (english) Communicating of techniques in problem treatment in free speech and scientific writing Independent investigation and knowledge of scientific primary literature
- + interdisciplinary thinking
- ++ critical and analytical thinking
- ++ independent searching and knowledge of scientific literature
- ++ data presentation and discussion (written and spoken)

Module contents
- S: Working group seminar (2 SWS; Choice 1: Functional Ecology; Choice 2: Evolutionary genetics of plants; Choice 3: Plant biodiversity and evolution) S: Scientific Writing in Plant Science (2SWS)

Recommended reading

Language of instruction
- English

Duration (semesters)
- 1 Semester

Module frequency
- annually, winter term

Module capacity
- 12

Type of module
- Wahlmodul / Opportunity

Teaching/Learning method
- Seminar

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>1 term paper</td>
<td></td>
</tr>
</tbody>
</table>

Type of course
- Seminar

SWS
- 4

Frequency
- WiSe

On-site workload
- 56 h
bio880 - Skills in Plant Systematics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Skills in Plant Systematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio880</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master's Programme Biology (Master) > Skills Modules</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Biology (Master) > Skills Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Albach, Dirk Carl (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>von Hagen, Klaus Bernhard (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Albach, Dirk Carl (authorised to take exams)</td>
</tr>
<tr>
<td></td>
<td>von Hagen, Klaus Bernhard (authorised to take exams)</td>
</tr>
<tr>
<td></td>
<td>Khan, Gulzar (authorised to take exams)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>In this module, we provide the skills necessary to describe and distinguish species for floras and monographs/first publication of species. For that, an overview over the plant kingdom is provided. Further, various non-molecular methods of systematics are practiced, such as morphometry, SEM, identification key generation, nomenclature, species delimitation methods, and interpretation of phylogenetic analyses.</td>
</tr>
<tr>
<td></td>
<td>+ deepened biological expertise</td>
</tr>
<tr>
<td></td>
<td>++ deepened knowledge of biological working methods</td>
</tr>
<tr>
<td></td>
<td>++ data analysis skills + critical and analytical thinking</td>
</tr>
<tr>
<td></td>
<td>++ independent searching and knowledge of scientific literature</td>
</tr>
<tr>
<td></td>
<td>+ ability to perform independent biological research</td>
</tr>
<tr>
<td></td>
<td>++ data presentation and discussion (E) (written and spoken)</td>
</tr>
<tr>
<td></td>
<td>+ teamwork</td>
</tr>
<tr>
<td></td>
<td>+ statistics & scientific programming</td>
</tr>
<tr>
<td>Module contents</td>
<td>In the seminar we provide an overview over the larger groups of plants and characters for their grouping. We analyse methods for phylogeny generation, angiosperm classification and description of new taxa. In the exercises morphological characters are investigated in various ways and internet resources for further morphological characters presented. Species delimitation methods for molecular and morphological characters are used. Identification keys are generated and nomenclatural rules discussed.</td>
</tr>
<tr>
<td>Recommended reading</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>Winter term</td>
</tr>
<tr>
<td>Module capacity</td>
<td>8</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlmodul / Opportunity</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Seminar, exercise</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>Good knowledge of native flora</td>
</tr>
<tr>
<td>Examination</td>
<td>Examination times</td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>2 examinations: 1 presentation (50%); 1 report (50%)</td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td>56 h</td>
</tr>
</tbody>
</table>
bio890 - Current Topics in Biology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Current Topics in Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio890</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Biology (Master) > Skills Modules</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Biology (Master) > Skills Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Gerlach, Gabriele (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>der Biologie, Lehrende (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Gerlach, Gabriele (authorised to take exams)</td>
</tr>
<tr>
<td></td>
<td>Laakmann, Silke (authorised to take exams)</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

+ biological knowledge
+ biologically relevant, natural / mathematical scientific basic knowledge
++ interdisciplinary knowledge and thinking
++ abstract, logical, and analytical thinking
++ expanded knowledge in a specific biological field
++ presentation of results and factual discussion, both written and spoken
++ (scientific) communication skills

To develop skills in the critical analysis and interpretation of results and themes in diverse areas of modern biology, including (but not limited to) evolutionary biology, population genetics, biodiversity, ecology, genomics, ornithology, and neurobiology.

