Background Modules

neu150 - Visual Neuroscience - Anatomy

Module label | Visual Neuroscience - Anatomy
Module abbreviation | neu150
Credit points | 6.0 KP
Workload | 180 h

Applicability of the module
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Molecular Biomedicine (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
- Janssen-Bienhold, Ulrike (module responsibility)
- Dedek, Karin (Module counselling)
- Janssen-Bienhold, Ulrike (Prüfungsberechtigt)
- Dedek, Karin (Prüfungsberechtigt)
- Ahlers, Malte (Prüfungsberechtigt)

Prerequisites
- attendance in pre-meeting

Skills to be acquired in this module
- Neurosci. knowlg. Expt. methods Independent research + Scient. literature + Social skills
- Interdiscipl. knowlg. Maths/Stats/Progr. + Data present./disc. + Scientific English Ethics
- Theory: Improved theoretical and methodological knowledge in neurobiology. Discussion of scientific work and presentation of own results. Practice: Performing neuroanatomical experiments. Gaining modern methodological skills.

Module contents
- Lecture: 14 h Introduction to current neurobiological approaches and results. Seminar: 14 h Discussion of background literature and results of own experiments. Lab course: 3 weeks, each 24 h neuroanatomical experiments in small groups on vertebrate retina and brain.

Recommended reading
- Background and seminar literature will be available in Stud.IP

Links
- Language of instruction | English
- Duration (semesters) | 1 Semester
- Module frequency | jährlich
- Module capacity | unlimited

Reference text
- Course in the first half of the semester. Regular active participation and presentation(s) within the scope of the seminar are required to pass the module

Module level

Type of module

Teaching/Learning method

Previous knowledge

Examination | Examination times | Type of examination
Final exam of module | summer semester, first half | Portfolio (75 %), report (25%)

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Practical training</td>
<td></td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
</tbody>
</table>

Total module attendance time | 70 h
neu210 - Neurosensory Science and Behaviour

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neurosensory Science and Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu210</td>
</tr>
<tr>
<td>Credit points</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>(4 SWS Lecture (VO) "Neuroethology" and "Behavioural ecology" Total workload 180h: 56h contact/ 60h background reading/ 64h exam preparation 2 SWS Seminar (SE) "Current issues of ethology" Total workload 90h: 28h contact/ 30h literature reading/ 32h preparation of presentation</td>
<td></td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Biology (Master) > Background Modules Master's Programme Biology (Master) > Background Modules Master's Programme Neuroscience (Master) > Background Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Langemann, Ulrike (module responsibility) Langemann, Ulrike (Module counselling) Mouritsen, Henrik (Module counselling) Klump, Georg Martin (Prüfungsberechtigt) Mouritsen, Henrik (Prüfungsberechtigt) Langemann, Ulrike (Prüfungsberechtigt) Albert, Jörg (Prüfungsberechtigt) Clemens, Jan (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Fundamentals of Neurobiology, Behavioural Biology, Evolution, Ecology</td>
</tr>
<tr>
<td>Upon successful completion of this course, students</td>
<td>know the fundamentals of behavioural ecology and neuroethology are able to present and critically assess scientific data and approaches</td>
</tr>
<tr>
<td>Module contents</td>
<td>The lecture "Neuroethology" provides an introduction to the mechanisms underlying the behaviour of animals. Subjects are, e.g., the mechanisms of perception, control of movement patterns, mechanisms of learning, orientation and navigation. The lecture "Behavioural ecology" provides an introduction to topics such as predator-prey interactions, optimal food utilization, spatial and temporal distribution of animals, social relations and group formation, mating systems and reproductive strategies, sexual selection, investment of parents in offspring, and communication. In the seminar "Current issues of Ethology", current original literature relating to behavioural biology is reported and discussed.</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>30 (Recommended in combination with: neu220 BM "Neurocognition and Psychopharmacology" Shared course components with (cannot be credited twice): bio610 (5.02.611 "Neuroethologie", 5.02.612 "Verhaltensökologie", 5.02.613 "Aktuelle Themen der Ethologie")</td>
</tr>
<tr>
<td>Reference text</td>
<td>Course in the second half of the semester Regular active participation is required to pass the module.</td>
</tr>
<tr>
<td>Module level</td>
<td>5 / 76</td>
</tr>
<tr>
<td>Type of module</td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>as agreed, usually in the break after the winter term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>4</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

Total module attendance time 84 h
<table>
<thead>
<tr>
<th>Module label</th>
<th>Neurocognition and Psychopharmacology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu220</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

3 SWS Lecture (VO) "Introd. to Cognitive Neuroscience" and "Psychopharmacol." Total workload 135h: 45h contact/ 45 background reading/ 45h exam preparation 1 SWS Supervised exercise (UE) Total workload 45h: 14h contact/ 31h paper reading

<table>
<thead>
<tr>
<th>Applicability of the module</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td>• Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td>• Master's Programme Molecular Biomedicine (Master) > Background Modules</td>
</tr>
<tr>
<td>• Master's Programme Neuroscience (Master) > Background Modules</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsible persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Thiel, Christiane Margarete (module responsibility)</td>
</tr>
<tr>
<td>• Thiel, Christiane Margarete (Module counselling)</td>
</tr>
<tr>
<td>• Thiel, Christiane Margarete (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>• Gießing, Carsten (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ++ Neurosci. knowlg. + Expt. methods Independent research + Scient. literature + Social skills</td>
</tr>
<tr>
<td>• ++ Interdiscipl. knowlg. Maths/Stats/Progr. + Data present./disc. + Scientific English Ethics</td>
</tr>
</tbody>
</table>

Upon successful completion of this course, students know the fundamentals of neurotransmission and the basic neural mechanisms underlying attention, learning, emotion, language and executive functions. Understand the relationship between disturbances in neurotransmitter systems, cognitive functions and psychiatric disease. Know the principles of drug treatment for psychiatric disorders. Have in-depth knowledge in selected areas of these topics. Are able to understand, explain and critically assess neuroscientific approaches in animals and humans. Are able to understand and critically assess published work in the area of cognitive neuroscience.

<table>
<thead>
<tr>
<th>Skills to be acquired in this module</th>
</tr>
</thead>
<tbody>
<tr>
<td>++ Neurosci. knowlg. + Expt. methods Independent research + Scient. literature + Social skills</td>
</tr>
<tr>
<td>++ Interdiscipl. knowlg. Maths/Stats/Progr. + Data present./disc. + Scientific English Ethics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>The lecture "Introduction to Cognitive Neuroscience" gives a short introduction into neuroanatomy and cognitive neuroscience methods and then covers different cognitive functions. Lecture topics: History of cognitive neuroscience Methods of cognitive neuroscience Attention Learning Emotion Language Executive functions. The supervised excersise either deepens that knowledge by excersises or discussions of recent papers/ talks on the respective topic covered during that week. The lecture "Psychopharmacology" illustrates the connection between neurotransmitters and behaviour and its links to psychiatric disease. The lecture contains several interactive parts to consolidate and critically evaluate the acquired knowledge. Lecture topics: Introduction to Terms and Definitions in Drug Research Dopaminergic and Noradrenergic System Cholinergic and Serotonergic System GABAergic and Glutamatergic System Addiction Depression Schizophrenia Anxiety Alzheimer's Disease</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommended reading</th>
</tr>
</thead>
</table>
Press

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
</tbody>
</table>

Reference text
Course in the second half of the semester
Regular active participation is required to pass the module.

