psy111 - Research methods I - Statistical Modeling .. 4
psy112 - Research methods II - Statistical Learning .. 6
psy125 - Neuropsychological Diagnostics .. 8
psy126 - Test Theory and Test Construction ... 10
psy130 - Communication of scientific results ... 12
psy141 - Minor .. 14
psy150 - Clinical Psychology .. 16
psy170 - Neuropsychology .. 18
psy181 - Neurocognition ... 20
psy190 - Sex and Cognition .. 22
psy201 - Neuropsychology .. 22
psy210 - Applied Cognitive Psychology .. 24
psy220 - Human Computer Interaction .. 26
psy240 - Computation in Neuroscience .. 28
psy251 - Internship .. 31
psy260 - Practical project ... 33
psy270 - Functional MRI Data Analysis .. 35
psy280 - Transcranial Brain Stimulation ... 38
psy285 - Study Abroad I - Psychology/Neuroscience .. 40
psy286 - Study Abroad II - Psychology/Neuroscience .. 42
psy290 - Ambulatory Assessment in Psychology .. 44
psy110 - Research methods ... 46
psy121 - Psychological assessment and diagnostics ... 48
psy230 - Neuromodulation of Cognition ... 50
psy241 - Computation in Neuroscience ... 52
psy250 - Internship ... 53
psy120 - Psychological assessment and diagnostics ... 55
psy140 - Minor ... 57
mam - Master´s Degree Module ... 58
Modules for Neurocognitive Psychology

Mastermodule

psy111 - Research methods I - Statistical Modeling

Module label: Research methods I - Statistical Modeling
Module abbreviation: psy111
Credit points: 6.0 KP
Workload: 180 h
Applicability of the module:
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons:
- Hildebrandt, Andrea (module responsibility)
- Hildebrandt, Andrea (Prüfungsberechtigt)

Prerequisites:
Enrolment in Master's programme Neurocognitive Psychology.

Goals of module:
After completion of this module, students will have basic knowledge in managing and understanding quantitative data and conducting a wide variety of multivariate statistical analyses. They can apply the statistical methodology in terms of good scientific practice and interpret, evaluate and synthesize empirical results in basic and applied research contexts. Students will be aware of statistical misconceptions and they can overcome them.

Competencies:
++ interdisciplinary knowledge & thinking
++ statistics & scientific programming
++ data presentation & discussion
+ independent research
+ scientific literature
++ ethics / good scientific practice / professional behavior
++ critical & analytical thinking
++ scientific communication skills
+ group work

Module contents

Part 1: Multivariate statistical modeling
- Graphical representation of multivariate data
- The Generalized Linear Modeling (GLM) framework
- Multiple and moderated linear regression with quantitative and qualitative predictors
- Logistic regression models
- Multilevel regression (Generalized Linear Mixed Effects Modeling – GLMM)
- Non-linear regression models (Polynomial regression, regression splines and local regression)
- Path modeling
- Factor analysis (exploratory & confirmatory)
- Structural equation modeling (SEM; linear and non-linear)

Part 2: Multivariate statistical modeling with R (seminar)
- Data examples and applications of GLM, GLMM, polynomial, spline and local regression, path modeling, factor analyses and SEM

Recommended reading

Links

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: The module will start every winter term.
Module capacity: unlimited
Module level: MM (Mastermodul / Master module)
Type of module: Pflicht / Mandatory
Teaching/Learning method: Parts 1: lecture; Parts 2: seminar; additional tutorials are offered.
Previous knowledge: Solid knowledge in basic statistics; otherwise please attend Introductory
Course Statistics

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>end of winter term</td>
<td>The module will be tested with a written exam. Required active participation for gaining credits: attendance of at least 70% in the seminar within one semester (will be checked in StudIP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Tutorial</td>
<td>statistics</td>
<td></td>
<td>WiSe</td>
<td>0</td>
</tr>
</tbody>
</table>

Total module attendance time
56 h
psy112 - Research methods II - Statistical Learning

Module label	Research methods II - Statistical Learning
Module abbreviation | psy112
Credit points | 6.0 KP
Workload | 180 h
Applicability of the module | Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons | Hildebrandt, Andrea (module responsibility)
| Hildebrandt, Andrea (Prüfungsberechtigt)

Prerequisites | Enrolment in Master's programme Neurocognitive Psychology.

Skills to be acquired in this module | Goals of module:
Building upon the basic knowledge in multivariate statistical modeling covered in psy111, after completion of this module students will know how to deal with big data to address empirical questions in neurocognitive psychology. They will be able to solve prediction and classification problems to the realm of basic and applied statistical/machine learning purposes. Furthermore, students will understand the specifics of applied research and the statistical modeling of noisy, longitudinal data.

Competencies:
++ interdisciplinary knowledge & thinking
++ statistics & scientific programming
++ data presentation & discussion
+ independent research
+ scientific literature
++ ethics / good scientific practice / professional behavior
++ critical & analytical thinking
++ scientific communication skills
+ group work

Module contents

Part 1: Statistical / machine learning methods

- Supervised and unsupervised statistical learning and prediction
- Resampling methods
- Regularized regression
- Linear and quadratic discriminant analysis
- Naive Bayes algorithm
- Tree-based methods
- Support vector machines
- The basics of neural networks
- Principal component regression
- Clustering methods

Part 2: Statistical / machine learning methods with R (voluntary seminar)

- Data examples and applications of the basic machine learning methods covered in the lecture

Part 3: Evaluation research (seminar)

- Paradigms and methods in applied evaluation research (quantitative, mixed-methods)
- Types of studies and designs in evaluation research (experimental, quasi-experimental, multiple time series, etc.)
- Multivariate statistical modeling of change over time and group differences in change
- Specific statistical tools for sampling and matching (e.g., Propensity score matching)
- Basics of causality theory and the estimation of average and conditional effects in EffectLiteR
- Research synthesis and meta-analysis

Recommended reading

Links

Language of instruction | English
Duration (semesters)
1 Semester

Module frequency
The module will start every summer term.

Module capacity
unlimited

Module level
MM (Mastermodul / Master module)

Type of module
Pflicht / Mandatory

Teaching/Learning method
Part 1: lecture; Parts 2 and 3: seminars; additional tutorials are offered.

Previous knowledge
psy 111 Research methods I – Statistical Modeling

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>end of summer term</td>
<td>The module will be tested with an oral exam (25 min). Required active participation for gaining credits: attendance of at least 70% in the mandatory seminar within one semester (will be checked in StudIP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td>R seminar voluntary</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Tutorial</td>
<td>statistics</td>
<td></td>
<td>SoSe</td>
<td>0</td>
</tr>
</tbody>
</table>

Total module attendance time 56 h
psy125 - Neuropsychological Diagnostics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neuropsychological Diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>psy125</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Roheger, Mandy (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Roheger, Mandy (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Hildebrandt, Andrea (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Kranczioch-Debener, Cornelia (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Debener, Stefan (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Kiene, Franziska (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Enrolment in Master's programme Neurocognitive Psychology.</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Goals of module: Students will acquire specific knowledge about (neuro-)psychological assessment and will be trained to utilize this knowledge within a research context and in applied settings. Students will learn how to analyze clinical cases ("case conceptualization"), how to plan and conduct the information assessment phase, how to record and summarize collected data and how to integrate information in order to draw conclusions about the case given specific diagnostic strategies. Finally, students will learn about the requirements of assessment report generation in written and oral form given a specific applied context. Ethical guidelines and quality norms will be an implicit topic in all courses in the module.</td>
</tr>
<tr>
<td></td>
<td>Competencies:</td>
</tr>
<tr>
<td></td>
<td>+ Neuropsychological / neuropsychological knowledge for clinical assessments</td>
</tr>
<tr>
<td></td>
<td>+ interdisciplinary knowledge & thinking</td>
</tr>
<tr>
<td></td>
<td>+ ethics / good scientific practice / professional behavior</td>
</tr>
<tr>
<td></td>
<td>+ critical & analytical thinking</td>
</tr>
<tr>
<td>Module contents</td>
<td>Part 1: Introduction to neuropsychological diagnostics (lecture): winter</td>
</tr>
<tr>
<td></td>
<td>Psychological assessment as a decision process – descriptive and prescriptive models</td>
</tr>
<tr>
<td></td>
<td>Assessment methods, their construction and design, quality criteria</td>
</tr>
<tr>
<td></td>
<td>The logic of decision making in the assessment process</td>
</tr>
<tr>
<td></td>
<td>Classificatory decisions</td>
</tr>
<tr>
<td></td>
<td>Psychometrics to single cases</td>
</tr>
<tr>
<td></td>
<td>Examples of diagnostics processes in different clinical populations</td>
</tr>
<tr>
<td></td>
<td>Focus areas on different cognitive domains, their underlying models, respective possible impairments and possibilities for neuropsychological assessment</td>
</tr>
<tr>
<td></td>
<td>Reasoning for the applications of neuropsychological tests</td>
</tr>
<tr>
<td></td>
<td>Summarizing results and writing reports</td>
</tr>
<tr>
<td></td>
<td>Part 2: Applied Neuropsychological Diagnostics (seminar): winter</td>
</tr>
<tr>
<td></td>
<td>Case conceptualization (neuropsychology and clinical psychology)</td>
</tr>
<tr>
<td></td>
<td>Formulating hypotheses</td>
</tr>
<tr>
<td></td>
<td>Selecting assessment procedures and planning administration</td>
</tr>
<tr>
<td></td>
<td>specific knowledge on neuropsychological testing</td>
</tr>
<tr>
<td></td>
<td>exercises in neuropsychological testing / practicing tests</td>
</tr>
<tr>
<td></td>
<td>Evaluating the application of assessment procedures</td>
</tr>
<tr>
<td></td>
<td>Analyzing, summarizing and visualizing results</td>
</tr>
<tr>
<td></td>
<td>Integrating results based on the decision rules</td>
</tr>
<tr>
<td></td>
<td>Writing a psychological/assessment report</td>
</tr>
<tr>
<td>Recommended reading</td>
<td>Will be specified in the courses.</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>The module will start every winter term.</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Type of module</td>
<td>Pflicht / Mandatory</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Part 1: lecture; Part 2: seminar</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Examination times</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Parts of the practical exercise need to be completed and handed in at specific dates during winter term. The module will be tested by a practical exercise: assessment report. The report can be written in English or German. Required active participation for gaining credits: attendance of at least 70% in the seminar within one semester.</td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td></td>
</tr>
</tbody>
</table>
psy126 - Test Theory and Test Construction

Module label: Test Theory and Test Construction
Module abbreviation: psy126
Credit points: 6.0 KP
Workload: 180 h

Applicability of the module:
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons:
- Hildebrandt, Andrea (module responsibility)
- Hildebrandt, Andrea (Prüfungsberechtigt)
- Hellmann, Andreas (Prüfungsberechtigt)
- Debener, Stefan (Module counselling)

Prerequisites:
Enrolment in Master's programme Neurocognitive Psychology.