Module contents

Discussion and interpretations of one or more themes in modern biology. The themes and exact content will be provided by the instructor(s) at the beginning of the course. The module bio890 may be taken more than once as long as the content covered in the seminars differ substantially.

Recommended reading

Varies with chosen topic (will be provided by the instructor(s) at the beginning of the course)

Links

- English, German

Languages of instruction

Duration (semesters)

1 Semester

Module frequency

Summer and winter term

Module capacity

unlimited

Module level

MM (Mastermodul / Master module)

Type of module

Wahlmodul / Opportunity

Teaching/Learning method

Seminar

Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>open</td>
<td>open</td>
</tr>
</tbody>
</table>

Final exam of module: 1 Portfolio. Components vary in the seminars. They are specified in Stud.IP in the respective seminar.

Type of course

Seminar

SWS

2

Frequency

SoSe und WiSe

On-site workload

28 h
neu730 - Biosciences in the Public Eye and in our Laws

<table>
<thead>
<tr>
<th>Module label</th>
<th>Biosciences in the Public Eye and in our Laws</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu730</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(56h contact / 84h research for presentations / 40h term paper)</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>• Master's Programme Biology (Master) > Skills Modules</td>
</tr>
<tr>
<td></td>
<td>• Master's Programme Biology (Master) > Skills Modules</td>
</tr>
<tr>
<td></td>
<td>• Master's Programme Neuroscience (Master) > Skills Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>• Köppl, Christine (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>• Sienknecht, Ulrike (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>• Köppl, Christine (authorised to take exams)</td>
</tr>
<tr>
<td></td>
<td>• Sienknecht, Ulrike (authorised to take exams)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>+ Expt. methods</td>
</tr>
<tr>
<td></td>
<td>+ Scient. Literature</td>
</tr>
<tr>
<td></td>
<td>++ Social skills</td>
</tr>
<tr>
<td></td>
<td>++ Interdiscipl. knowlg</td>
</tr>
<tr>
<td></td>
<td>+ Data present./disc.</td>
</tr>
<tr>
<td></td>
<td>+ Scientific English</td>
</tr>
<tr>
<td></td>
<td>++ Ethics</td>
</tr>
<tr>
<td>Upon completion of this course, students</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• know basic rules of good scientific practise</td>
</tr>
<tr>
<td></td>
<td>• are aware of the legal framework that is relevant to biological research, e.g. on animal welfare or genetically modified organisms</td>
</tr>
<tr>
<td></td>
<td>• have practised to research and summarize different viewpoints on biological research, using both scientific (peer-reviewed) and non-scientific sources</td>
</tr>
<tr>
<td></td>
<td>• are able to identify and critically discuss ethical conflicts in biological research, e.g., in the context of stem cell research or data manipulation</td>
</tr>
<tr>
<td></td>
<td>• are able to prepare and give a coherent presentation in a team</td>
</tr>
<tr>
<td></td>
<td>• have practised to lead a group discussion</td>
</tr>
<tr>
<td>Module contents</td>
<td>In supervised exercises, students research the ethical aspects and controversial issues on several specific topics in the biosciences. Everyone participates in researching all topics. Students then take turns in summarizing and presenting each topic in small teams, and leading a critical discussion of each topic. Problem-based, independent research of the scientific background by the students is an integral part of this module.</td>
</tr>
<tr>
<td></td>
<td>Example topics:</td>
</tr>
<tr>
<td></td>
<td>Good scientific practise and fraud</td>
</tr>
<tr>
<td></td>
<td>Neuroenhancement</td>
</tr>
<tr>
<td></td>
<td>Artificial intelligence</td>
</tr>
<tr>
<td></td>
<td>Animal welfare, Animal experiments</td>
</tr>
<tr>
<td></td>
<td>Overfishing, Nature conservation</td>
</tr>
<tr>
<td></td>
<td>State-of-the-art genetic tools and their implications</td>
</tr>
<tr>
<td></td>
<td>Genetically modified organisms, e.g., in food production, chimeras</td>
</tr>
<tr>
<td></td>
<td>Stem cells</td>
</tr>
<tr>
<td></td>
<td>Humans as experimental subjects</td>
</tr>
<tr>
<td></td>
<td>A bonus can be obtained through active participation during the semester. Active participation requires regular oral contributions to the group discussions, that go beyond giving your own talks.</td>
</tr>
<tr>
<td></td>
<td>A bonus improves the exam mark by one step (0.3 or 0.4). The bonus is optional, an exam mark of 1.0 is achievable without a bonus. A bonus cannot be applied to pass a failed exam.</td>
</tr>
<tr>
<td>Recommended reading</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually, summer term</td>
</tr>
<tr>
<td>Module capacity</td>
<td>18</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>Fundamentals of genetics, physiology, ecology and biological systematics</td>
</tr>
<tr>
<td>Examination</td>
<td>Examination times</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>within a few weeks of summer term lecture period</td>
</tr>
<tr>
<td>Term paper</td>
<td>Regular participation during the semester is required (max 3 days of absence)</td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>SWS</td>
</tr>
<tr>
<td>Seminar und Übung</td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>Workload of compulsory attendance</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td>56 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td></td>
<td>SoSe</td>
<td>0</td>
</tr>
<tr>
<td>Seminar und Übung</td>
<td></td>
<td>4</td>
<td>SoSe</td>
<td>56</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
neu751 - Laboratory Animal Science