Module level

Type of module

Teaching/Learning method

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>as agreed, usually in the break after the winter term</td>
<td>100% written exam (content of the lectures)</td>
</tr>
</tbody>
</table>

Type of course | Comment | SWS | Frequency | Workload of compulsory attendance |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>3</td>
<td>--</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td>1</td>
<td>--</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Total module attendance time
56 h
neu250 - Computational Neuroscience - Statistical Learning

Module label: Computational Neuroscience - Statistical Learning
Module abbreviation: neu250
Credit points: 6.0 KP
Workload: 180 h

1 SWS Lecture (VL)
Total workload 36 h: 14 h contact / 22 h individual revision of lecture contents, test preparation, and application to portfolio tasks

1 SWS Seminar (SE)
Total workload 36 h: 14 h contact / 22 h individual reading and test preparation

3 SWS Supervised exercise
Total workload 108 h: 42 h contact / 66 h individual work on portfolio tasks (programming and interpretation of simulation or analysis results)

Applicability of the module
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
- Anemüller, Jörn (module responsibility)
- Anemüller, Jörn (Module counselling)
- Rieger, Jochem (Module counselling)
- Rieger, Jochem (Prüfungsberechtigt)
- Anemüller, Jörn (Prüfungsberechtigt)
- Kretzberg, Jutta (Prüfungsberechtigt)

Prerequisites
- attendance in pre-meeting

Skills to be acquired in this module
- Upon successful completion of this course, students
 - have refined their programming skills (in Matlab) in order to efficiently analyze large-scale experimental data
 - are able to implement a processing chain of prefiltering, statistical analysis and results visualization
 - have acquired an understanding of the theoretical underpinnings of the most common statistical analysis methods and basic machine learning principles
 - have practised using existing toolbox functions for complex analysis tasks
 - know how to implement new analysis algorithms in software from a given mathematical formulation
 - can interpret analysis results in a neuroscientific context
 - have applied these techniques to both single channel and multi-channel neurophysiological data

++ Neurosci. knowlg.
+ Scient. literature
+ Social skills
++ Interdiscipl. knowlg.
++ Maths/Stats/Progr.
+ Data present./disc.
+ Scientific English

Module contents
- data preprocessing, e.g., artifact detection and rejection, filtering, z-scoring, epoching
- data handling for high-volume data in Matlab
- introduction to relevant analysis toolbox software
- theory of multi-dimensional statistical analysis approaches, such as multi-dimensional linear regression, principal component analysis, independent component analysis, logistic regression,
- gradient-based optimization
- practical implementation from mathematical formulation to software code, debugging and unit testing
- postprocessing and results visualization
- consolidation during hands-on computer-based exercises (in Matlab)
- introduction to selected specialized analysis approaches during the seminar
Recommended reading

Wallisch et al.: MATLAB for Neuroscientists, 2nd Ed. Academic Press. More text books will be suggested prior to the course. Scientific articles: Copies of scientific articles for the seminar will be provided prior to the course.

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
18 (Recommended in combination with neu240 Computational Neuroscience - Introduction
Shared course components with (cannot be credited twice): psy220 Human Computer Interaction)

Reference text
Course in the first half of the semester Students without Matlab experience should take the optional Matlab course (1. week) of Computational Neuroscience - Introduction

Module level

Type of module

Teaching/Learning method

Previous knowledge
Programming experience is highly recommended, preferably in Matlab

Examination
Examination times
Type of examination

Final exam of module
during the course
Portfolio, consisting of daily short tests, programming exercises and short reports

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>1</td>
<td>--</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Exercises</td>
<td>3</td>
<td>--</td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>Seminar</td>
<td>1</td>
<td>--</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Total module attendance time
70 h
neu241 - Computational Neuroscience - Introduction

Module label: Computational Neuroscience - Introduction
Module abbreviation: neu241
Credit points: 12.0 KP
Workload: 360 h

2 SWS Lecture
Total workload 60h: 30h contact/30h individual revision of lecture contents, test preparation

1 SWS Seminar
Total workload 45h: 15h contact/30h individual reading and test preparation

10.5 SWS Supervised exercise
Total workload 255h: 145h contact/110h individual work on portfolio tasks (programming, interpretation of simulation results)

Applicability of the module
• Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
• Kretzberg, Jutta (module responsibility)
• Kretzberg, Jutta (Module counselling)
• Kretzberg, Jutta (Prüfungsberechtigt)
• Greschner, Martin (Prüfungsberechtigt)
• Ashida, Go (Prüfungsberechtigt)

Prerequisites
Programming experience in Matlab (e.g. acquired by a 6 ECTS programming course)

Skills to be acquired in this module
++ Neurosci. knowlg.
+ Scient. Literature
+ Social skills
++ Interdiscipl. knowlg
++ Maths/Stats/Progr.
+ Data present./disc.
+ Scientific English

Upon successful completion of this course, students
• are able to implement and apply algorithms in Matlab
• have learned to handle scientific data independently
• have acquired theoretical and practical knowledge of advanced data analysis techniques
• know about computational model approaches on different levels of abstraction
• know how to perform model simulations for single cells and small neuronal networks
• can interpret simulation results in a neuroscientific context

Module contents
This course consists of six weeks with different topics, which are introduced in lectures, discussed in depth using selected literature in the seminar and consolidated in computer-based hands-on exercises (in Matlab). Portfolio tasks, mainly interpretation of programming results are given every day.

Weeks 1 and 2: Spike train analysis
response tuning, spike triggered average, receptive fields, linear-nonlinear model, spike correlation, linear reconstruction, classification

Weeks 3 and 4: Neuron models
Conductance-based single cell models using differential equations (passive membrane equation, integrate and fire, Hodgkin Huxley, alpha synapses)

Weeks 5 and 6: Small network models
Feed-forward and feed-back networks, lateral inhibition, central pattern generator, spike-timing dependent plasticity, multi-compartment models

Recommended reading
Skripts for each course day will be provided prior to / during the course.

Copies of scientific articles for the seminar and as basis for portfolio assignments will be provided prior to the course.

Recommended textbooks or other literature:

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
</tbody>
</table>

Registration procedure / selection criteria: StudIP; sequence of registration, attendance in pre-meeting.

Recommended in combination with:
neu770 Neuroscientific data analysis in Matlab (prior to the course)
neu250 Computational Neuroscience - Statistical Learning (after the course)

Module level
Type of module
Teaching/Learning method
Previous knowledge
Examination Examination times Type of examination
Final exam of module during the course Portfolio, consisting of daily short tests, programming exercises, short reports

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>10</td>
<td>WiSe</td>
<td>147</td>
</tr>
</tbody>
</table>

Total module attendance time 189 h
neu280 - Research Techniques in Neuroscience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Research Techniques in Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu280</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h {(2 SWS Lecture: 35 h contact / 45 h background reading / 10 h exam preparation) 2 SWS Practical: 50 h contact / 30 h protocol preparation / 10 h exam preparation)</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
- Hartmann, Anna-Maria (module responsibility)
- Hartmann, Anna-Maria (Module counselling)
- Bantel, Carsten (Prüfungsberechtigt)
- Greschner, Martin (Prüfungsberechtigt)
- Hurlemann, René (Prüfungsberechtigt)
- Hartmann, Anna-Maria (Prüfungsberechtigt)
- Neidhardt, John (Prüfungsberechtigt)
- Nothwang, Hans Gerd (Prüfungsberechtigt)
- Thiel, Christiane Margarete (Prüfungsberechtigt)

Prerequisites
- + Neurosci. knowlg.
- ++ Expt. Methods
- + Scient. Literature
- + Social skills
- + Interdiscipl. knowlg.
- + Maths/Stats/Progr.
- + Data present./disc.
- + Scientific English
- ++ Ethics

1. have basic knowledge of different techniques (see content of the module) used in neurosciences
2. have basic knowledge of realizing clinical studies, generating questionaires and their biostatistical data analyses
3. have acquired practical skills in whole brain imaging (fMRI) and molecular techniques
4. have acquired practical skills in performing clinical studies