Skills to be acquired in this module:
Goals of module:
Students will acquire specific knowledge of modern test theory and test construction and will be trained to apply this knowledge in the context of test development and test adaptation. They will reflect on the differences between traditional and modern test theory and their use in the domain of applied psychometrics and the systematic design of interview and observation methods. Finally, students will learn about the requirements for writing test construction and/or adaptation reports. Ethical guidelines in psychometrics and quality standards will be implicit topics throughout the module.

Competencies:
- research methods and psychometric knowledge
- interdisciplinary knowledge & thinking
- ethics / good scientific practice / professional behavior
- critical & analytical thinking

Module contents:

Part 1: Test Theory and Test Construction (lecture): summer
- Classical test theory
- Generalizability theory
- Latent-State and Trait theory
- Latent variable models for different types of item responses
- Measurement invariance across groups and time
- Network modeling and machine learning in psychometrics
- Preference modeling for constructing faking-resistant questionnaires and tests

Part 2: Test Analysis Applied (seminar): summer
- Test adaptation conceptualization
- Test data processing
- Item mining and analysis
- Test analysis report writing

Recommended reading:
Will be specified in the courses.

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: The module will start every summer term.
Module capacity: unlimited
Module level: MM (Mastermodul / Master module)
Type of module: Pflicht / Mandatory
Teaching/Learning method: Part 1: lecture; Part 2: seminar

Previous knowledge:
You should know basic statistical concepts and multivariate statistics as they are covered in the introductory course statistics and in Research Methods I.

Examination:
Examination times: Parts of the practical exam need to be completed and handed in at specific dates during the summer term.
Type of examination: The module will be tested by a portfolio: test adaptation report of 5 pages text + figures + script

Required active participation for gaining credits:
Examination times

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>0</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>0</td>
</tr>
</tbody>
</table>

Total module attendance time

0 h
psy130 - Communication of scientific results

Module label	Communication of scientific results
Module abbreviation | psy130
Credit points | 6.0 KP
Workload | 180 h
Applicability of the module | Master's Programme Neurocognitive Psychology (Master) > Mastermodule
Responsible persons | Herrmann, Christoph Siegfried (module responsibility)
Herrmann, Christoph Siegfried (Prüfungsberechtigt)
Strüber, Daniel (Prüfungsberechtigt)
Roheger, Mandy (Prüfungsberechtigt)
Mahadevan, Rachana (Prüfungsberechtigt)
Strüber, Daniel (Module counselling)

Prerequisites | Enrolment in Master's programme Neurocognitive Psychology.

Skills to be acquired in this module

Goals of module:
Students will acquire specific knowledge about the presentation of scientific results both orally and in writing. Students will learn modern techniques for presentation, literature research and writing skills. They will also be taught about arguing scientifically.

Competencies:
++ data presentation & discussion
++ scientific literature
++ scientific English / writing
++ scientific communication skills
+ group work

Module contents

Part 1: Communication of scientific results (seminar)
- Literature search
- Presentation skills
- Writing skills

Part 2: Psychological colloquium
- Experienced scientists from various psychological disciplines will be giving talks about their experimental results. Speakers will be invited also from other universities.
- Students are encouraged to discuss the results with the experts and to make suggestions on whom to invite

Recommended reading

Links

Language of instruction | English
Duration (semesters) | 1-2 Semester
Module frequency | Part 1 will be offered every winter term. Part 2 will be offered every semester.
Module capacity | unlimited
Reference text | Students can chose whether they want to attend the colloquium in the first, second or both semesters.
Module level | MM (Mastermodul / Master module)
Type of module | Pflicht / Mandatory
Teaching/Learning method

Previous knowledge

Examination | Examination times
Final exam of module | during winter term

Type of examination | Oral presentation
Required active participation for gaining credits:
Examination times

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Colloquium</td>
<td></td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>

Type of examination

70% attendance of the seminar within one semester and at least 8 colloquia within two semesters (will be checked in StudIP) and active discussion in at least 1 colloquium.
psy141 - Minor

<table>
<thead>
<tr>
<th>Module label</th>
<th>Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>psy141</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons
- Rieger, Jochem (Module counselling)
- Bleichner, Kerstin (Module counselling)
- Rieger, Jochem (Prüfungsberechtigt)
- Gießing, Carsten (Prüfungsberechtigt)
- Puschmann, Sebastian (Prüfungsberechtigt)
- Spiegler, Andreas (Prüfungsberechtigt)
- Maier, Esther Christine (Prüfungsberechtigt)

Prerequisites
- Enrolment in Master's programme Neurocognitive Psychology.

Skills to be acquired in this module

Goals of module:
Students will gain an overview of non-psychological topics related to cognitive neuroscience and neuropsychology. They will see how psychological theories apply in other fields. Students can strengthen their own professional profile. Students may also broaden their psychological knowledge or language skills.

Competencies:

Module contents

To complement the core of the study programme in a meaningful way, students can take Master modules and courses from the fields:
- Biology
- Neurosciences
- Computer Science
- Physics
- Mathematics
- Pedagogy
- Philosophy
- related fields
- Psychology (additional elective module (NOT psy170, psy220, psy270, psy280, psy290) or from another study programme)

Students whose first language is not German, may take German classes.

Upon approval, German-speaking students can attend a career-relevant language course (i.e. necessary for internship, practical project or Master's thesis).

Students can take the academic writing course 'English for University Studies: 5. Writing and Reading pb337' from the language center. Other English classes cannot be taken as Minor.

A list of already approved courses/modules can be found on our website.

You can take other courses/modules if they fulfill the following requirements:
- Master level (other than language courses)
- may be ungraded, but need proof of competence (e.g. a pass/fail exam)

Note that Minor courses/modules must not repeat contents of mandatory modules or taken elective modules of the programme.

We recommend taking modules/courses that strengthen your own professional profile.

Recommended reading

Links
- List of approved courses/modules and approval form: https://uol.de/en/psychology/master/course-overview/
-> Supporting documents

Languages of instruction
English, German

Duration (semesters)
1 Semester

Module frequency
irregular

Module capacity
unlimited

Reference text

PLEASE NOTE:
If you want to take a module/course which is not listed in the list of approved courses/modules, please check thoroughly whether the course/module fulfills the requirements listed under ‘module contents’ before you start the course/module. The requirements for the minor module are also described in the subject specific amendments to the general examination regulations (fachspez. Anlage).

In cases of doubt, the programme coordinator can advise you.

Recognition procedure:

- Certificates of completion of approved courses/modules (see list of approved courses) have to be sent directly to the examinations office.
- Certificates of completion for courses/modules without former approval have to be sent to the head of the examinations committee together with the approval form and a course/module description.

If you want to take an additional elective module for your Minor (taking only a part of an elective module is not possible), you need to inform the contact person for the respective module in writing BEFORE the start of the module. If your request is NOT rejected in written form within 4 weeks, the module counts as approved for the Minor and the course credits will be automatically entered for your Minor. You will receive a pass/fail for this module. You CANNOT use it afterwards as a normal elective module. You can also NOT rededicate an elective that you have already started as your Minor.

Bachelor level courses are NOT acceptable. Note that Bachelor level courses can be listed in some Master programmes (e.g. Master of Education). This does not qualify a Bachelor level course for the Minor module.

It is your responsibility to ask the teacher whether you can take part in a course/module.

Please be aware that you can only use 6 credits for the module psy141 Minor. If you take more Minor courses/modules, these credits cannot be used for your degree. You can still ask the teacher to sign an attendance certificate (download https://uol.de/en/psychology/master/course-overview) or module examination form (https://uol.de/en/course-of-study/exams/neurocognitive-psychology-master-545) which is sufficient for later applications to prove that you took the additional course/module.

<table>
<thead>
<tr>
<th>Module level</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of module</td>
<td>Pflicht / Mandatory</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Lectures and seminars (depends on the chosen modules)</td>
</tr>
</tbody>
</table>

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>If grades are earned in the minor, those are counted as pass/fail. Certificates for grades can be separately requested from the examination office.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>VA-Auswahl</th>
</tr>
</thead>
</table>

SWS	4
Frequency	SoSe oder WiSe
Workload Präsenzzeit	56 h
psy150 - Clinical Psychology

Module label: Clinical Psychology

Module abbreviation: psy150

Credit points: 9.0 KP

Workload: 270 h

Applicability of the module:
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons:
- Thiel, Christiane Margarete (module responsibility)
- Thiel, Christiane Margarete (Prüfungsberechtigt)

Prerequisites:
Enrolment in Master's programme Neurocognitive Psychology.

Skills to be acquired in this module

Goals of the Module:
Students acquire scientifically sound, critical thinking regarding the genesis and psychopharmacological treatment of various mental illnesses; decision making based on the medical guidelines and evidence-based practice.

Competencies:
++ Neuropsychological / neurophysiological knowledge
+ experimental methods
+ data presentation & discussion
+ scientific literature
+ critical & analytical thinking
+ knowledge transfer
+ group work

Module contents

The first part of the module provides students with a theoretical and practical background on neurobiological and neurochemical bases of psychiatric disorders and pharmacological interventions. This will be complemented by psychiatric interviews in simulated patients focussing on psychopathological assessment. In the second part, the students will learn to plan and assess the effectiveness of psychological interventions for selected disorders.