Module label: Laboratory Animal Science

Module abbreviation: neu751

Credit points: 3.0 KP

Workload: 90 h

- one week full-time in semester break + flexible time for studying and exam preparation
- 1 SWS Lecture
total workload 45h: 2h contact / 20h background reading / 23h exam preparation
- 1 SWS Supervised exercise
total workload 45h: 35h contact / 10h background reading

Applicability of the module

- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Molecular Biomedicine (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Responsible persons

- Köppl, Christine (module responsibility)
- Köppl, Christine (authorised to take exams)
- Langemann, Ulrike (authorised to take exams)
- Nolte, Arne (authorised to take exams)
- Heyers, Dominik (authorised to take exams)
- Ebbers, Lena (authorised to take exams)
- Dedek, Karin (authorised to take exams)
- Schmaljohann, Heiko (authorised to take exams)
- Winklhofer, Michael (authorised to take exams)

Prerequisites

none

Skills to be acquired in this module

++ Expt. Methods
+ Independent Research
+ Scient. Literature
++ Social skills
++ Interdiscipl. knowlg
+ Scientific English
++ Ethics

Upon successful completion of this course, students

- know the relevant EU legislation governing animal welfare and are able to explain its meaning in common language
- understand and are able to critically discuss salient ethical concepts in animal experimentation, such as the three Rs and humane endpoint.
- have basic knowledge of the biology and husbandry of laboratory animal species held at the University of Oldenburg (rodents or birds or fish)
- are able to critically assess the needs and welfare of animals without compromising scientific integrity of the investigation
- have practical skills in handling small rodents or birds or fish
- have profound knowledge of anaesthesia, analgesia and basic principles of surgery.
- have practised invasive procedures and euthanasia.

NOTE: These objectives aim to satisfy the requirements for EU directive A „Persons carrying out animal experiments“ and EU directive D „Persons killing animals“.