Module contents
- **Lecture topics:**
 1. Whole brain imaging (CT, MRI, fMRI, PET, EEG, MEG)
 2. Animal Behaviour
 3. Microscopy and Visualizing nervous system structure
 4. Electrophysiology
 5. Identifying Gene of Interest and Gene delivery strategies
 6. Molecular Cloning, generation of transgenic organism, manipulating endogenous genes
 7. Cell culture techniques
 8. Biochemical assays and intracellular signalling
 9. Clinical studies
 10. questionnaire and biostatistics
 11. judicial basics of scientific work

- **Laboratory course**
 1. molecular methods (site directed mutagenesis, PCR, midi preparation, sequencing, bioinformatics)
 2. fMRI
 3. clinical studies

Recommended reading
- Guide to Research Techniques in Neuroscience, 2nd EditionAuthor(s) : Carter & Shieh
 - Print Book ISBN : 9780128005118
 - eBook ISBN : 9780128005972

Links
- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: summer term / annually
Module capacity

20 (Registration procedure / selection criteria: StudIP)

Module level

Type of module

Teaching/Learning method

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>end of semester</td>
<td>written exam</td>
</tr>
</tbody>
</table>

Type of course

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture (Lecture)</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Practical training (Practical)</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

| Total module attendance time | 56 h |
neu310 - Psychophysics of Hearing

Module label: Psychophysics of Hearing
Module abbreviation: neu310
Credit points: 12.0 KP
Workload: 360 h

- 5 SWS Practical (PR) "Experiments in Hearing" Total workload 225h: 70h contact / 110h experimental work / 45h exam preparation
- 1 SWS Supervised exercise (UE) "Fundamentals in psychoacoustic data analysis" Total workload 45h: 15h contact / 30h practising data analysis (incl. SPSS)
- 2 SWS Seminar (SE) "Hearing" Total workload 90h: 30h contact / 60h background reading

Applicability of the module
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
- Klump, Georg Martin (module responsibility)
- Klump, Georg Martin (Prüfungsberechtigt)
- Langemann, Ulrike (Prüfungsberechtigt)
- Beutelmann, Rainer (Prüfungsberechtigt)

Prerequisites
- + Neurosci. knowlg.
- ++ Expt. Methods
- + Social skills
- ++ Maths/Stats/Progr.
- + Data present./disc.
- + Scientific English

Skills to be acquired in this module
Students will learn the basics about performing a psychoacoustic experiment. Based on an experiment in which they study their own hearing, they will learn how to conduct a behavioural study in hearing and analyze the data. In addition, they will be be provided with an overview of the mechanisms of auditory perception.

Module contents
The modul comprises (i) a seminar "Hearing" [2 SWS] (ii) an exercise "Fundamentals in psychoacoustic data analysis" [1 SWS], and a (iii) practical course [7 SWS] including aspects of planning and conducting psychoacoustic experiments.

Recommended reading
Plack, Christopher J. (2005) The sense of hearing. Mahwah, NJ [u.a.]: Erlbaum (sufficient number of copies available in the university library)

Links

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: annually, summer term, second half
Module capacity: 6 (in total with bio640)
Module level: ---
Type of module: je nach Studiengang Pflicht oder Wahlpflicht
Teaching/Learning method

Previous knowledge

Examination

Final exam of module: end of summer term
70% report or oral exam, 30% presentation In addition, mandatory but ungraded: regular active participation

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Practical training</td>
<td></td>
<td>5</td>
<td>SoSe</td>
<td>70</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
<td></td>
<td>SoSe</td>
<td>0</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td></td>
<td></td>
<td></td>
<td>112 h</td>
</tr>
</tbody>
</table>
Module Contents

- Biophysics of synaptic and neuronal transmission
- Single neuron models: Hodgkin Huxley model, integrate and fire model, firing rate model
- Biophysics of sensory systems in the auditory, visual and mechano-sensory modality
- Description of neuronal dynamics: Theory of dynamical systems, from microscopic to macroscopic activity - Principles of neuronal activity measurement: from single-cell recordings to EEG, MEG and fMRI
- Functional description of small neuronal networks: Receptive fields and their description with linear and non-linear models - The neuronal code: Spikes, spike trains, population coding, time- vs. rate-code - Decoding neuronal activity and its applications
- Simulation of artificial neural networks as a functional model, Hopfield network, Boltzmann machine, Perceptron and deep networks - Information theoretic approaches, stimulus statistics, entropy, mutual information
- Learning and plasticity, conditioning and reinforcement learning, Hebbian learning, long-term potentiation and long-term depression

Recommended Reading

- Chow, Gutkin, Hansel, Meunier, Dalibard (Eds.): Methods and Models in Neurophysics (2003)
- Galizia, Liedo (Eds.): Neurosciences, from molecule to behavior (2013)
- Gerstner, Kistler, Naud, Paninski: Neuronal Dynamics - From single neurons to networks and models of Cognition (2014)
Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>winter term / annually</td>
</tr>
<tr>
<td>Module capacity</td>
<td>30 (Registration procedure / selection criteria: StudIP)</td>
</tr>
<tr>
<td>Reference text</td>
<td>Recommended in combination with: 5.04.4012 Informationsverarbeitung und Kommunikation (phy350) Will also be offered in "M.Sc. Physik, Technik, Medizin"</td>
</tr>
</tbody>
</table>

Module level

Type of module

Teaching/Learning method

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>end of winter term</td>
<td>80% oral exam or written exam, 20% exercise work and presentation</td>
</tr>
</tbody>
</table>

Type of course

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
<td>W/Se</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
<td></td>
<td>W/Se</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td></td>
<td></td>
<td>W/Se</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bio605 - Molecular Genetics and Cell Biology

Module label: Molecular Genetics and Cell Biology
Module abbreviation: bio605
Credit points: 12.0 KP
Workload: 360 h

Applicability of the module:
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Molecular Biomedicine (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons:
- Neidhardt, John (module responsibility)
- Neidhardt, John (Prüfungsberechtigt)
- Koch, Karl-Wilhelm (Prüfungsberechtigt)
- Jüschke, Christoph (Prüfungsberechtigt)

Prerequisites: BSc (Biologie, Biochemie)

Skills to be acquired in this module:
++ deepened biological expertise
++ deepened knowledge of biological working methods
+ data analysis skills
++ interdisciplinary thinking
+ critical and analytical thinking
+ independent searching and knowledge of scientific literature
+ data presentation and discussion (E) (written and spoken)
+ teamwork
+ ethics and professional behaviour
+ project and time management

Addressing students with an emphasis on molecular biology, molecular genetics, cell biology, and neurobiology

Module contents:
- Lecture: To improve knowledge in molecular genetics, molecular biology and cell biology in correlation with human diseases. Exercise: Learn to transfer the theoretical knowledge to experiments. Gaining methodological knowledge in molecular genetics, cell biology and therapeutic approaches. Initial training on how to perform research projects. Subjects of the lecture and seminar: Molecular bases of neurodegenerative diseases, structure and function of DNA/RNA/proteins/membranes, cytoskeleton, cell cycle, programmed cell death, cells in the social structure. Exercises: Learning current methods of molecular biology and human genetics; high throughput technologies, introduction to cell cultivation techniques.

Recommended reading:
Textbooks of Cell Biology

Links:
http://www.uni-oldenburg.de/humangenetik/

Language of instruction: English

Duration (semesters): 1 Semester

Module frequency: winter term

Module capacity: 15

Reference text:
associated with bio900

Module level:
MM (Mastermodul / Master module)

Type of module:
Wahlpflicht / Elective

Teaching/Learning method:
Lecture, seminar, exercise

Previous knowledge:
Basic knowledge in cell biology, genetics, biochemistry

Examination:
- Examination times
- Type of examination: written examination (70 %), paper(s) presentation 30 %; not graded: signed lab protocols, regular active participation is required for the module to be passed.