Part 1: Neurobiological basis of psychiatric disorders and pharmacological intervention (lecture and seminar): winter
Basics of neurotransmitter systems and psychopharmacology
Substance Abuse (e.g. psychostimulants, hallucinogenics)
Depression
Anxiety Disorders
Alzheimer's Disease
Schizophrenia
psychopathological assessment

The seminar (voluntary) will be given in German as clinicians and patient actors are involved.

Part 2: Psychological interventions within the framework of evidence-based medicine (2 seminars, one partly in German): summer
Both seminars focus on concepts of evidence based treatment one with application to acquired dysfunctions of the brain, the other to selected psychiatric disorders.

Recommended reading

Abnormal Psychology,
John Wiley & Sons (12th ed) (introductory literature)
- Selected papers (part 2)

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
<tr>
<td>Reference text</td>
</tr>
<tr>
<td>Module level</td>
</tr>
<tr>
<td>Type of module</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
</tr>
<tr>
<td>Previous knowledge</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>mid-February</td>
<td>The module will be tested with a written exam (2 h) on the contents of the lecture in part 1. Required active participation for gaining credits: 1 presentation participation in discussions on other presentations attendance of at least 70% in both seminars in part 2 within one semester (will be checked in StudIP).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td>4</td>
<td>SoSe und WiSe</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Total module attendance time</td>
<td></td>
<td></td>
<td></td>
<td>84 h</td>
</tr>
</tbody>
</table>
psy170 - Neurophysiology

Module label: Neurophysiology
Module abbreviation: psy170
Credit points: 6.0 KP
Workload: 180 h

Applicability of the module:
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons:
- Debener, Stefan (module responsibility)
- Debener, Stefan (Prüfungsberechtigt)

Prerequisites:
- Enrolment in Master's programme Neurocognitive Psychology.

Skills to be acquired in this module:

Goals of module:
Students will understand the basic concepts of biomedical signal processing. They will use EEG analysis tools interactively and independently and will understand the complete chain of EEG analysis steps, from data import to the illustration of results. They will be able to use open source tools for EEG analysis and apply theoretical knowledge to practical problems of physiology.

Competencies:
++ Neuropsychological / neurophysiological knowledge
++ experimental methods
++ statistics & scientific programming
++ ethics / good scientific practice / professional behavior
+ group work
+ project & time management

Module contents:
Students will acquire specific knowledge about neurophysiology and neuroanatomy, learn the fundamental concepts of multi-channel EEG analysis, and acquire hands-on skills in recording EEG data and using EEGLAB, an open-source software toolbox for advanced EEG analysis.

Part 1: Neurophysiology and neuroanatomy (lecture): winter
Neurophysiology, EEG, EMG, ECG
Neuroanatomy
Time-domain and frequency-domain analysis methods

Part 2: EEG recording and analysis (seminar): winter
In small groups under supervision of the lecturer, all students will record EEG data of their fellow students and will serve as participants for their classmates.
We cannot guarantee same-gender groups.
Recording and analysis of biomedical signals
Averaging, filtering, signal-to-noise
Topographical EEG analysis

Part 3: EEG analysis with Matlab (seminar): summer
EEGLAB file I/O, data structure and scripting
Preprocessing, artefact rejection and artefact correction
Statistical decomposition
Event-related potentials, topographical mapping and power spectra
Illustration of results

Literatur

Recommended reading:
Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>The module will start every winter term.</td>
</tr>
<tr>
<td>Module capacity</td>
<td>18 (The lecture is not restricted.)</td>
</tr>
<tr>
<td>Reference text</td>
<td>PLEASE NOTE: We strongly recommend to take either psy170, psy270, psy280, or psy220 to gain methodological competencies (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master’s theses!</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Part 1: lecture; Part 2 and 3: seminars</td>
</tr>
</tbody>
</table>

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>exam period at the end of the summer term</td>
<td>The module will be tested with a written exam of 2 h duration. Required active participation for gaining credits: recording of electroencephalographic data of fellow students and serving as participant for classmates attendance of at least 70% in each seminar within one semester (will be checked in StudIP).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2 semester hours per week in first half of the winter term.</td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
</tr>
<tr>
<td>Seminar</td>
<td>2 semester hours per week in second half of the winter term. 2 semester hours per week in summer term.</td>
<td>3</td>
<td>SoSe und WiSe</td>
<td>42</td>
</tr>
</tbody>
</table>

Total module attendance time 56 h
psy181 - Neurocognition

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neurocognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>psy181</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons
- Thiel, Christiane Margarete (module responsibility)
- Thiel, Christiane Margarete (Prüfungsberechtigt)

Prerequisites
Enrolment in Master's programme Neurocognitive Psychology.

Skills to be acquired in this module

Goals of module:
Students should be able to recognize and critically evaluate the value of considering neuroscience in the study of psychological topics.

Competencies:
++ neuropsychological / neurophysiological knowledge
++ interdisciplinary knowledge & thinking
++ data presentation & discussion
++ scientific literature
+ scientific communication skills
+ group work

Module contents
Students will first acquire a general understanding of the brain mechanisms of different cognitive functions and the methods used to study these functions. They will then apply this knowledge by discussing current research topics (part 1). Knowledge will be transferred to the relation between the development of the human brain and the cognitive processes it supports (part 2).

Part 1: Introduction to cognitive neuroscience (lecture and seminar): winter
- Brain and cognition, methods of cognitive neuroscience
- Attention, learning and memory
- Emotional and social behaviour
- Language, executive functions

Part 2: Neurocognitive development (seminar): summer
- Brain development and cortical plasticity
- Effects of early-life stress on brain development
- Development of object recognition, social cognition, memory, and executive functions

Recommended reading

Links
- Language of instruction: English
- Duration (semesters): 2 Semester
Module frequency
- Part 1 will be offered every winter term, part 2 every summer term.

Module capacity
- 20 (Part 1 (lecture and seminar) are unrestricted, part 2 is restricted to 20 students.)

Module level
- MM (Mastermodul / Master module)

Type of module
- Wahlpflicht / Elective

Teaching/Learning method
- Part 1: lecture and seminar; Part 2: seminar

Previous knowledge

Examination
- **Examination times**
 - The module will be tested with a written exam of 2 h duration on the contents of part 1.
 - Required active participation for gaining credits: 1 presentation participation in discussions on other presentations; attendance of at least 70% in both seminars within one semester (will be checked in StudIP).

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>3</td>
<td>SoSe und WiSe</td>
<td>42</td>
</tr>
</tbody>
</table>

Total module attendance time
- 56 h
psy190 - Sex and Cognition

Module label: Sex and Cognition
Module abbreviation: psy190
Credit points: 6.0 KP
Workload: 180 h

Applicability of the module:
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons:
- Strüber, Daniel (module responsibility)
- Strüber, Daniel (Prüfungsberechtigt)

Prerequisites:
- Enrolment in Master's programme Neurocognitive Psychology. Neuroscience students can take part on request.

Skills to be acquired in this module:

Goals of module:
Students will acquire specific knowledge about sex differences in cognitive abilities and social behaviours. They will be able to understand the interrelated impact of social and biological influences on the brain's control of the (sex-specific) behaviours. Students should be able to critically evaluate behavioural sex differences from different perspectives and to reflect on possible implications for society.

Competencies:
++ neuropsychological / neurophysiological knowledge
+ interdisciplinary knowledge & thinking
++ data presentation & discussion
++ scientific literature
+ critical & analytical thinking
++ scientific communication skills
+ group work
+ project & time management

Inhalte

Module contents

Part 1: Introduction to the study of sex differences (lecture): winter
- The measurement of sex differences
- Sex differences in emotion
- Sex differences in aggression
- Sex differences in cognitive abilities
- Hormones, sexual differentiation, and gender identity
- Sex hormones and play preferences
- Sex differences in hemispheric organization
- Brain size and intelligence

Part 2: Sex, brain, and behaviour (seminar): winter
- Sex differences in empathy
- The extreme male brain theory of autism (S. Baron-Cohen)
- Sex differences in neuropsychiatric disorders
- Sex differences in stress response
- Social implications of sex differences

Recommended reading:
Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
The module will be offered every winter term.

Module capacity
30

Module level
MM (Mastermodul / Master module)

Type of module
Wahlpflicht / Elective

Teaching/Learning method
Part 1: lecture; Part 2: seminar

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>during winter term</td>
<td>oral presentation</td>
</tr>
</tbody>
</table>

Required active participation for gaining credits: participation in discussions on other presentations attendance of at least 70% in the seminar within one semester (will be checked in StudIP).

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total module attendance time
56 h
psy201 - Neuropsychology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neuropsychology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>psy201</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Debener, Stefan (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Debener, Stefan (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Enrolment in Master's programme Neurocognitive Psychology.</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
</tbody>
</table>

Goals of module:
Students will learn to understand changes in thinking and behaviour that may arise from brain dysfunctions (part 1, 3), acquire specific knowledge on cognitive rehabilitation (part 2), and learn to understand, communicate and evaluate progress in clinical practice and experimental research in neuropsychology (part 3).

Competencies:
++ neuropsychological / neurophysiological knowledge
+ interdisciplinary knowledge & thinking
++ experimental methods
+ data presentation & discussion
++ scientific literature
+ critical & analytical thinking
+ scientific communication skills

Module contents

Part 1: Introduction to Clinical Neuropsychology (lecture): winter
Cortical lobes (anatomy, functions, lesion symptoms, neuropsychological tests)
Higher functions (learning & memory, language, emotion, spatial behavior, attention)
Plasticity and disorders (development, learning and reading disabilities, recovery)

Part 2: Cognitive Neurorehabilitation (seminar): summer
Behavioural and neuropsychological approaches
neurofeedback in neurorehabilitation and ADHD memory rehabilitation
effects of physical activity on cognition
motor recovery

Part 3: Topics in Clinical Neuropsychology (seminar; taught partly in German): winter
Clinical neuroanatomy
Neurodegenerative diseases
Dementia
Choose either part 2 or part 3!

Recommended reading

Links

Language of instruction
English

Duration (semesters)
1-2 Semester

Module frequency
The module will start every winter term.