Module contents

Background knowledge is taught using the third-party online platform "LAS Interactive" which concludes with a written exam that has to be passed before the practical part. Topics covered are:

- Legislation, ethics and the 3Rs
- Scientific integrity
- Data collection “
- Basic biology of rodents, birds and fish
- Husbandry, and nutrition of rodents, birds and fish
- Animal Welfare
- Health monitoring
- Pain and distress
- Euthanasia
Practical procedures will first be demonstrated, important aspects will then be practiced under supervision by every participant on an animal model of their choice (rodents, birds or fish):

- Handling and external examination
- Administration of substances, blood sampling
- Euthanasia and dissection
- Transectional perfusion
- Anaesthesia and surgery

Recommended reading

"LAS interactive" internet-based learning platform

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
semester break, every semester

Module capacity
20 (Registration procedure / selection criteria: StudIP, sequence of registration)

Module level

Type of module

Teaching/Learning method

Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>immediately before the practical part</td>
<td>written exam of 90 minutes</td>
</tr>
</tbody>
</table>

Examination times

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1</td>
<td>SoSe und WiSe</td>
<td>14</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>SoSe und WiSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Total module attendance time

28 h
neu760 - Scientific English

<table>
<thead>
<tr>
<th>Module label</th>
<th>Scientific English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu760</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>0.5 SWS Lecture (VO)</td>
</tr>
<tr>
<td></td>
<td>Total workload 23h: 8h contact / 15h research for term paper</td>
</tr>
<tr>
<td></td>
<td>3.5 SWS Supervised exercise (UE)</td>
</tr>
<tr>
<td></td>
<td>Total workload 158h: 46h contact / 46h preparation of texts and presentations / 66h term paper</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master’s Programme Biology (Master) > Skills Modules
- Master’s Programme Molecular Biomedicine (Master) > Skills Modules
- Master’s Programme Neuroscience (Master) > Skills Modules

Responsible persons
- Köppl, Christine (module responsibility)
- Köppl, Christine (authorised to take exams)

Prerequisites
- non-native speakers

Skills to be acquired in this module
- + Neurosci. knowlg.
- ++ Social skills
- ++ Data present./disc.
- ++ Scientific English

Upon completion of this course, students
- have increased their proficiency in different forms of scientific presentation and communication in English, with special emphasis on neuroscience
- are able to express themselves with correct sentence structure and grammar, correct use of idioms and correct pronunciation
- are proficient in different contexts of scientific communication (e.g., paper, poster and informal exchange by email or phone)
- are able to recognize and avoid common errors of non-native speakers.

Module contents
Lectures cover
- characteristics of the different forms of scientific presentations
- sentence structure using the passive voice
- scientific vocabulary and terminology as contrasted to common speech
- appropriate language for communication with scientific editors and referees

Students read neuroscience texts of an advanced level and practice explaining and presenting these in both written and oral form. They also practice different contexts of scientific communication (e.g., paper, poster and informal exchange by email or phone). Emphasis is placed on individual problems in pronunciation and language use errors.

Recommended reading
http://users.wpi.edu/~nab/sci_eng/ScientificEnglish.pdf

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
annually, semester break

Module capacity
12

Reference text
Usually held in the break before summer term
Outsourced to STELS-OL (Scientific and Technical English Language Service); native English speaker with in-depth neuroscience knowlg.

Module level

Type of module

Teaching/Learning method

Previous knowledge
minimum English level B2 (C1 preferred) according to Common European Framework of Reference for Languages (CEFR)

Examination
Examination times
Type of examination
<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>within 2 months of completing the course</td>
<td>Portfolio: 70% several quick tests, texts, presentations, 30% term paper Bonus system for active participation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>0.5</td>
<td>WiSe</td>
<td>7</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>3.5</td>
<td>WiSe</td>
<td>49</td>
</tr>
</tbody>
</table>

Total module attendance time 56 h
neu780 - Biological Data Analysis with Python

<table>
<thead>
<tr>
<th>Module label</th>
<th>Biological Data Analysis with Python</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu780</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>2 SWS Lecture total workload 90h: 30h contact / 60h individual reading</td>
<td></td>
</tr>
<tr>
<td>2 SWS Supervised exercise total workload 90h: 45h contact / 45h solving programming exercises</td>
<td></td>
</tr>
</tbody>
</table>

- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

- Winklhofer, Michael (module responsibility)
- Winklhofer, Michael (authorised to take exams)

Applicability of the module

Responsible persons

Prerequisites

Skills to be acquired in this module

- Neurosci. knowlg.
- Maths/Stats/Progr.
- Data present./disc.