Type of course:

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1</td>
<td>WiSe</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>5</td>
<td>WiSe</td>
</tr>
</tbody>
</table>

Total module attendance time: 112 h
bio695 - Biochemical concepts in signal transduction

<table>
<thead>
<tr>
<th>Module label</th>
<th>Biochemical concepts in signal transduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio695</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Molecular Biomedicine (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
- Koch, Karl-Wilhelm (module responsibility)
- Koch, Karl-Wilhelm (Prüfungsberechtigt)
- Scholten, Alexander (Prüfungsberechtigt)
- Scholten, Alexander (Module counselling)

Prerequisites
- none

Skills to be acquired in this module
++ deepened knowledge of biological working methods
++ methods: protein expression and purification, functional assays, enzyme kinetics, spectroscopic techniques
++ data analysis skills
+ interdisciplinary thinking
++ critical and analytical thinking
+ independent searching and knowledge of scientific literature
+ ability to perform independent biological research
++ data presentation and discussion in German and English (written and spoken)
++ teamwork
+ project and time management

Module contents
- Lecture: Molecular fundamentals of cellular signal processes
- Seminar: Signal transduction
- Exercises: Experiments on cellular signal transduction and enzymology
Mechanisms of biochemical signal transduction are imparted theoretically and experimentally

Recommended reading
- Textbooks of cell biology and biochemistry.
- Current literature on topics of signal transduction (as announced in the preparatory meeting).

Language of instruction
- English

Duration (semesters)
- 1 Semester

Module frequency
- winter term

Module capacity
- 20

Module level
- MM (Mastermodul / Master module)

Type of module
- Wahlpflicht / Elective

Teaching/Learning method
- Lecture, seminar, exercise

Previous knowledge

Type of course
- Lecture
- Seminar
- Exercises

Comment
- SWS
- Frequency
- Workload of compulsory attendance

Examination
- Final exam of module
 - 90 minutes written exam
 - written examination (50%), protocols (50%)
 - Prerequisite for passing the module is active participation: Presentation(s) in the seminar

Workload
- Total module attendance time: 112 h
bio845 - Introduction to Development and Evolution

<table>
<thead>
<tr>
<th>Module label</th>
<th>Introduction to Development and Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio845</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Molecular Biomedicine (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
- Sienknecht, Ulrike (module responsibility)
- Sienknecht, Ulrike (module counselling)
- Sienknecht, Ulrike (Prüfungsberechtigt)
- Claußen, Maike (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module
Upon successful completion of this course, students

- know the fundamental problems organisms share in development
- know the common basic steps of ontogenesis after comparing the life cycles of different species (both vertebrates and invertebrates)
- know the fundamentals of the genetic control of cell-fate specification, morphogenesis, and organogenesis
- know the principles of gene regulatory networks in development and are able to explain examples
- are able to explain and discuss mechanisms of development across taxonomic groups and questions about the evolution of developmental mechanisms
- have in-depth knowledge of the development of animal nervous systems, including cellular and net-work properties

skills:
- ++ deepened biological expertise
- + deepened knowledge of biological working methods
- ++ interdisciplinary thinking
- ++ critical and analytical thinking
- + independent searching and knowledge of scientific literature
- + ability to perform independent biological research
- + teamwork

Module contents
Lectures on the fundamentals and concepts of developmental biology, including evolutionary aspects. Parallel seminars matching the topics of the lectures and emphasizing discussion. Lecture topics:

- Introduction to Developmental Biology
- Cell-Cell Communication
- Differential Gene Expression (I and II)
- Early Development of Vertebrates, Gastrulation
- Neurulation
- Brain Development
- Axonal Growth, Target Selection, Synaptogenesis and Refinement
- Neural Crest
- Mesoderm Development
- Morphogenesis
- Developmental Mechanisms of Evolutionary Change
- Model Organisms in Developmental Biology
- Transgenic Mice
- Medical Implications of Developmental Biology
Recommended reading

textbook: Gilbert S.F.: Developmental Biology, Macmillan Publishers Ltd, 11th edition 2016 (current edition); and current literature on course topics

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
<tr>
<td>Reference text</td>
</tr>
<tr>
<td>Module level</td>
</tr>
<tr>
<td>Type of module</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
</tr>
<tr>
<td>Previous knowledge</td>
</tr>
<tr>
<td>Examination</td>
</tr>
<tr>
<td>Final exam of module</td>
</tr>
<tr>
<td>Type of course</td>
</tr>
<tr>
<td>Lecture</td>
</tr>
<tr>
<td>Seminar</td>
</tr>
<tr>
<td>Total module attendance time</td>
</tr>
</tbody>
</table>
bio846 - Lab Exercises in Development and Evolution

<table>
<thead>
<tr>
<th>Module label</th>
<th>Lab Exercises in Development and Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>bio846</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>• Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td></td>
<td>• Master's Programme Biology (Master) > Background Modules</td>
</tr>
<tr>
<td></td>
<td>• Master's Programme Neuroscience (Master) > Background Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>• Sienknecht, Ulrike (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>• Sienknecht, Ulrike (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>• Sienknecht, Ulrike (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Claußen, Maike (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Ebbers, Lena (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>mandatory prerequisite is the module bio845 (neu110) (Introduction to Development and Evolution)</td>
</tr>
</tbody>
</table>

Skills to be acquired in this module

Upon successful completion of this course, students have skills in methods of developmental biology:

- are capable of performing live embryo husbandry
- are able to carry out in-ovo stainings
- are familiar with the use of embryonic stage discrimination standards for model organisms
- document the observed embryonic stages by drawings with anatomical labelling
- are familiar with tissue preparation (including cryosectioning), the use of different molecular markers, and immunohistological staining methods
- microscopy, data analysis, and photographic data documentation
- know the standards of proper documentation of research data and the universal format of a lab notebook
- know how to carry out formal laboratory reports (and the structure of a scientific paper)
- have basic knowledge in the field of auditory system development
- have basic knowledge of the organisation of the auditory system across vertebrate groups
- have basic knowledge of the development of the middle and inner ear, as well as selected auditory brain centres

are able to summarize current hypotheses about the evolution of the auditory system in vertebrates skills:

++ deepened biological expertise
++ deepened knowledge of biological working methods
++ data analysis skills
++ critical and analytical thinking
+ independent searching and knowledge of scientific literature
++ ability to perform independent biological research
+ data presentation and discussion (written and spoken)
+ teamwork
+ ethics and professional behaviour
+ project and time management

Module contents

Lab exercises in developmental biology of auditory research model organisms, such as chicken and mouse embryos. Practical introduction to methods, such as in-ovo live observation; developmental stage discrimination and description, tissue preparation for histology, sectioning, staining, and microscopy, including data analyses. Seminars in the field of auditory system development and methods based on current literature

Recommended reading

Links

Language of instruction: English

Duration (semesters): 1 Semester
<table>
<thead>
<tr>
<th>Module frequency</th>
<th>winter term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module capacity</td>
<td>6 (</td>
</tr>
<tr>
<td></td>
<td>selection criteria: advance of studies in MA program)</td>
</tr>
<tr>
<td>Reference text</td>
<td>Associated with bio845 (neu110) (Introduction to Development and Evolution)</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>Exercise, lecture, seminar</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>organismic biology, experience with lab work</td>
</tr>
<tr>
<td>Examination</td>
<td>Examination times</td>
</tr>
<tr>
<td></td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>same winter term</td>
</tr>
<tr>
<td></td>
<td>1 report</td>
</tr>
<tr>
<td>Type of course</td>
<td>Exercises</td>
</tr>
<tr>
<td>SWS</td>
<td>6</td>
</tr>
<tr>
<td>Frequency</td>
<td>W/Se</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>84 h</td>
</tr>
</tbody>
</table>
neu141 - Visual Neuroscience - Physiology and Anatomy