Module capacity
30 (Part 3 is not restricted.)

Reference text
Part 1 (lecture) is mandatory. Choose either part 2 or part 3 (seminars).
Note: The lecture of part 3 is given in German with accompanying English materials. Students who cannot follow a lecture in German are given priority in
<table>
<thead>
<tr>
<th>Module level</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Part 1: lecture; Part 2: seminar; Part 3: seminar</td>
</tr>
</tbody>
</table>

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>exam period at the end of winter term</td>
<td>The module will be tested with a written exam of 2 h duration. Required active participation for gaining credits: presentation participation in discussions on other presentations attendance of at least 70% in one seminar within one semester (will be checked in StudIP).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total module attendance time 56 h
psy210 - Applied Cognitive Psychology

Module label Applied Cognitive Psychology
Module abbreviation psy210
Credit points 6.0 KP
Workload 180 h

Applicability of the module
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons
- Rieger, Jochem (module responsibility)
- Rieger, Jochem (Prüfungsberechtigt)

Prerequisites
Enrolment in Master's programme Neurocognitive Psychology. Neuroscience students can take part on request.

Skills to be acquired in this module

Goals of the module:
Students will gain an overview of theories of (Neuro)Cognitive Psychology with potential for application. On completion of this module students should have a repertoire of cognitive psychology concepts relevant for real world situations, be able to transfer the learned theoretical concepts into practical contexts and evaluate potential issues arising in the process of translation.

Competencies:
++ Neuropsychological / neurophysiological knowledge
+ interdisciplinary knowledge & thinking
+ experimental methods
+ scientific literature
+ ethics / good scientific practice / professional behavior
+ critical & analytical thinking
+ scientific communication skills
+ knowledge transfer

Module contents
The module will cover core concepts of cognitive psychology, their neuronal basis, basic knowledge of neuroimaging and data analysis techniques. Special emphasis will be put on research aiming at complex real-world settings and translation of basic science into practice. Examples of successful transfers will be analyzed. The lecture provides the theoretical basis. In the seminar the material is consolidated by examples from the literature which will be presented, critically analyzed and discussed.

Part 1: (Neuro)Cognitive Psychology in the wild I (lecture): summer
- Neurocognitive Psychology with emphasis in real world context
- Methodological considerations: Generalization, validity of theories and research methods
- Information uptake and representation: Sensation, perception, categorization
- Selection of information and capacity: Attention and memory enhancement and failure
- Generation and communication: Language, reading, dyslexia
- Pursuing goals: Thinking, problem solving and acting

Part 2: (Neuro)Cognitive Psychology in the wild II (seminar): winter
In the accompanying seminar we will work through recent examples in the literature for topics of the lecture. The goal is to apply novel knowledge from the lecture to understand and critically discuss actual research approaches.

Recommended reading
<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>Part 1 will be offered every summer term, part 2 every winter term.</td>
</tr>
<tr>
<td>Module capacity</td>
<td>30</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Part 1: 1 lecture (2 SWS); Part 2: 1 seminar (2 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Previous knowledge</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>last class in summer term</td>
<td>The module will be evaluated with a written exam of 2 hours duration. Required active participation for gaining credits: 1-2 presentations; participation in discussions on other presentations attendance of at least 70% in the seminar within one semester (will be checked in StudIP).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

| Total module attendance time | 56 h |
goals of module:
The goal of the module is to provide students with basic skills required to plan, implement and evaluate brain computer interfaces as devices for human computer interaction. BCI methods are an ideal showcase as they fully span the interdisciplinary field of HCI design, implementation and evaluation. Importantly, classical BCI-methods can be used for modern data-driven basic neuroscience.

The module is designed as an "enabler course", meaning that ideally students should be able to understand and start independent studies into the BCI-methods. Therefore, it goes into depth instead of breadth. Good programming skills and some active knowledge of high school maths is strongly advised to maximize the learning outcome.

competencies:
++ understanding of the foundations of statistical learning techniques
+ basics to understand technical time series processing and machine learning papers
++ interdisciplinary knowledge & thinking
+ experimental methods
++ statistics & scientific programming
+ critical & analytical thinking
+ scientific communication skills
+ knowledge transfer
+ group work
+ project & time management

Module contents

The module will introduce classic BCI paradigms and brain recoding techniques. However the main focus will be on a deeper understanding of the most important signal processing, machine learning, and performance evaluation techniques. The module combines a lecture on the theoretical foundations a seminar/hands on course in which students learn to implement the BCI-processing steps on real neurophysiological data and further elaborate specific subtopics.

part 1: HCI and BCI Lecture: (Lecture on methodological foundations of BCI): summer

part 2: Hands on BCI implementation (practical seminar): summer

Topics covered:

- A brief history of BCIs and examples of HCI control and basic neuroscience using BCI techniques.
- Data preprocessing (e.g. filtering, projection techniques) and common artifacts and artifact treatment.
- Feature generation (e.g. fourier transform, spectral estimation techniques, principle components)
- Machine learning for classification and regression (e.g. model parameter optimization in multivariate regression)
• Evaluation (e.g. measures of model quality, cross validation to test model generalization, permutation tests)

Where possible the lecture provides mathematical backgrounds of the data analysis techniques. The practical seminar implements BCI techniques on a real data set and further elaborates specific topics in seminar form.

Recommended reading

There is no required textbook. The lecture slides and notes should be sufficient. However some resources from which they were developed on are given below:

General tutorial text providing and overview and accompanying python code on github:

Signal processing:

PCA & SVD

Unsupervised feature Learning and deep learning tutorial:

General texts:

Machine learning and AI:

Hastie, Tibshirani, and Friedman. The elements of statistical learning. Covers a wide range of machine learning topics. Free online.

BCI

Additional literature and material will be provided on the course website.

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>The module will be offered every summer term.</td>
</tr>
<tr>
<td>Module capacity</td>
<td>15</td>
</tr>
<tr>
<td>Reference text</td>
<td>We strongly recommend to take either psy170, psy270, psy280, or psy220 to gain methodological competencies (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master's theses!</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Part 1: lecture; Part 2: practical seminar</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>Basic programming skills, some high-school level maths</td>
</tr>
<tr>
<td>Examination</td>
<td>Examination times</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>last lecture in summer term</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>Total module attendance time</td>
<td></td>
</tr>
</tbody>
</table>
psy240 - Computation in Neuroscience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Computation in Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>psy240</td>
</tr>
<tr>
<td>Credit points</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
</tbody>
</table>

Applicability of the module

- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons

- Stecher, Heiko (module responsibility)
- Stecher, Heiko (Prüfungsberechtigt)

Prerequisites

Enrolment in Master's programme Neurocognitive Psychology.

Skills to be acquired in this module

Goals of module:

Students will acquire scientific programming skills as well as specific knowledge of computational methods in neuroscience and cognition. They will learn to judge the appropriateness and complexity of computational problems and solutions.

Competencies:

- Neuropsychological / neurophysiological knowledge
- Experimental methods
- Statistics & scientific programming
- Critical & analytical thinking
- Knowledge transfer
- Group work

Module contents

Part 1: Introduction to scientific programming I (lecture): winter

- Basic data types and structures
- Flow control (conditions, loops, errors)
- Testing and debugging
- Functions

Part 2: Introduction to scientific programming II (lecture): summer

- Complex data structures
- EEG processing
- Frequency analysis methods
- Introduction to toolboxes

Part 3: Scientific programming I (exercise): winter

Implementation of examples from part 1

Part 4: Scientific programming II (exercise): summer

Implementation of examples from part 2

Part 5: Computer-controlled experimentation (seminar): summer

- Computer hardware basics
- Scripting and programming experiments
- Combining stimulus delivery with EEG, Eyetracking, etc.
- Temporal precision

Recommended reading

- Mathworks (2009): MATLAB online documentation

Links
Language of instruction
English

Duration (semesters)
2 Semester

Module frequency
The module will start every winter term.

Module capacity
unlimited

Reference text
Important note: Passing the exam of psy240 is mandatory for starting a Practical Project (psy260) and the Master's thesis.

Module level
MM (Mastermodul / Master module)

Type of module
Pflicht / Mandatory

Teaching/Learning method
Part 1 and 2: lectures; Part 3 and 4: excercises; Part 5: seminar; additional tutorials

Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>exam period at the end of the summer term</td>
<td>In a 120-minute written exam the participants will have to program MATLAB-scripts for a selection of neuroscientific data-analysis problems, demonstrating their skills in the different topics. The scripts and comments will be written on university-provided laptops and handed in via email or USB-drive. Students need to hand in 1-2 programming tasks in the exercises to be allowed to take part in the exam. Required active participation for gaining credits: script for the presentation of experimental stimuli in part 5 attendance of at least 70% in the seminar 'computer-controlled experimentation', part 5 within one semester (will be checked in StudIP).</td>
</tr>
</tbody>
</table>

Type of course

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2h/week in winter and summer term</td>
<td>4</td>
<td>SoSe und WiSe</td>
<td>56</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td>1h/week in winter and summer term</td>
<td>2</td>
<td>SoSe und WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Tutorial</td>
<td>voluntary</td>
<td></td>
<td>SoSe und WiSe</td>
<td>0</td>
</tr>
</tbody>
</table>

Total module attendance time
112 h
psy251 - Internship

Module label	Internship
Module abbreviation | psy251
Credit points | 12.0 KP
Workload | 360 h

Applicability of the module
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons
- Kranczioch-Debener, Cornelia (module responsibility)
- Kranczioch-Debener, Cornelia (Prüfungsberechtigt)

Prerequisites
Enrolment in Master's programme Neurocognitive Psychology.

Skills to be acquired in this module

Goals of module:
Students will obtain direct experience in the field of psychology. This includes being involved in the provision of psychological or neuropsychological services in real-life situations, such as neuropsychological testing or counselling in a hospital or mental health clinic, or conducting and contributing to psychological research. The internship should be chosen by the student such that it can provide a meaningful educational opportunity that will help students to decide on their preferred area of work.