The objective of the module is the acquisition of programming skills with focus on analysis of neurobiological datasets, using the programming language python. Python is available for any computer platform (PC, Mac, Linux) and is open source (for free), see https://www.python.org/.

Students will learn how to write effective scripts for data processing and visualisation, making use of pre-existing program libraries for various generic purposes (maths, statistics, plotting, image analysis).

Typical applications will be analysis of time series (e.g., electrophysiological recordings, movement data), images (e.g. immunohistochemical images, MRI slices), and spatio-temporal correlations in volume data.

Students will also learn how to produce synthetic data from various noise models to assess signal-to-noise ratio in instrumental datasets.

Module contents

- Data types and data structures, control structures, functions, modules, file input/output
- Standard libraries and SciPy libraries (Matplotlib, NumPy,...), scikit-image, VPython, ...

Recommended reading

- Open access
- http://docs.python.org/3/tutorial/index.html

Links

Language of instruction

- English

Duration (semesters)

- 1 Semester

Module frequency

- semester break, annually

Module capacity

- 20

Reference text

- Shared course components with (cannot be credited twice): pb328 "Einführung in Datenanalyse mit Python" (Professionalisierungsmodul im Bachelorstudiengang Biologie)

Module level

Type of module

Teaching/Learning method

Previous knowledge

Examiniation

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>term break, immediately after the course (2 weeks in February)</td>
<td>assignment of programming exercises, 4 out of 5 exercises to be assessed</td>
</tr>
</tbody>
</table>

Type of course

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total module attendance time

- 56 h
neu790 - Communicating Neuroscience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Communicating Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu790</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h (28 h contact / 62 h individual reading and preparing discussion questions)</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Responsible persons
- Kretzberg, Jutta (module responsibility)
- Kretzberg, Jutta (authorised to take exams)
- Köppl, Christine (authorised to take exams)

Prerequisites
- Skills to be acquired in this module
 - + Neurosci. knowlg.
 - ++ Scient. Literature
 - ++ Social skills
 - + Interdiscipl. knowlg.
 - ++ Data present./disc.
 - + Scientific English
 - ++ Ethics

Upon successful completion of this course, students will have thought about and discussed in depth scientific, social and ethical aspects of communication in and about neuroscience. In particular, participants practice critical reading of neuroscience literature, learn about the scientific publication process and discuss science communication to the general public.

Module contents
The overall goal of critical discussion of neuroscientific results in a scientific, social and ethical context requires preparation and active participation both before (Stud.IP wiki) and during the weekly sessions. Each participant is responsible for the preparation and moderation of at least one session in a group of 2-3 students. For passing the module, additional active participation is required in at least 10 of the seminar sessions. The specific papers and topics that are discussed vary, but typically cover:

- How to find literature?
- How to read different types of scientific papers: Classic papers, review papers, perspective papers, recent original papers?
- Publication process, Authorship and impact metrics
- Alternative publication paths and data sharing in neuroscience
- Science communication for the general public and on social media
- Face-to-face scientific communication

Recommended reading
List of published papers, as well as online resources for preparation will be selected by the teachers and participants and announced via Stud.IP.