<table>
<thead>
<tr>
<th>Module label</th>
<th>Visual Neuroscience - Physiology and Anatomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu141</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td></td>
<td>{ 3 SWS Lecture (VO)</td>
</tr>
<tr>
<td></td>
<td>Total workload 90 h: 30h contact / 60h background literature reading and preparation for sh</td>
</tr>
<tr>
<td></td>
<td>1 SWS Seminar (SE)</td>
</tr>
<tr>
<td></td>
<td>Total workload 30h: 10h contact / 20h literature reading and preparation of result presentation</td>
</tr>
<tr>
<td></td>
<td>8 SWS Supervised exercise (UE)</td>
</tr>
<tr>
<td></td>
<td>Total workload 240h: 200h contact / 40h results analysis, writing of short reports for portfolio</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Molecular Biomedicine (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
- Greschner, Martin (module responsibility)
- Greschner, Martin (Prüfungsberechtigt)
- Ahlers, Malte (Prüfungsberechtigt)
- Dedek, Karin (Prüfungsberechtigt)
- Dömer, Patrick (Prüfungsberechtigt)

Prerequisites
- Basic knowledge of neurobiology

Skills to be acquired in this module
- ++ Neurosci. knowlg.
- ++ Expt. Methods
- + Independent research
- ++ Scient. Literature
- + Social skills
- + Maths/Stats/Progr.
- ++ Data present./disc.
- + Scientific English
- + Ethics

Upon successful completion of this course, students
- have basic knowledge of electrophysiological techniques used in neuroscience research
- have acquired first practical skills in some electrophysiological techniques
- have acquired basic skills in data analysis
- have knowledge on retinal physiology and anatomy of the visual system
- have basic knowledge of brain structures and their function
- have profound knowledge of the architecture and circuits of the vertebrate retina
- have acquired basic skills in histological techniques (tissue fixation, embedding, sectioning,

- staining procedures, immunohistochemistry)
- have acquired fundamental skills in microscopy (differential interference contrast microscopy,

- phase-contrast microscopy, confocal microscopy)

Module contents
The background module Neurophysiology consists of two weeks of theoretical introduction and two weeks of hands-on lab exercises in patch or extracellular recordings and two weeks of hands-on lab exercises in anatomy.

The seminars cover the following topics:
- Visual system
- Introduction to electrophysiological methods
- Introduction into methods used in neuranatomy and neurochemistry
- Introduction into microscopy and image analysis
- Presentation and discussion of results relating to the literature

Recommended reading
Course scripts and mandatory scientific literature discussed in the seminar will be available in Stud.IP.
Background and seminar literature will be available in Stud.IP.

<table>
<thead>
<tr>
<th>Links</th>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td></td>
<td>Module frequency</td>
<td>annually, summer term, first half (full time)</td>
</tr>
<tr>
<td></td>
<td>Module capacity</td>
<td>12 - with Visual Neuroscience: Anatomy (Shared course components with (cannot be credited twice): neu151 BM Visual Neuroscience: Anatomy)</td>
</tr>
</tbody>
</table>

Module level

<table>
<thead>
<tr>
<th>Type of module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching/Learning method</td>
</tr>
</tbody>
</table>

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>during the course (summer semester, first half)</td>
<td>PF</td>
</tr>
<tr>
<td></td>
<td>In addition, mandatory but ungraded: seminar presentation</td>
<td></td>
</tr>
</tbody>
</table>

Type of course

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total module attendance time

84 h
neu340 - Invertebrate Neuroscience - Neurophysiology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Invertebrate Neuroscience - Neurophysiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu340</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

2 SWS Seminar (SE)
Total workload 72h: 28h contact / 44h background literature reading, preparation for short tests, portfolio assignments and results presentation

3 SWS Supervised exercise (UE)
Total workload 108h: 42h contact / 66h data analysis and preparation of portfolio assignments

Applicability of the module
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
- Kretzberg, Jutta (module responsibility)
- Kretzberg, Jutta (Prüfungsberechtigt)
- Albert, Jörg (Prüfungsberechtigt)

Prerequisites
- attendance in pre-meeting

Skills to be acquired in this module

++ Neurosci. knowlg.
++ Expt. Methods
+ Scient. Literature
+ Social skills
+ Maths/Stats/Progr.
+ Independent Research
+ Data present./disc.
+ Scientific English
+ Ethics

Upon successful completion of this course, students

- have knowledge on invertebrate neuronal systems in comparison to vertebrate systems
- have discussed an overview of experimental and theoretical methods of invertebrate neurosciencen
- have acquired first practical skills in intracellular recordings from invertebrate neurons
- have acquired basic skills in data analysis
- have acquired an intuitive understanding of membrane potential and action potential generation based on computer simulations

Module contents

The module consists of three weeks of seminar and hands-on lab exercises on intracellular recordings from leech neurons, as well as computer simulations to study the basis of membrane potential and action potential generation.

The seminar covers the following topics:

- Invertebrate neuronal systems in comparison to vertebrate systems
- Ion channels, membrane potential and action potential generation
- Introduction to electrophysiological methods
- Introduction to data analysis methods

In the practical exercises, portfolio assignments will be performed on:

- Qualitative electrophysiological classification of different cell types in the leech nervous system
- Quantitative analysis (stimulus - response relationship) of at least one cell type
- Action potential generation: Comparison of model simulations and experiments
Planning a small individual team-work project based on the techniques taught in this module, that can be used as basis for the module neu345

<table>
<thead>
<tr>
<th>Recommended reading</th>
<th>Course scripts and mandatory scientific literature (3 review articles) discussed in the seminar will be available in Stud.IP Background and seminar literature will be available in Stud.IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually, summer term, second half</td>
</tr>
<tr>
<td>Module capacity</td>
<td>12 (this module provides the background for neu345 "Neural Computation in invertebrate systems")</td>
</tr>
<tr>
<td>Module level</td>
<td></td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>basic knowledge of neurobiology, basic MATLAB programming skills</td>
</tr>
<tr>
<td>Examination</td>
<td>Examination times</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>during the course (summer term, second half)</td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>3</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td>70 h</td>
</tr>
</tbody>
</table>
neu345 - Neural Computation in Invertebrate Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neural Computation in Invertebrate Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu345</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

2 SWS Seminar
Total workload 72 h: 28 h contact / 15 h background literature reading, 14 h online science communication workshop, 15 h preparation for the presentation of results as scientific poster

3 SWS Supervised exercise
Total workload 108 h: 42 h contact / 66 h independent lab-work, self-organized team work, data analysis, and preparation of results figures and texts

Applicability of the module
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
- Kretzberg, Jutta (module responsibility)
- Kretzberg, Jutta (Prüfungsberechtigt)
- Albert, Jörg (Prüfungsberechtigt)
- Ashida, Go (Prüfungsberechtigt)

Prerequisites

Skills to be acquired in this module

Upon successful completion of this course, students
- have planned and conducted a small, self-defined and self-organized project in a team
- have knowledge on an invertebrate neuronal system
- have knowledge on neural coding and corresponding data analysis techniques
- have acquired skills in data analysis and/or experimental techniques and/or modeling
- are able to critically evaluate and discuss experimental results
- have prepared and presented a scientific poster

- Neurosci. knowlg.
- Expt. Methods
++ Independent research
- Scient. Literature
++ Social Skills
- Maths/Stats/Progr.
++ Data present./disc.
- Scientific English
- Ethics

Module contents

This module builds up on the knowledge and methods acquired in the module neu340 Invertebrate Neuroscience.

In the seminar, the knowledge on invertebrate systems and neural coding in general is deepened based on scientific literature.

In the practical exercise of the module, students can choose one topic from a range of different research questions on computation in the leech nervous system (e.g. comparison of different cell types, electrical and chemical synaptic connections, exact measurement of spike threshold, phase locking). Small groups (2-3) of students plan, perform, and analyze experiments (intracellular...
recordings) or model simulations (model framework will be provided or can be
self-written based on module neu241 computational neuroscience -
Introduction) to tackle their topic. The portfolio consists of assignments
covering the planning, analysis, interpretation, and presentation of the results
with feedback given during the course on each project stage.