Competencies:
- ++ expert neuropsychological/neurophysiological knowledge
- + interdisciplinary knowledge & thinking
- + experimental methods
- ++ ethics / good scientific practice / professional behavior
- ++ knowledge transfer
- + project & time management

Module contents
The students will work in a field of psychology of personal choice. The student will get to know and participate in the daily work routines of a psychologist.

Recommended reading
The internship lasts 360 hours (9-10 weeks). It can be performed at 2 different institutions with a minimum duration of 150 hours (4 weeks) for each part.

A part of your internship (maximally 150 hours) can be performed internally in the Department of Psychology. Internal internships cannot be performed in the same lab in which you will perform / have performed your Practical Project psy260!

Your supervisor must be a psychologist. If your supervisor is NOT a psychologist, please contact us for approval BEFORE you start your internship.

Please note that details are regulated in the exam regulations. A blank internship certificate and the report form can be found on the programme website.

To generate ideas, a folder with information on internships that other students have performed is available in the office of Dr. Cornelia Kranczioch.

Topics for projects will be presented in a colloquium at the end of the summer.
<table>
<thead>
<tr>
<th>Module level</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of module</td>
<td>Pflicht / Mandatory</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>internship at (external) institution</td>
</tr>
</tbody>
</table>

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Individual: 2-3 possibilities per semester to present the internship to other students</td>
<td>The students have to hand in a written report (2-3 pages) and give a short presentation about their internship. They have to show a certificate from the institution at which they performed the internship. The internship is evaluated as pass/fail.</td>
</tr>
</tbody>
</table>

Type of course

- Practical training

SWS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>SoSe oder WiSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload Präsenzzzeit</td>
<td>0 h (360 hours presence at internship institution)</td>
</tr>
</tbody>
</table>
psy260 - Practical project

Module label: Practical project
Module abbreviation: psy260
Credit points: 9.0 KP
Workload: 270 h (attendance in the lab and accompanying seminars as necessary for your project (~ 200h))

Applicability of the module:
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons:
- Debener, Stefan (module responsibility)
- Herrmann, Christoph Siegfried (module responsibility)
- Hildebrandt, Andrea (module responsibility)
- Puschmann, Sebastian (module responsibility)
- Rieger, Jochem (module responsibility)
- Roheger, Mandy (module responsibility)
- Al-Zubaidi, Arkan (Prüfungsberechtigt)
- Bleichner, Martin Georg (Prüfungsberechtigt)
- Debener, Stefan (Prüfungsberechtigt)
- Gießing, Carsten (Prüfungsberechtigt)
- Hellmann, Andreas (Prüfungsberechtigt)
- Hemmann, Christoph Siegfried (Prüfungsberechtigt)
- Hemmann, Christoph Siegfried (Prüfungsberechtigt)
- Hildebrandt, Andrea (Prüfungsberechtigt)
- Hildebrandt, Helmut (Prüfungsberechtigt)
- Rieger, Jochem (Prüfungsberechtigt)
- Kranczioch-Debener, Cornelia (Prüfungsberechtigt)
- Özyurt, Jale Nur (Prüfungsberechtigt)
- Stecher, Heiko (Prüfungsberechtigt)
- Strüber, Daniel (Prüfungsberechtigt)
- Thiel, Christiane Margarete (Prüfungsberechtigt)
- Rosemann, Stephanie (Prüfungsberechtigt)
- Puschmann, Sebastian (Prüfungsberechtigt)
- Jäger, Manuela (Prüfungsberechtigt)
- Boetzel, Cindy (Prüfungsberechtigt)
- Vogeli, Sreekari (Prüfungsberechtigt)
- Roheger, Mandy (Prüfungsberechtigt)
- Daeglau, Mareike (Prüfungsberechtigt)
- Kristanto, Daniel (Prüfungsberechtigt)
- Abdolalizadeh Saleh, Amirhussein (Prüfungsberechtigt)
- Jacobsen, Nadine (Prüfungsberechtigt)
- Short, Cassie Ann (Prüfungsberechtigt)
- Marek, Merle (Module counselling)

Further responsible persons:
Upon approval by the examination committee other staff members (e.g. PhD students in the laboratories of the Department of Psychology) can act as examiners for psy260.

Prerequisites:
Enrolment in Master's programme Neurocognitive Psychology.
You can only start the practical project if you have passed the exam of psy240 (psy241) Computation in Neuroscience!
Priority is given to students with experience in methods used in the respective lab or students who have taken the respective teaching modules.

Skills to be acquired in this module:

Goals of module:
Students are able to critically review the scientific literature and current state of knowledge concerning a certain topic in the field of cognitive neuroscience or neuropsychology. Based on this, they are able to develop a specific research question and to design an adequate experiment, acquire data and conduct appropriate statistical analyses, building on previously gained competencies in relevant research methods, computer programming and statistical methods. They know how to critically discuss the results of their study in context of the current literature and how to present their findings at a scientific poster.
sympoium.

Competencies:
- ++ experimental methods
- + statistics & scientific programming
- ++ data presentation & discussion
- + independent research
- + scientific literature
- + ethics / good scientific practice / professional behavior
- + scientific communication skills
- + knowledge transfer
- + group work
- ++ project & time management

Module contents

- The students develop an empirical investigation, carry it out and analyse the results.
- The students present and discuss their project in respect to recent literature in regular meetings and in a poster symposium.
- Students can develop an experimental design for a follow-up study which could potentially be the topic of their Master's thesis.
- As part of the practical project, students should participate in studies of other practical projects!

Recommended reading

<table>
<thead>
<tr>
<th>Links</th>
<th>https://uol.de/en/psychology/master/course-overview/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>The module will be offered every winter term.</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td>Topics for projects will be presented in a colloquium at the end of the summer term. Students can chose to perform the practical work in either of the research groups of the Department of Psychology. External projects are possible upon approval (information and approval form can be found on the programme website).</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Pflicht / Mandatory</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>practical work and regular seminar meetings in the group where the project is performed</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>PLEASE NOTE: Knowledge of either EEG, fMRI, TBS, or MEG data analysis, or knowledge of HCI or ambulatory assessment methods is essential for most projects offered in the Department of Psychology. We strongly recommend to take either psy170: Neurophysiology, psy270: fMRI Data Analysis, psy280: Transcranial Brain Stimulation, psy220: Human Computer Interaction, or psy290: Ambulatory Assessment prior to the practical project. It is expected that students have basic knowledge of Matlab programming before starting the practical project. This is proven by having passed the exam in Computation in Neuroscience.</td>
</tr>
<tr>
<td>Examination</td>
<td>Examination times</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>usually end of April</td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
</tr>
<tr>
<td>Seminar</td>
<td>Please select the group in which you perform your practical project.</td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Practical training</td>
<td>attendance as necessary for your project (~ 200h)</td>
</tr>
</tbody>
</table>

Total module attendance time
28 h
psy270 - Functional MRI Data Analysis

<table>
<thead>
<tr>
<th>Module label</th>
<th>Functional MRI Data Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>psy270</td>
</tr>
<tr>
<td>Credit points</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
</tbody>
</table>
| Applicability of the module | - Master's Programme Biology (Master) > Background Modules
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule
- Master's Programme Neuroscience (Master) > Background Modules |
| Responsible persons | - Gießing, Carsten (module responsibility)
- Gießing, Carsten (Prüfungsberechtigt) |
| Prerequisites | Enrolment in Master's programme Neurocognitive Psychology, Neuroscience, or Biology. |

Goals of module: Students will learn the basics about planning and performing a neuroimaging study. They will focus on the statistical and methodological background of functional neuroimaging data analysis and analyse a sample functional MRI data set.

Competencies:
- ++ experimental methods
- ++ statistics & scientific programming
- + data presentation & discussion
- ++ group work

Module contents

- Theoretical knowledge on functional MRI data analysis
- Planning, performance and analysis of functional neuroimaging studies using MATLAB-based software
- Hands-on fMRI data analysis with SPM

Recommended reading

Links

Language of instruction	English
Duration (semesters) | 1 Semester
Module frequency | The module will be offered every summer term.
Module capacity | 15 (The remaining places are reserved for Biology and Neuroscience students.)
Reference text

Since the module is primarily offered for the Master's programme Biology it has to be offered as a blocked course. Please contact us if you are interested in the module but have problems with interfering other courses.

PLEASE NOTE:
We strongly recommend to take either psy170, psy270, psy280, or psy220 to gain
methodological competencies (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master's theses.

<table>
<thead>
<tr>
<th>Module level</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>blocked course with lecture, interactive seminar and exercise parts</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>Students need to have solid statistical knowledge as taught in the Introductory Course Statistics and in Research Methods.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>middle of summer term</td>
<td>Oral or written examination</td>
</tr>
</tbody>
</table>

Required active participation for gaining credits:
1-2 presentations participation in discussions on other presentations attendance of at least 70% in the seminars and exercises within one semester (will be checked in StudIP).

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>1</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>14 h</td>
</tr>
</tbody>
</table>
psy280 - Transcranial Brain Stimulation

<table>
<thead>
<tr>
<th>Module label</th>
<th>Transcranial Brain Stimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>psy280</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Herrmann, Christoph Siegfried (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Herrmann, Christoph Siegfried (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Strüber, Daniel (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Enrolment in Master's programme Neurocognitive Psychology.</td>
</tr>
</tbody>
</table>

Skills to be acquired in this module

Goals of module:
Students will gain theoretical and practical knowledge on various non-invasive brain stimulation techniques.

Competencies:
++ Neuropsychological / neurophysiological knowledge
++ experimental methods
+ statistics & scientific programming
+ scientific literature
+ ethics / good scientific practice / professional behaviour

Module contents

In this module, we will introduce the theoretical concepts, neurophysiological underpinnings and neurocognitive as well as clinical applications of various non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and transcranial random noise stimulation (tRNS). A focus will be tACS, because it is especially suited to modulate brain oscillations which have been shown to correlate with cognitive processes.