Background neuroscience textbooks, e.g.:

- Galizia, Lledo ‘Neuroscience – From Molecule to Behavior’, 2013, Springer
- Nicholls et al. ‘From Neuron to Brain’, 5th edition 2012, Sinauer
Language of instruction | English
Duration (semesters) | 1 Semester
Module frequency | winter semester
Module capacity | 20 (Registration procedure / selection criteria: StudIP)
Module level | MM (Mastermodul / Master module)
Type of module | Wahlpflicht / Elective
Teaching/Learning method
Previous knowledge
Examination |
Examination times |
Type of examination |
Final exam of module |
Type of course | Seminar
Type of course |
SWS | 2
Frequency | WiSe
On-site workload | 28 h
neu800 - Introduction to Matlab

<table>
<thead>
<tr>
<th>Module label</th>
<th>Introduction to Matlab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu800</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 SWS Supervised exercise (UE) “Introduction to MATLAB”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total workload 90h: 28h contact / 62h practising learned programming skills</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Responsible persons
- Gießing, Carsten (module responsibility)
- Gießing, Carsten (authorised to take exams)

Prerequisites

| ++ Expt. Methods |
| + Social skills |
| ++ Interdiscipl. knowlg. |
| + Maths/Stats/Progr. |
| + Data present./disc. |
| + Scientific English |

Within this introductory course students will learn the basics of MATLAB programming. Participants will be introduced in fundamental programming concepts.

Module contents
The module comprises an introduction to data structures, flow control, loops, graphics, basic data analyses with MATLAB, scripts and functions.

Recommended reading

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually, summer term, second half</td>
</tr>
<tr>
<td>Module capacity</td>
<td>12 (in total with bio640) (shared course components with (cannot be credited twice): bio640)</td>
</tr>
</tbody>
</table>

Module level

<table>
<thead>
<tr>
<th>Type of module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Previous knowledge</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>end of summer term</th>
<th>Working on exercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular active participation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>SoSe</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>SoSe</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td>SoSe</td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

| Total module attendance time | 28 h |
neu810 - International Meeting Contribution

<table>
<thead>
<tr>
<th>Module label</th>
<th>International Meeting Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu810</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>
| Applicability of the module | - Master's Programme Biology (Master) > Skills Modules
- Master's Programme Psychology (Master) > Skills Modules |
| Responsible persons | - Kretzberg, Jutta (module responsibility)
- Kretzberg, Jutta (authorised to take exams)
- Köppl, Christine (authorised to take exams) |
| Prerequisites |
- + Neurosci. knowlg.
- ++ Independent research
- + Scient. Literature
- ++ Social skills
- + Interdiscipl. knowlg.
- ++ Data present./disc.
- + Scientific English
- + Ethics
- Preparation, presentation and critical discussion of own studies for an international audience:
 - participate in an international meeting
 - prepare a poster or talk for an international meeting
 - present own results in a way that is appropriate for the target audience
 - put own studies into the context of scientific literature
 - acquire additional knowledge about a broader field of research |
| Module contents | Active participation in a scientific conference, workshop, summer school etc. lasting a minimum of 3 full days. Student must be the presenter (poster or talk) and an author of the presented work, typically carried out in the context of a research module or the Master thesis.

It is mandatory to present the poster or talk to Christine Köppl or Jutta Kretzberg prior to the meeting and incorporate the feedback on the presentation. |

Prerequisites

Skills to be acquired in this module

- + Neurosci. knowlg.
- ++ Independent research
- + Scient. Literature
- ++ Social skills
- + Interdiscipl. knowlg.
- ++ Data present./disc.
- + Scientific English
- + Ethics
- Preparation, presentation and critical discussion of own studies for an international audience:
 - participate in an international meeting
 - prepare a poster or talk for an international meeting
 - present own results in a way that is appropriate for the target audience
 - put own studies into the context of scientific literature
 - acquire additional knowledge about a broader field of research |

Module contents

Active participation in a scientific conference, workshop, summer school etc. lasting a minimum of 3 full days. Student must be the presenter (poster or talk) and an author of the presented work, typically carried out in the context of a research module or the Master thesis.

It is mandatory to present the poster or talk to Christine Köppl or Jutta Kretzberg prior to the meeting and incorporate the feedback on the presentation.