<table>
<thead>
<tr>
<th>Recommended reading</th>
<th>Course scripts and background and seminar literature will be available in Stud.IP. Scientific literature discussed in the seminar depends on the project topics.</th>
</tr>
</thead>
</table>

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Module frequency

<table>
<thead>
<tr>
<th>Module capacity</th>
<th>12 (but only 6 for experimental projects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
</tbody>
</table>

Teaching/Learning method

| **Previous knowledge** | neu340 Invertebrate Neuroscience |

Examination

<table>
<thead>
<tr>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>During the course (summer term, second half) Portfolio consisting of project plan, scientific poster, poster presentation</td>
</tr>
</tbody>
</table>

Type of course

<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
</tr>
</tbody>
</table>

Total module attendance time

| **70 h** |
neu350 - Biological Foundations of Neuroscience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Biological Foundations of Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu350</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Lecture Total workload 90 h: 28 h contact / 14 h tutorial / 48 h self-study and preparation for exam)</td>
</tr>
<tr>
<td></td>
<td>(Seminar Total workload 90 h: 28 h contact / 62 h self-study and preparation for exam)</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Neuroscience (Master) > Background Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Puller, Christian (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Koch, Karl-Wilhelm (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Neidhardt, John (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Hartmann, Anna-Maria (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Greschner, Martin (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Klump, Georg Martin (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Owczarek-Lipska, Marta (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Recommended in combination with "Research Techniques in Neuroscience"</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Upon successful completion of this course, students have acquired basic knowledge of fundamental principles of neurobiology. The aim of this background module is to provide a solid biological knowledge base required for studying advanced neuroscientific topics. It is designed in particular, but not exclusively, for students joining the local M.Sc. Neuroscience program from previous study paths with little (neuro)biological background.</td>
</tr>
<tr>
<td></td>
<td>++ Neurosci. knowlg.</td>
</tr>
<tr>
<td></td>
<td>+ Scient. Literature</td>
</tr>
<tr>
<td></td>
<td>+ Social skills</td>
</tr>
<tr>
<td></td>
<td>+ Interdiscipl. knowlg.</td>
</tr>
<tr>
<td></td>
<td>+ Scientific English</td>
</tr>
<tr>
<td>Module contents</td>
<td>The background module consists of a lecture series and an associated seminar.</td>
</tr>
<tr>
<td></td>
<td>The following topics are covered:</td>
</tr>
<tr>
<td></td>
<td>• Biochemistry</td>
</tr>
<tr>
<td></td>
<td>• Genetics</td>
</tr>
<tr>
<td></td>
<td>• Electrophysiology</td>
</tr>
<tr>
<td></td>
<td>• Cell biology</td>
</tr>
<tr>
<td></td>
<td>• Systems Neuroscience</td>
</tr>
<tr>
<td>Recommended reading</td>
<td>Neuroscience, newest edition; Purves; Sinauer Associates</td>
</tr>
<tr>
<td></td>
<td>Stryer Biochemistry and Alberts et al. Molecular Biology of the Cell, several editions</td>
</tr>
<tr>
<td></td>
<td>Molecular Biology of the Gene, Watson (Pearson Verlag)</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level</td>
<td></td>
</tr>
<tr>
<td>Type of module</td>
<td></td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Examination times</td>
</tr>
<tr>
<td></td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>at the end of the course</td>
</tr>
<tr>
<td>Type of course</td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>Workload of compulsory attendance</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td></td>
</tr>
</tbody>
</table>
neu360 - Auditory Neuroscience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Auditory Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu360</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>1 SWS Lecture (VO)</td>
</tr>
<tr>
<td></td>
<td>Total workload 45h: 14 h contact / 31 h background reading</td>
</tr>
<tr>
<td></td>
<td>1 SWS Seminar (SE)</td>
</tr>
<tr>
<td></td>
<td>Total workload 45h: 14 h contact / 15 h background reading / 16 h preparation and presentation</td>
</tr>
<tr>
<td></td>
<td>2 SWS Supervised exercise (UE)</td>
</tr>
<tr>
<td></td>
<td>Total workload 90h: 10 h contact / 20 h literature search / 60 h work on essay paper</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
- Köppl, Christine (module responsibility)
- Klump, Georg Martin (Prüfungsberechtigt)
- Köppl, Christine (Prüfungsberechtigt)

Prerequisites
Recommended previous knowledge/skills: Basics of Neurosensory Science and Behavioural Biology

Skills to be acquired in this module
++ Neurosci. knowlg
+ Expt. methods
++ Scient. Literature
+ Social skills
++ Interdiscipl. knowlg
++ Data present./disc.
++ Scientific English
+ Ethics

Introduction to Auditory Physiology. May serve as preparation for a Research Module in this area.

Upon successful completion of this course, students
- have profound knowledge on auditory sensory processing at several levels (including cochlear transduction mechanisms, central auditory processing)
- have basic knowledge of the large range of techniques used in auditory research
- are able to read and critically report to others on an original research paper in auditory neuroscience
- are able to research and review a specific topic in auditory neuroscience

Module contents
One week introductory block course, comprised of a lecture series and matching seminar that emphasizes discussion.
Topics:
- Hair cells: structure, transduction mechanism, receptor potential, synaptic transmission
- Basilar papilla / cochlea: structure, micromechanics, amplification; otoacoustic emissions
- Auditory nerve: phase locking, rate coding. Excitation patterns
- Ascending auditory pathways: wiring, principles of excitation/inhibition, examples of cellular/molecular specialisations
- Sound localisation in birds and mammals
- Central auditory processing: imaging techniques, auditory streams, cortex, primates
- Relation between psychophysics and neurophysiology

The introductory block is followed by a supervised literature search and individually written term paper on a specific topic in auditory neuroscience.

Recommended reading
About 20 selected original papers (selection varies)
Pickles JO (2012) An Introduction to the Physiology of Hearing. Brill, Netherlands
Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually, summer term, second half</td>
</tr>
<tr>
<td>Module capacity</td>
<td>15 (BM neu211 "Neurosensory Science and Behaviour" or BM neu270 "Neurocognition and Psychophysics" or skills module biox "Current Topics in Hearing Science")</td>
</tr>
</tbody>
</table>

Reference text

Registration procedure / selection criteria: StudIP, final acceptance after assignment of seminar presentation

Module level

Type of module

Teaching/Learning method

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>within a few weeks of the end of summer term lecture period</td>
<td>HA</td>
</tr>
</tbody>
</table>

Type of course

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SoSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total module attendance time

56 h
neu370 - Neuroprosthetics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neuroprosthetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu370</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>2 SWS Lecture (total workload 90h: 30h contact/60h individual revision of lecture contents, test preparation)</td>
<td></td>
</tr>
<tr>
<td>1 SWS Seminar (total workload 45h: 15h contact/30h individual reading and preparation)</td>
<td></td>
</tr>
<tr>
<td>1 SWS Supervised Exercise (total workload 45h: 15h contact/30h individual work on portfolio tasks (interpretation of simulation results))</td>
<td></td>
</tr>
</tbody>
</table>

Applicability of the module	Master's Programme Neuroscience (Master) > Background Modules
Responsible persons	Dietz, Mathias (Prüfungsberechtigt)
Further responsible persons	Anna Dietze
Prerequisites	Either Neurophysics (5.04.4211) or Computational Neuroscience

Skills to be acquired in this module
- Neurosci. knowlg.
- Expt. Methods
- Scient. Literature
- Social skills
- Interdiscipl. knowlg.
- Maths/Stats/Progr.
- Data present./disc.
- Ethics [hop] Upon successful completion of this course, students
- understand how neuroprostheses work
- have an interdisciplinary understanding of the underlying principles of electrical stimulation of neurons
- can implement a coding strategy for neuroprostheses
- knows how a cochlear implant operates in detail and why it operates this way.