Part 1: Introduction to transcranial brain stimulation (lecture): summer

- Historical overview of brain stimulation
- Different techniques (TMS, IDCS, IACS, IRNS)
- Physiological mechanisms (entrainment, after-effects etc.)
- The use of transcranial brain stimulation in cognitive neuroscience - Experimental parameters (intensity, electrode montage, etc.)
- Pros and cons of TMS vs. IACS
- Technical aspects (artifact correction, modelling current flow, etc.)
- Safety issues
- Ethical considerations of brain stimulation

Part 2: Effects of IACS on physiology and cognition (seminar): summer

- Physiology of IACS (on-line and after-effects)
- Modulating cognitive functions (e.g. memory, attention, and perception)
- Clinical applications of IACS
- Hands-on experience in the lab

Recommended reading

<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>The module will be offered every summer term.</td>
</tr>
<tr>
<td>Module capacity</td>
<td>10</td>
</tr>
<tr>
<td>Reference text</td>
<td>We strongly recommend to take either psy170, psy270, psy280, or psy220 to gain methodological competencies (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master's thesis!</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Part 1: lecture; Part 2: seminar</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>during summer term</td>
<td>Oral presentation in the seminar.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Required active participation for gaining credits: attendance of at least 70% in the seminar within one semester (will be checked in StudIP).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

| Total module attendance time | 56 h |
psy285 - Study Abroad I - Psychology/Neuroscience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Study Abroad I - Psychology/Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>psy285</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>- Master's Programme Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
</tbody>
</table>
| Responsible persons | - Department of Psychology (module responsibility)
- Bleichner, Kerstin (Module counselling)
- Kranczioch-Debener, Cornelia (Module counselling) |
| Further responsible persons | Courses taken abroad will be approved by the examinations committee. |
| Prerequisites | |
| Skills to be acquired in this module | |
| Module contents | Successfully completed study achievements at Master's level from a study abroad are recognised to the extent of 6 credit points, provided that they originate from the fields of psychology or neuroscience and do not have any significant overlaps in content with modules of the compulsory and elective subjects that have already been studied/are still to be studied. |
| Recommended reading | |
| Links | |
| Language of instruction | English |
| Duration (semesters) | 1 Semester |
| Module frequency | |
| Module capacity | unlimited |
| Module level | MM (Mastermodul / Master module) |
| Type of module | Wahlpflicht / Elective |
| Previous knowledge | |
| Examination | Examination times |
| Final exam of module | according to the regulations of the respective foreign university |
| Type of course | VA-Auswahl (according to the regulations of the respective foreign university) |
| Type of course | |
| SWS | 4 |
| Frequency | SoSe oder WiSe |
| Workload Präsenzzeit | 56 h |
psy286 - Study Abroad II - Psychology/Neuroscience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Study Abroad II - Psychology/Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>psy286</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Department of Psychology (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Kranczioch-Debener, Cornelia (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Bleichner, Kerstin (Module counselling)</td>
</tr>
<tr>
<td>Further responsible persons</td>
<td>Courses taken abroad will be approved by the examinations committee.</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Successfully completed study achievements at Master's level from a study abroad are recognised to the extent of 6 credit points, provided that they originate from the fields of psychology or neuroscience and do not have any significant overlaps in content with modules of the compulsory and elective subjects that have already been studied/are still to be studied.</td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Recommended reading</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
<tr>
<td>Type of course</td>
<td>VA-Auswahl (according to the regulations of the respective foreign university)</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
psy290 - Ambulatory Assessment in Psychology

Module label: Ambulatory Assessment in Psychology
Module abbreviation: psy290
Credit points: 6.0 KP
Workload: 180 h

Applicability of the module:
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons:
- Roheger, Mandy (module responsibility)
- Roheger, Mandy (Prüfungsberechtigt)
- Bleichner, Martin Georg (Prüfungsberechtigt)

Prerequisites:
Enrolment in Master's programme Neurocognitive Psychology.

Skills to be acquired in this module

Goals of module:
Students will acquire specific knowledge about ambulatory assessment methods in psychological and public health research. They will know about the historical development of ambulatory assessment methods, the advantages and challenges of these methods and statistical methods for analyzing longitudinal data collected in ambulatory assessment research. Students will generate an own research idea and conduct their own study using ambulatory assessment tools such as e.g. mobile surveys or motion sensors. Students will be able to collect, analyze and present their data using ambulatory assessment tools.

Competencies:
- ++ Neuropsychological / neurophysiological knowledge
- ++ experimental methods
- ++ statistics & scientific programming
- + interdisciplinary knowledge & thinking
- + ethics / good scientific practice / professional behavior
- + critical & analytical thinking
- + project & time management

Module contents

Part 1: Ambulatory Assessment in Psychology and Health Research (lecture): summer
- Definitions and historical overview of ambulatory assessment (AmbA) methods
- Reasons to use AmbA methods
- Introduction to different types of AmbA methods
- Designing a study of daily life
- Examples of usage of AmbA methods in different research fields and different research questions
- Statistical analysis of longitudinal data

Part 2: Researching daily life (seminar): summer
- Formulating hypotheses
- Selecting AmbA procedures and planning administration
- Data collection
- Evaluating the application of AmbA methods
- Analyzing, summarizing and visualizing results

Recommended reading

Links
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: The module will start every summer term.
Module capacity: unlimited
Reference text
PLEASE NOTE: We strongly recommend to take either psy170, psy270,
psy280, psy220 or psy290 to gain methodological competencies (EEG, fMRI, TBS, HCI, ambulatory assessment techniques) that are needed for most practical projects and Master’s theses!

<table>
<thead>
<tr>
<th>Module level</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>part 1: lecture, part 2: seminar</td>
</tr>
</tbody>
</table>

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Assignments will be collected during the term.</td>
<td></td>
</tr>
</tbody>
</table>

The module will be tested by a portfolio (consisting of 3 assignments):

- A theoretical background of the planned study and the presentation of the hypothesis (text, max. 1 page) – due before starting data collection
- A visualization of the study results – due after finishing data collection and analysis
- A scientific abstract of the whole study at the end of the seminar – due at the end of the seminar

Required active participation for gaining credits:

- attendance of at least 70% in the seminar within one semester
- recording of AmbA data

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>0</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>0</td>
</tr>
</tbody>
</table>

Total module attendance time 0 h
psy110 - Research methods

Module label: Research methods
Module abbreviation: psy110
Credit points: 12.0 KP
Workload: 360 h

Applicability of the module:
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons:
- Hildebrandt, Andrea (module responsibility)
- Hildebrandt, Andrea (Prüfungsberechtigt)

Prerequisites:
Enrolment in Master's programme Neurocognitive Psychology. Module psy110 is only relevant for students who started their studies before winter term 21/22. (All other students study modules psy111 and psy112.)

Skills to be acquired in this module

Goals of module:
Students will acquire basic knowledge in planning empirical investigations, managing and understanding quantitative data and conducting a wide variety of multivariate statistical analyses. They will learn how to use the statistical methodology in terms of good scientific practice and how to interpret, evaluate and synthesize empirical results from the perspective of statistical modeling and statistical learning in basic and applied research context. The courses in this module will additionally point out statistical misconceptions and help students to overcome them.

Competencies:
++ interdisciplinary knowledge & thinking
++ statistics & scientific programming
++ data presentation & discussion
+ independent research
+ scientific literature
++ ethics / good scientific practice / professional behavior
++ critical & analytical thinking
++ scientific communication skills
+ group work

Module contents

Part 1: Multivariate Statistics I (lecture): winter
- Graphical representation of multivariate data
- The Generalized Linear Modeling (GLM) framework
- Multiple and moderated linear regression with quantitative and qualitative predictors
- Logistic regression
- Multilevel regression (Generalized Linear Mixed Effects Modeling – GLMM)
- Non-linear regression models
- Path modeling
- Factor analysis (exploratory & confirmatory)
- (Multilevel) Structural equation modeling (SEM linear and non-linear)

Part 2: Analysis Methods with R (seminar): winter and summer
- Data examples and applications of GLM, GLMM, polynomial, spline and local regression, path modeling, factor analyses and SEM

Part 3: Multivariate Statistics II (lecture): summer
- Supervised and unsupervised statistical learning and prediction
- Regularized regression
- Resampling methods
- Tree-based methods
Part 4: Evaluation research (seminar): summer

- Paradigms and methods in applied evaluation research (quantitative, mixed-methods)
- Types of studies and designs in evaluation research (experimental, quasi-experimental, (multiple) time series, etc.)
- Specific statistical tools (e.g., Propensity score matching)
- Research synthesis and meta-analysis

Recommended reading

<table>
<thead>
<tr>
<th>Links</th>
<th>Language of instruction</th>
<th>Duration (semesters)</th>
<th>Module frequency</th>
<th>Module capacity</th>
<th>Module level</th>
<th>Type of module</th>
<th>Teaching/Learning method</th>
<th>Previous knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>English</td>
<td>2 Semester</td>
<td>The module will start every winter term.</td>
<td>unlimited</td>
<td>MM (Mastermodul / Master module)</td>
<td>Pflicht / Mandatory</td>
<td>Parts 1 and 3: lectures; Parts 2 and 4: seminars; additional tutorials are offered.</td>
<td>basic statistics; otherwise please attend Introductory Course Statistics</td>
</tr>
</tbody>
</table>

Examination

- The module will be tested with an oral exam (20 min).
- Required active participation for gaining credits: attendance of at least 70% in the seminars (use attendance sheet that will be handed out in the beginning of the term).

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>4</td>
<td>SoSe und WiSe</td>
<td>56</td>
</tr>
<tr>
<td>Seminar</td>
<td>R seminar in summer is voluntary</td>
<td>4</td>
<td>SoSe und WiSe</td>
<td>56</td>
</tr>
<tr>
<td>Tutorial</td>
<td>statistics</td>
<td>SoSe und WiSe</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total module attendance time: 112 h
psy121 - Psychological assessment and diagnostics

Module label: Psychological assessment and diagnostics

Module abbreviation: psy121

Credit points: 12.0 KP

Workload: 360 h

Applicability of the module:

- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons:

- Hildebrandt, Andrea (module responsibility)
- Hildebrandt, Andrea (Prüfungsberechtigt)
- Hellmann, Andreas (Prüfungsberechtigt)
- Rohenger, Mandy (Prüfungsberechtigt)
- Debener, Stefan (Module counselling)

Prerequisites:

- Enrolment in Master's programme Neurocognitive Psychology.