<table>
<thead>
<tr>
<th>Recommended reading</th>
<th>dependent on the scientific topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>every semester, flexible</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited (please contact module organizer individually)</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Examination times</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>presentation (ungraded, pass/fail)</td>
</tr>
<tr>
<td>Type of course</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>On-site workload</td>
<td>28 h</td>
</tr>
</tbody>
</table>
bio777 - Objekte in wissenschaftlichen Sammlungen: Konservierung, Management und Forschungsfragen

Module label: Objekte in wissenschaftlichen Sammlungen: Konservierung, Management und Forschungsfragen

Module abbreviation: bio777

Credit points: 6.0 KP

Workload: 180 h

Applicability of the module:
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Biology (Master) > Skills Modules

Responsible persons:
- Will, Maria (module responsibility)
- Albach, Dirk Carl (Module counselling)
- von Lindern, Klara (Module counselling)
- Will, Maria (authorised to take exams)
- von Lindern, Klara (authorised to take exams)

Prerequisites

Skills to be acquired in this module:
- +deepened biological expertise
- ++deepened knowledge of biological working methods
- +++interdisciplinary thinking
- +critical and analytical thinking
- +independent searching and knowledge of scientific literature
- +ability to perform independent biological research
- +data presentation and discussion (written and spoken)
- +teamwork
- ++ethics and professional behaviour
- ++project and time management

Module contents:
- history of collections at universities and their importance for developing scientific theories;
- origin/formation of collections (objects in time and space)
- the collections of the CvO (overview) and their importance as infrastructure for teaching, learning and research
- collection work in biological collections such as botanical garden, natural history museums, didactical collections or the herbarium (concepts, object handling, conservation, documentation & digitalization)
- developing research questions and projects based on objects/collections, e.g., provenance research
- communicating object-based topics (e.g., speed talk presenting current scientific articles)

Recommended reading:
- articles and book chapters referring to (1) the history/presence/future of collections, (2) collection management and (3) research projects based on objects/collections

Links:
- https://uol.de/kustodien/zertifikatsprogramm

Languages of instruction: German, English

Duration (semesters): 1 Semester

Module frequency: Winter term

Module capacity: 10
- Lecture & seminar as a transdisciplinary course in cooperation with Fak. III
Linked to the module bio783 "Object-based Research Projects in Biological Collections" (can be taken independently). Due to overlapping content, the module cannot be taken in addition to pb335.

<table>
<thead>
<tr>
<th>Module level</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of module</td>
<td>Wahlmodul / Opportunity</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Lecture, seminar, exercise</td>
</tr>
</tbody>
</table>

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>2 examinations: - 1 written exam or 1 oral exam (100%) AND 1 practical exercise (ungraded)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

Total module attendance time: 56 h
bio783 - Object-based Research Projects in Biological Collections

<table>
<thead>
<tr>
<th>Module label</th>
<th>Object-based Research Projects in Biological Collections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio783</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Biology (Master) > Skills Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Will, Maria (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Albach, Dirk Carl (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Will, Maria (authorised to take exams)</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

- +deepened biological expertise
- +deepened knowledge of biological working methods
- +data analysis skills
- +interdisciplinary thinking
- +critical and analytical thinking
- +independent searching and knowledge of scientific literature
- +ability to perform independent biological research
- +data presentation and discussion in German and English (written and spoken)
- +teamwork
- +ethics and professional behaviour
- +project and time management

Module contents

- documentation of a natural history collection (e.g., university or from an herbarium) including a description of the object(s), digitalization, check for traces of use and/or damage;
- if needed: restauration, i.e. fixing loose plants on herbarium vouchers;
- trace biographies of the collector and the collection/object (provenance);
- trace comparable collections using databases;
- as far as possible: identification/validation of scientific identification using databases and scientific literature
- generating and answer scientific questions based on the collection or develop an educational approach (e.g., teaching lecture)
- communicate the results, i.e. prepare a poster for a congress and defend your theses and summarize the results in a manuscripts

Recommended reading

- scientific literature corresponding to the individual research project

Languages of instruction

- German, English

Duration (semesters)

- 1 Semester

Module frequency

- irregular

Module capacity

- 4

Reference text

- Linked to the module bio777 "Objects in scientific collections: Conservation, management and research issues" (independent allocation possible). The competences overlap with pb336. If module pb336 has been completed previously, admission to the module will be decided on an individual basis.