Module contents
- electrical field distribution
- electrical stimulation of neurons
- biocompatibility
- coding strategies
- cochlear implants
- student seminar presentations on various types of neuroprosthetics

Recommended reading
Scientific articles: Copies of scientific articles for the seminar will be provided prior to the course
Text books or papers will be suggested prior to the course.

Links

Languages of instruction

Duration (semesters) | 1 Semester |
Module frequency | annually (summer term) |
Module capacity | 20 |
Module level

Type of module

Teaching/Learning method

Previous knowledge

Examination | Examination times | Type of examination |
Final exam of module | PF |

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
<td>SWS</td>
<td>Frequency</td>
<td>Workload of compulsory attendance</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>-----</td>
<td>-----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td></td>
<td></td>
<td>35 / 76</td>
<td>84 h</td>
</tr>
</tbody>
</table>
psy270 - Functional MRI Data Analysis

Module label	Functional MRI Data Analysis
Module abbreviation | psy270
Credit points | 9.0 KP
Workload | 270 h

Applicability of the module
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Neurocognitive Psychology (Master) > Mastermodule
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons
- Gießing, Carsten (module responsibility)
- Gießing, Carsten (Prüfungsberechtigt)

Prerequisites
Enrolment in Master's programme Neurocognitive Psychology, Neuroscience, or Biology.

Skills to be acquired in this module

Goals of module:
Students will learn the basics about planning and performing a neuroimaging study. They will focus on the statistical and methodological background of functional neuroimaging data analysis and analyse a sample functional MRI data set.

Competencies:
- ++ experimental methods
- ++ statistics & scientific programming
- + data presentation & discussion
- ++ group work

Module contents
Theoretical knowledge on functional MRI data analysis
Planning, performance and analysis of functional neuroimaging studies using
MATLAB-based software
Hands-on fMRI data analysis with SPM

Recommended reading

Links
Language of instruction | English
Duration (semesters) | 1 Semester
Module frequency | The module will be offered every summer term.
Module capacity | 15
Reference text | Since the module is primarily offered for the Master's programme Biology it has to be offered as a blocked course. Please contact us if you are interested in the module but have problems with interfering other courses.

PLEASE NOTE:
We strongly recommend to take either psy170, psy270, psy280, or psy220 to gain
methodological competencies (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master's theses!

<table>
<thead>
<tr>
<th>Module level</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>blocked course with lecture, interactive seminar and exercise parts</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>Students need to have solid statistical knowledge as taught in the Introductory Course Statistics and in Research Methods.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>middle of summer term</td>
<td>Oral or written examination</td>
</tr>
</tbody>
</table>

Required active participation for gaining credits:
- 1-2 presentations
- participation in discussions on other presentations
- attendance of at least 70% in the seminars and exercises within one semester (will be checked in StudIP).

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>1</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe</td>
</tr>
<tr>
<td>Workload Präsenzeit</td>
<td>14 h</td>
</tr>
</tbody>
</table>
neu242 - Computational Neuroscience - Encoding and Decoding

Module label: Computational Neuroscience - Encoding and Decoding
Module abbreviation: neu242
Credit points: 6.0 KP
Workload: 180 h
Applicability of the module:
- Master's Programme Neuroscience (Master) > Background Modules
Responsible persons:
- Greschner, Martin (module responsibility)
- Clemens, Jan (Prüfungsberechtigt)
- Greschner, Martin (Prüfungsberechtigt)
- Greschner, Martin (Module counselling)

Prerequisites:
Enrolment in Master program Neuroscience; Students from other study programs are welcome if space is available. This module requires good programming skills! (As taught in neu710 or neu715.)

Skills to be acquired in this module:
Upon completion of this module, students
- are able to implement and apply algorithms in Matlab or Python
- have learned to handle scientific data independently
- have acquired theoretical and practical knowledge of advanced data analysis techniques - can interpret simulation results in a neuroscientific context

Skills to be acquired/ competencies:
++ Neuroscience knowledge
+ Scientific Literature
+ Social skills
++ Maths/Stats/Programming
+ Data presentation/discussion
+ Scientific English

Module contents:
This course consists of three weeks full-time work on the topics encoding and decoding of spike trains, which are introduced in lectures, discussed in depth using selected literature in the seminar and consolidated in computer-based hands-on exercises (in Matlab or Python). Portfolio tasks consists of programming and the interpretation of the analyses.

Specific topics: response tuning, spike triggered average, receptive fields, linear-nonlinear model, spike correlation, linear reconstruction, classification

Recommended reading:
Skripts for each course day will be provided prior to / during the course. Copies of scientific articles for the seminar and as basis for portfolio assignments will be provided prior to the course. Recommended textbooks or other literature:

Links:
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: Annually, second half of winter term (December to early January)
Module capacity: 18
Module level:
Type of module:
Teaching/Learning method:
Previous knowledge:
<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>During the course (assignment tasks)</td>
<td>Portfolio, consisting of short tests, programming tasks, and interpretation of modeling / data analysis results.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td></td>
<td>WiSe 28</td>
<td>Contact (hours): 28
Self-study and preparation for exam (hours): 32
Total Workload (hours): 60</td>
</tr>
<tr>
<td>Exercises</td>
<td>4</td>
<td></td>
<td>WiSe 56</td>
<td>Contact (hours): 56
Self-study and preparation for exam (hours): 64
Total workload (hours): 120</td>
</tr>
</tbody>
</table>

Total module attendance time 84 h
neu246 - Computational Neuroscience - Biophysical Modeling

Module label: Computational Neuroscience - Biophysical Modeling

Module abbreviation: neu246

Credit points: 6.0 KP

Workload: 180 h

Applicability of the module:
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons:
- Kretzberg, Jutta (module responsibility)
- Kretzberg, Jutta (Prüfungsberechtigt)
- Ashida, Go (Prüfungsberechtigt)

Prerequisites:
- Enrolment in Master program Neuroscience

Students from other study programs are welcome if space is available

This module requires good programming skills! (As taught in neu710 or neu715.)

Skills to be acquired in this module

Goals of this module:
- upon completion of this module, students...
- are able to implement and apply algorithms in Matlab
- have programmed and applied simulation techniques
- know about computational model approaches on different levels of abstraction
- know how to perform model simulations for single cells and small neuronal networks
- can interpret simulation results in a neuroscientific context

Skills to be acquired/ competencies:

++ Neuroscience knowledge
+ Scientific Literature
+ Social skills
++ Maths/Stats/Programming
+ Data presentation/discussion
+ Scientific English

Module contents

This course consists of three weeks full-time work on the topic Biophysical modeling, which is introduced in lectures, discussed in depth using selected literature in the seminar and consolidated in computer-based hands-on exercises (in Matlab or Python). Portfolio tasks consists of programming and the interpretation of programming.

Specific topics:
- Conductance-based single cell models using differential equations (passive membrane equation, integrate-and-fire, Hodgkin-Huxley)
- Synaptic interaction in small network models (alpha synapses, spike-timing dependent plasticity, feed-forward and feed-back networks, lateral inhibition, central pattern generator)

Recommended reading

Skripts for each course day will be provided prior to the course
Copies of scientific articles for the seminar and as basis for portfolio assignments will be provided prior to the course.