Skills to be acquired in this module:

Goals of module:

Students will acquire specific knowledge about psychological assessment, test theory and test construction, and will be trained to utilize this knowledge within a research or test development context and in applied settings. With respect to research applications they will learn about traditional and modern test theories and about their usage in the domain of applied psychometrics and the systematic design of interviews and observational methods. From the perspective of applied assessed, students will reflect on the assessment process as a whole. They will learn how to analyze cases (“case conceptualization”), how to plan and conduct the information assessment phase, how to record and summarize collected data and how to integrate across the multitude of information in order to draw conclusions about the case given specific diagnostic strategies (status vs. process assessment and norm oriented vs. criterion oriented assessment, including classificatory decisions).

Finally, students will learn about the requirements of test and assessment report generation in written and oral form given a specific applied context. Ethical guidelines and quality norms will be an implicit topic in all courses in the module.

Competencies:

- Neuropsychological / neurophysiological knowledge
- interdisciplinary knowledge & thinking
- ethics / good scientific practice / professional behavior
- critical & analytical thinking

Module contents:

Part 1: Introduction to Psychological Assessment (lecture): winter and summer

- Psychological assessment as a decision process – descriptive and prescriptive models
- Introduction to test theories (will be detailed in Part 3)
- Assessment methods, their construction and design, quality criteria
- The logic of decision making in the assessment process
- Classificatory decisions
- Psychometrics to single cases
- Summarizing results and writing reports

Part 2: Test Theory and Test Construction (lecture): winter and summer

- Classical test theory
- Generalizability theory
- Latent-State and Trait theory
- Latent variable models for different types of item responses
- Measurement invariance across groups and time
- Network modeling in psychometrics
- Preference modeling for constructing faking-resistant questionnaires and tests

Part 3: applied seminars: winter and summer (choose a or b)

a: The Assessment Process Applied OR

- Case conceptualization (neuropsychology and clinical psychology)
- Formulating hypotheses
- Selecting assessment procedures and planning administration
- Deciding upon decision rules for data integration

b: Test Theory and Test Construction

- Classical test theory
- Generalizability theory
- Latent-State and Trait theory
- Latent variable models for different types of item responses
- Measurement invariance across groups and time
- Network modeling in psychometrics
- Preference modeling for constructing faking-resistant questionnaires and tests
- Evaluating the application of assessment procedures
- Analyzing, summarizing and visualizing results
- Integrating results based on the decision rules
- Writing a psychological/assessment report
- Discussing a report with the client

b: Test Construction Applied
- Construct conceptualization
- Deciding upon the response format
- Item mining
- Item analysis
- Test quality report and test manual

Part 4: Assessment in Clinical Neuropsychology (seminar): summer
- specific knowledge
- exercises in testing / practising tests

Recommended reading
Will be specified in the courses.

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>The module will start every winter term.</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Pflicht / Mandatory</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Part 1 and 2: 2 lectures ; Part 3 and 4: seminars</td>
</tr>
</tbody>
</table>

Previous knowledge
You should know basic statistical concepts as they are also covered in the introductory course statistics. Multivariate statistics is a prerequisite for the psychometric track.

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
</table>
| Final exam of module | Parts of the practical exercise need to be completed and handed in at specific dates during winter and summer term. | The module will be tested by a practical exercise (test application and protocol / test construction). Required active participation for gaining credits:
 - 1-2 presentations or test executions
 - handing in parts of the final report during the term
 - participation in discussions on other presentations
 - attendance of at least 70% in the seminars (will be checked in StudIP). |

Type of course

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>In both terms, lectures and seminars will alternate to intermingle theoretical and applied contents.</td>
<td>4</td>
<td>SoSe und WiSe</td>
<td>56</td>
</tr>
<tr>
<td>Seminar</td>
<td>In both terms, lectures and seminars will alternate to intermingle theoretical and applied contents.</td>
<td>4</td>
<td>SoSe und WiSe</td>
<td>56</td>
</tr>
</tbody>
</table>

Total module attendance time
112 h
psy230 - Neuromodulation of Cognition

Module label: Neuromodulation of Cognition
Module abbreviation: psy230
Credit points: 6.0 KP
Workload: 180 h

Applicability of the module:
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons:
- Rieger, Jochem (module responsibility)
- Rieger, Jochem (Prüfungsberechtigt)

Prerequisites:
Enrolment in Master's programme Neurocognitive Psychology. Neuroscience students can take part on request.

Skills to be acquired in this module

Goals of module:
The aim of this module is to provide students with a theoretical background on how cognitive functions can be altered via neuromodulation.

Competencies:
++ Neuropsychological / neurophysiological knowledge
+ interdisciplinary knowledge & thinking
++ experimental methods
+ ethics / good scientific practice / professional behavior
+ critical & analytical thinking
+ scientific communication skills

Module contents

Students will be introduced to the concepts of neuromodulation and the application of theoretical knowledge of neurophysiology to the modulation of cognitive functions.

Part 1: Neuromodulation of cognition (lecture): winter
- Neurotransmitter and neuromodulator systems
- Neuropharmacological intervention
- Mechanisms of neural plasticity
- Neurofeedback
- Electric and magnetic brain stimulation
- Therapeutical applications

Part 2: Topics in Neuromodulation (seminar): winter
- Psychological and therapeutical effects of neuromodulation
- Modulation of neuronal network function
- Deep brain stimulation for therapeutical modulation

Recommended reading

Links
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: The module will no longer be offered!
Module capacity: 15
Module level: MM (Mastermodul / Master module)
<table>
<thead>
<tr>
<th>Type of module</th>
<th>Wahlpflicht / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching/Learning method</td>
<td>Part 1: lecture; Part 2: seminar</td>
</tr>
</tbody>
</table>

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>during winter term</td>
<td>Presentation 80% written test on the topics of the lecture 20%</td>
</tr>
</tbody>
</table>

Required active participation for gaining credits:
- participation in discussions on other presentations
- attendance of at least 70% in the seminar (use attendance sheet that will be handed out in the beginning of the term).

Type of course

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total module attendance time

56 h
psy241 - Computation in Neuroscience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Computation in Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>psy241</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>• Master's Programme Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>• Stecher, Heiko (module responsibility)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Enrolment in Master's programme Neurocognitive Psychology. Module psy241 is only relevant for students who started their studies before winter term 19/20. (All other students study module psy240.)</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Goals of module: Students will acquire scientific programming skills as well as specific knowledge of computational methods in neuroscience and cognition. They will learn to judge the appropriateness and complexity of computational problems and solutions. Competencies: Neuropsychological / neurophysiological knowledge + experimental methods ++ statistics & scientific programming + critical & analytical thinking + knowledge transfer + group work [nop]</td>
</tr>
<tr>
<td>Module contents</td>
<td>Part 1: Introduction to scientific programming I (theoretical-practical seminar) - Basic data types and structures - Flow control (conditions, loops, errors) - Testing and debugging - Functions Part 2: Introduction to scientific programming II (theoretical-practical seminar) - Classes and objects - Parallel processing - Frequency analysis methods - EEG processing Part 3: Scientific programming I (exercise) - Implementation of examples from part 1 Part 4: Scientific programming II (exercise) - Implementation of examples from part 2</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>The module will be offered every winter term.</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Type of module</td>
<td>Theorie-Praxis-Seminare</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Examination times</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>exam period at the end of the summer term</td>
</tr>
<tr>
<td>Examination</td>
<td>The participants will have to independently develop and program a solution for a given neuroscientific problem. Both the written code as well as the documentation of the approach taken will be assessed. Bonus for regularly handing in a total of 12 programming exercises.</td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
</tr>
<tr>
<td>Theorie-Praxis-Seminare</td>
<td>2 semester hours per week for winter and summer term</td>
</tr>
<tr>
<td>Exercises</td>
<td>1 semester hour per week for winter and summer term.</td>
</tr>
<tr>
<td>Tutorial</td>
<td>2 semester hours per week in winter and summer term</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td>84 h</td>
</tr>
</tbody>
</table>

Module level

Teaching/Learning method

<table>
<thead>
<tr>
<th>Type of module</th>
<th>Theorie-Praxis-Seminare</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>Workload of compulsory attendance</td>
<td>56</td>
</tr>
</tbody>
</table>

Exercises

<table>
<thead>
<tr>
<th>Type of module</th>
<th>Theorie-Praxis-Seminare</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>Workload of compulsory attendance</td>
<td>28</td>
</tr>
</tbody>
</table>

Tutorial

<table>
<thead>
<tr>
<th>Type of module</th>
<th>Theorie-Praxis-Seminare</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>Workload of compulsory attendance</td>
<td>0</td>
</tr>
</tbody>
</table>
psy250 - Internship