Module level

- MM (Mastermodul / Master module)

Type of module

- Wahlmodul / Opportunity

Teaching/Learning method

- Exercise

Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>individual</td>
<td>1 Portfolio</td>
</tr>
<tr>
<td>Type of course</td>
<td>Exercises</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
<td></td>
</tr>
<tr>
<td>On-site workload</td>
<td>56 h</td>
<td></td>
</tr>
</tbody>
</table>
neu820 - Neuroscience Journal Club

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neuroscience Journal Club</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu820</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td></td>
<td>(30h contact / 60h reading and preparation of oral and poster presentation)</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Responsible persons
- Mertsch, Sonja (module responsibility)
- Mertsch, Sonja (authorised to take exams)

Prerequisites
- Students will learn to read, interpret, present and discuss neuroscientific literature.
 - ++ Neurosci. knowledge
 - + Expt. Methods
 - ++ Scient. Literature
 - ++ Social skills
 - + Interdiscipl. knowledge
 - ++ Data present./disc.
 - + Scientific English
 - + Ethics

Module contents
- Week 1: How to read and present a scientific paper and how to generate a scientific poster? Distribution of papers to participants
- Week 2: Example presentation of a scientific paper by the teacher with discussion
- Week 3-13: Oral presentation / moderation of discussion of one scientific paper per week by one or two student(s)
- Week 14: Short poster presentations of all students

The focus topic of the scientific literature will change between semesters. In winter semester 2021/22, the topic will be regenerative ophthalmology with the focus on tissue engineering.

Recommended reading
- Scientific literature will be available in Stud.IP

Links
- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: winter term, annually
- Module capacity: 20

Module level
- Type of module: Seminar

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>during the semester</td>
<td>presentation and attendance of at least 70% in the seminars</td>
</tr>
</tbody>
</table>

Type of course
- Seminar

<table>
<thead>
<tr>
<th>SWS</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>On-site workload</td>
<td>28 h</td>
</tr>
</tbody>
</table>
Abschlussmodul
mam - Master´s Thesis Module

Module label: Master´s Thesis Module
Module abbreviation: mam
Credit points: 30.0 KP
Workload: 900 h

Applicability of the module:
- Master's Programme Biology (Master) > Abschlussmodul

Responsible persons:
- der Biologie, Lehrende (authorised to take exams)

Prerequisites:
Successful completion of the Master module demonstrates that students are able to work on a problem in the field of Biology within a fixed period applying scientific methods.
++ deepened biological expertise
++ deepened knowledge of biological working methods
++ data analysis skills
++ critical and analytical thinking
+ independent searching and knowledge of scientific literature
++ ability to perform independent biological research
++ data presentation and discussion in German and English (written and spoken)
+ teamwork
+ ethics and professional behaviour
++ project and time management

Module contents:
Preparing the Master thesis
Active participation in the seminar of the research group, in which the Master thesis is written

Recommended reading:
Supervisors may supply an initial reading list with important literature. The students are expected to find and use further literature as needed.

Language of instruction:
English, German

Duration (semesters):
1 Semester

Module frequency:
semiannual

Module capacity:
unlimited

Module level:

Type of module:
Teaching/Learning method:

Previous knowledge:

Examination:
Examination times
Type of examination
Final exam of module
- master's thesis (90%)
- Final colloquium (10%)

Type of course:
Seminar

SWS:
2

Frequency:
SoSe und WiSe

On-site workload:
28 h