<table>
<thead>
<tr>
<th>Module label</th>
<th>Internship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>psy250</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master's Programme Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Kranczioch-Debener, Cornelia (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Kranczioch-Debener, Cornelia (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Enrolment in Master's programme Neurocognitive Psychology. Module psy250 is only relevant for students who started their studies before winter term 19/20. (All other students study module psy251.)</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Goals of module: Students will obtain direct experience in the field of psychology. This includes being involved in the provision of psychological or neuropsychological services in real-life situations, such as neuropsychological testing or counselling in a hospital or mental health clinic, or conducting and contributing to psychological research. The internship should be chosen by the student such that it can provide a meaningful educational opportunity that will help students to decide on their preferred area of work.</td>
</tr>
<tr>
<td></td>
<td>Competencies: ++ expert neuropsychological/neuropsychological knowledge + interdisciplinary knowledge & thinking + experimental methods ++ ethics / good scientific practice / professional behaviour ++ knowledge transfer + project & time management</td>
</tr>
<tr>
<td>Module contents</td>
<td>The student will work in a field of psychology of personal choice. The student will get to know and participate in the daily work routines of a psychologist.</td>
</tr>
<tr>
<td>Links</td>
<td>Information on internships and necessary forms: https://uol.de/en/psychology/master/course-overview/</td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>English, German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>irregular</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td>The internship lasts 450 hours (12 weeks). It can be performed at 2 different institutions with a minimum duration of 150 hours (4 weeks) for each part. Your supervisor must be a psychologist. Please note that details are regulated in the exam regulations. A blank internship certificate and the report form can be found on the programme website. To generate ideas, a folder with information on internships that other students have performed is available in the office of Dr. Cornelia Kranczioch. Please note that, due to the Coronavirus pandemic, you have to hand in a risk assessment form before starting your internship. You can find this form in English or German in the list of supporting documents!</td>
</tr>
<tr>
<td>Type of course</td>
<td>Practical training</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>Examination Examination times Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Individual; 2-3 possibilities per semester to present the internship to other students The students have to hand in a written report (2-3 pages) and give a short presentation about their internship. They have to show a certificate from the institution at which they performed the internship. The internship is evaluated as pass/fail.</td>
</tr>
<tr>
<td>Type of course</td>
<td>Practical training</td>
</tr>
<tr>
<td>SWS</td>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>0 h /</td>
</tr>
</tbody>
</table>
450 h attendance at internship institution
psy120 - Psychological assessment and diagnostics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Psychological assessment and diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>psy120</td>
</tr>
<tr>
<td>Credit points</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons
- Hildebrandt, Andrea (module responsibility)
- Hellmann, Andreas (module responsibility)
- Hildebrandt, Andrea (Prüfungsberechtigt)
- Hellmann, Andreas (Prüfungsberechtigt)
- Debener, Stefan (Module counselling)

Prerequisites
Enrolment in Master's programme Neurocognitive Psychology. Module psy120 is only relevant for students who started their studies before winter term 19/20. (All other students study module psy121.)

Skills to be acquired in this module
- **Goals of module:** Students will acquire specific knowledge about psychological assessment and will be trained to utilize this knowledge within a research context and in applied settings. With respect to research applications they will learn about traditional and modern test theories and about their usage in the domain of test construction and the systematic design of interviews and observational methods. From the perspective of applied assessment, students will reflect on the assessment process as a whole. They will learn how to analyze cases ("case conceptualization"), how to plan and conduct the information assessment phase, how to record and summarize collected data and how to integrate across the multitude of information in order to draw conclusions about the case given specific diagnostic strategies (status vs. process assessment and norm oriented vs. criterion oriented assessment, including classificatory decisions). Finally, students will learn about the requirements of report generation in written or oral form given a specific applied context. Ethical guidelines and quality norms will be an implicit topic in all courses in the module. **Competencies:** Neuropsychological / neurophysiological knowledge + interdisciplinary knowledge & thinking + ethics / good scientific practice / professional behavior + critical & analytical thinking

Module contents
- **Part 1: Introduction to Psychological Assessment (lecture)** - Psychological assessment as a decision process – descriptive and prescriptive models - Theories of reliability (classical and modern approaches) - Theories of validity (classical and modern approaches) - Assessment methods, their construction and design, quality criteria - The logic of decision making in the assessment process - Psychometrics to single cases - Summarizing results and writing reports
- **Part 2: Psychological Testing (seminar)** - Psychometric bases of tests and questionnaires - Types of tests and questionnaires - Challenges in psychological testing (for example faking good vs. bad) - Examples of published tests and questionnaires - Exercising test applications, scoring and result interpretations
- **Part 3: Assessment in Clinical Neuropsychology (seminar)** - specific knowledge - exercises in testing / practising tests

Recommended reading
Will be specified in the courses.

Language of instruction
English

Duration (semesters)
2 Semester

Module frequency
The module will be offered every winter term.

Module capacity
unlimited

Reference text
If you want to earn the bonus, you need to use the official bonus sheet to prove your attendance which will be handed to you in the beginning of the winter term.

Module level

Type of module

Teaching/Learning method

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>summer term</td>
<td>The module will be tested by a practical exercise (test application and protocol). Bonus for two presentations or test executions (max.) and attendance of at least 70% in the seminars. Group presentations can be counted as</td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
<td>SWS</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Total module attendance time
84 h
psy140 - Minor

<table>
<thead>
<tr>
<th>Module label</th>
<th>Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>psy140</td>
</tr>
<tr>
<td>Credit points</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule

Responsible persons
- Bleichner, Kerstin (Module counselling)
- Rieger, Jochem (Module counselling)

Prerequisites
Enrolment in Master's programme Neurocognitive Psychology. Module psy140 is only relevant for students who started their studies before winter term 19/20. (All other students study module psy141.)

Skills to be acquired in this module
Goals of module: Students will gain an overview of non-psychological topics related to cognitive neuroscience and neuropsychology. They will see how psychological theories apply in other fields. Students can strengthen their own professional profile.

Competencies: ++ interdisciplinary knowledge & thinking

Module contents
Students can take Master modules and courses from the fields • Biology • Neurosciences • Computer Science • Physics • Mathematics • Pedagogy • Philosophy • related fields The content of the courses/modules taken as Minor needs to be clearly different from the contents of the Neurocognitive Psychology modules. A list of approved courses/modules can be found on our website. Upon approval, German-speaking students can attend a career-relevant language course (i.e. necessary for internship, practical project or Master's thesis; maximum of 6 CP for this module). Students whose first language is not German, may take German classes. We recommend taking modules/courses that strengthen your own professional profile.

Recommended reading

Links
List of approved courses/modules and approval form: https://uol.de/en/psychology/master/course-overview/

Languages of instruction
English, German

Duration (semesters)
1 Semester

Module frequency
irregular

Module capacity
unlimited

Reference text
PLEASE NOTE: • If you want to take a module/course which is not listed in the list of approved courses/modules, please request approval BEFORE you start the course/module (list of approved courses/modules and approval form can be found on our website) • Bachelor level courses are NOT acceptable. Note that Bachelor level courses can be listed in some Master programmes (e.g. Master of Education). This does not qualify a Bachelor level course for the Minor module. • It is your responsibility to ask the teacher whether you can take part.

Module level

Type of module

Teaching/Learning method

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>If grades are earned in the minor, those are counted as pass/fail. Certificates for grades can be separately requested from the examination office.</td>
</tr>
</tbody>
</table>

Type of course
Course or seminar

SWS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>SoSe und WiSe</th>
</tr>
</thead>
</table>

Workload Präsenzzzeit
0 h

(Please refer to the module description for information on the courses you can have counted towards psy140 Minor.)
Abschlussmodul

mam - Master’s Degree Module

<table>
<thead>
<tr>
<th>Module label</th>
<th>Master’s Degree Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>mam</td>
</tr>
<tr>
<td>Credit points</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
<tr>
<td></td>
<td>attendance in the lab meetings: 28h (2 SWS); thesis work: 872 hours</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master’s Programme Neurocognitive Psychology (Master) > Abschlussmodul</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Al-Zubaidi, Arkan (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Bleichner, Martin Georg (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Debener, Stefan (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Gießling, Carsten (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Rieger, Jochem (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Heltmann, Andreas (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Herrmann, Christoph Siegfried (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Hildebrandt, Andrea (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Boetzel, Cindy (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Hildebrandt, Helmut (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Kranczioch-Debener, Cornelia (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Rosemann, Stephanie (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Özüurt, Jaie Nur (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Stecher, Heiko (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Sträuber, Daniel (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Thiel, Christiane Margarete (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Puschmann, Sebastian (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Vogel, Sreekari (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Jäger, Manuela (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Roheger, Mandy (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Daeglau, Mareke (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Kristanto, Daniel (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Jacobsen, Nadine (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Short, Cassie Ann (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Abdolalizadeh Saleh, Amirhussein (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Further responsible persons

thesis supervisors;
Upon approval by the examination committee other staff members (e.g. PhD students in the laboratories of the Department of Psychology) can act as examiners for mam.

Prerequisites

Enrolment in Master's programme Neurocognitive Psychology. Completion of at least 60 credit points in other modules including module psy240 (psy241) (Computation in Neuroscience). Assignment of a topic by thesis supervisor and official application with the examination office.

Skills to be acquired in this module

Goals of module:
Students will demonstrate that they are able to perform a psychological or neuroscientific experiment and/or analyze data originating from such experiments by means of methods according to contemporary scientific standards. Metaanalyses are accepted if they were conducted by means of up to date tools for data extraction and analyses, according to best practices outlined in relevant community guidelines, such as for example Cochrane. In addition, the students will demonstrate that they are acquainted with the necessary methods and can present their results orally and in written form.

Competencies:
++ experimental methods
+ statistics & scientific programming
+ data presentation & discussion
++ independent research
+ scientific literature
++ scientific English / writing
+ ethics / good scientific practice / professional behavior
+ critical & analytical thinking
+ scientific communication skills
+ knowledge transfer
Module contents

Part 1: Master's thesis
The students work on a given topic in cognitive neuroscience using literature research and the appropriate experimental methods.

Part 2: Master's colloquium
The preparation of the thesis is accompanied by regular participation in the lab meetings of the groups in which the thesis is performed. Students present their study design at the beginning of their thesis preparation and their results towards the end. In addition, they listen to the presentations of the other lab members and students in the group.

Recommended reading

| Links | Rules and guidelines for Master's theses are explained here: https://uol.de/en/psychology/master/course-overview/
|Language of instruction | English
|Duration (semesters) | 1 Semester
|Module frequency | irregular
|Module capacity | unlimited
|Reference text | If you want to do a Master's thesis outside the Department of Psychology, please follow the rules stated on the program website. We encourage students to use the LaTeX template provided on the course website.
|Module level | MM (Mastermodul / Master module)
|Type of module | Pflicht / Mandatory
|Teaching/Learning method | individual thesis preparation with supervision
|Previous knowledge | contact your supervisor for details
|Examination | Examination times
|Final exam of module | individual appointments
| | Type of examination
| | The written thesis will be evaluated by the daily supervisor and an additional reviewer (second supervisor) (90%). The oral presentation and defence of the thesis results will be evaluated by both supervisors (10%).
|Type of course | Seminar und Projekt
|SWS | 2
|Frequency | SoSe und WiSe
|Workload Präsenzzeit | 28 h
| | (Attendance as required for your project and 2 hours per week for participating in the lab meetings.)