Recommended textbooks or other literature:

Links

Language of instruction: English

Duration (semesters): 1 Semester

Module frequency: Annually, second half of winter term (January-February, after neu242)
Module capacity

18

Module level

Type of module

Teaching/Learning method

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>During the course (assignment tasks)</td>
<td>Portfolio, consisting of short tests, programming tasks, and interpretation of modeling / data analysis results</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
</table>
| Lecture | 2 | WiSe 26 | 28 | Contact (hours): 28
Self-study and preparation for exam (hours): 44
Total workload (hours): 72 |
| Exercises | 4 | WiSe 42 | 42 | Contact (hours): 42
Self-study and preparation for exam (hours): 66
Total workload (hours): 108 |

Total module attendance time

70 h
neu380 - Neuroethology and Neurogenetics: Insect Models

Module label: Neuroethology and Neurogenetics: Insect Models
Module abbreviation: neu380
Credit points: 6.0 KP
Workload: 180 h

Applicability of the module:
- Master's Programme Biology (Master) > Background Modules
- Master's Programme Neuroscience (Master) > Background Modules

Responsible persons:
- Albert, Jörg (module responsibility)
- Clemens, Jan (Prüfungsberechtigt)
- Albert, Jörg (Prüfungsberechtigt)
- Albert, Jörg (Module counselling)
- Clemens, Jan (Module counselling)

Prerequisites:
Enrolment in Master program Neuroscience or Biology.
Students from other programs are welcome if space is available.
Attendance in pre-meeting

Skills to be acquired in this module

Goals of this module:
Upon completion of this module, students...
- have knowledge on the emergence of behavior from neurosensory activation
- have learned about the interdependences between signals and their receivers (keyword: matched filters)
- have a basic understanding of the multiple determinants of behavior: molecular (e.g. genes), cellular (e.g. neurons), organismic (e.g. individuals), environmental (e.g. noise) and inter-individual (e.g. communication)
- have acquired basic skills in data analysis
- have acquired basic understanding of sensory signal processing
- have acquired an intuitive understanding of the multi-causal nature of behavior and the corresponding multiple levels of investigation

Skills to be acquired/competencies:
++ Neuroscience knowledge
++ Experimental Methods
+ Scientific Literature
+ Social skills
+ Maths/Stats/Programming
+ Independent Research
+ Data presentation/discussion
+ Scientific English
+ Ethics

Module contents

The module consists of three weeks of seminar and hands-on lab exercises on insect behavioral experiments and electrophysiology (extracellular recordings from Drosophila or mosquito neurons).

The seminar covers the following topics:
- Introduction to Dipteran courtship behaviour (fruit flies and mosquitoes): common mechanisms and principles
- The cellular and molecular basis of Dipteran courtship: Between shared evolution and species-specific adaptation
- Introduction to the neurophysiological and neurogenetic toolbox to dissect behaviour (optogenetic, biophysical, behavioural)
- Introduction to data analysis methods

In the practical exercises, portfolio assignments will be performed on:
- Quantitative analysis of neural responses (electrophysiology, reporter imaging) from Dipteran insects
Quantitative analysis of behavioural responses from Dipteran insects (e.g. courtship behaviour, flight tones)
Design and Testing of different stimuli to probe neural and behavioural responses

Recommended reading
Course scripts and mandatory scientific literature (3 review articles) discussed in the seminar will be available in Stud.IP
Background and seminar literature will be available in Stud.IP

Languages of instruction

Duration (semesters) 1 Semester
Module frequency annually, summer term, first half
Module capacity 12
Reference text Recommended combination with neu341 and neu650

Type of module

Teaching/Learning method

Previous knowledge

Examination Examination times Type of examination
Final exam of module During the course (assignment tasks) Portfolio, consisting of short tests and short reports to portfolio tasks (see above)

Type of course Comment SWS Frequency Workload of compulsory attendance
Seminar 2 SoSe 28 Contact (hours): 28 Self-study and preparation for exam (hours): 44 Total workload (hours): 72
Exercises 3 SoSe 42 Contact (hours): 42 Self-study and preparation (hours): 66 Total workload (hours): 108

Total module attendance time 70 h
Recent Topics in Neuroscience

Module label: Recent Topics in Neuroscience
Module abbreviation: neu400
Credit points: 9.0 KP
Workload: 270 h
Applicability of the module:
- Master's Programme Neuroscience (Master) > Background Modules
Responsible persons:
- Kretzberg, Jutta (module responsibility)
- Kretzberg, Jutta (Module counselling)
- Kretzberg, Jutta (Prüfungsberechtigt)
- Clemens, Jan (Prüfungsberechtigt)
- Albert, Jörg (Prüfungsberechtigt)
Prerequisites:
Enrolment in Master program Neuroscience
Students from other programs are welcome when space is available.
Skills to be acquired in this module

Goals of this module:
Upon completion of this module, students will...
Know about a specific field in neuroscience and have applied hands-on experimental or data analysis methods to that field.
Skills to be acquired/competencies:

- ++ Neuroscience knowledge
- ++ Experimental Methods
- + Scientific Literature
- + Social skills
- + Maths/Stats/Programming
- + Independent Research
- + Data presentation/discussion
- + Scientific English
- + Ethics

Module contents:
The contents of this module can change every semester to serve as a flexible addition to the standard choice of modules that are offered yearly. Please check Stud.IP for more specific information.
Recommended reading:
Journal papers will be selected based on the specific topic of the module in each semester
Language of instruction:
English
Duration (semesters): 1 Semester
Module frequency:
This module is not offered on a regular basis, but serves as flexible addition to the standard choice of modules. The course period changes depending on lab availability.
Module capacity: 12
Module level:
Type of module:
Teaching/Learning method:
Previous knowledge

Final exam of module:
Portfolio tasks are performed during the module. Portfolio, consisting of short tests and short reports
Type of course:
Seminar	2	SoSe oder WiSe	0
Exercises	2	SoSe oder WiSe	0
Total module attendance time	0 h		
Research Modules

neu610 - External Research Project

<table>
<thead>
<tr>
<th>Module label</th>
<th>External Research Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu610</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td></td>
<td>(240 h contact or individual lab work / 30 h data analysis / 40 h background reading / 50 h participation in seminar of host group and preparation of presentation/ 60 h preparation of written internship report / 30 science communication workshop with poster preparation and presentation)</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Neuroscience (Master) > Research Modules

Responsible persons
- Köppl, Christine (module responsibility)
- der Neuroscience, Lehrende (Prüfungsberechtigt)

Further responsible persons
- all MSc Neuroscience teachers, see list of examiners

Prerequisites
- A learning agreement signed by the student, the supervisor at the host institution, and the Oldenburg supervisor (from the list of examiners), needs to be submitted to the examination office prior to the start of lab work.
- Module can be taken multiple times (see list of choices for each semester), however, examination of individual projects by the same supervisor is limited to EITHER two research projects (neu600 and / or neu610), OR one research project (neu600 or neu610) and the master thesis (first or second supervisor)

Skills to be acquired in this module
- + Neurosci. knowlg.
 - ++ Expt. methods
 - ++ Independent research
 - ++ Scient. literature
 - ++ Social skills
- + Interdiscipl. knowlg.
 - ++ Data present./disc.
- + Scientific English
- + Ethics

Students are introduced to independent research in a specific area of neuroscience by a scientifically working group outside of the regular MSc Neuroscience faculty at the University of Oldenburg (usually a university, research institute, clinics or scientifically working company in Germany or abroad)

Students perform individual research projects to learn:
- planning and organization of a research project in a group outside of University of Oldenburg
- formulate a scientific hypothesis
- planning, performing and analyzing experiments and / or simulations
- working with scientific background literature on the specific context of the project
- oral presentation and discussion of backgrounds and results in the lab seminar
- write a scientific report
- prepare and present a scientific poster
Module contents

The External Research Module is carried out under the guidance and supervision of an experienced researcher who is not part of the regular Neuroscience faculty at the University of Oldenburg. It comprises approximately 7 (minimum 5) weeks of experimental or theoretical work, individually or in small groups, and, usually, participation in a regular group seminar during that time.

After completion of the lab work, students will continue to be advised during the writing phase of the project report by the external supervisor and/or by a local Neuroscience faculty member.

The timing of projects is by individual arrangement with the supervisor.

Participation in the Stud.IP workshop on science communication (https://elearning.uni-oldenburg.de/dispatch.php/course/overview?cid=6fc0dbbf53d7c3f5e36805f2ac7d07f) and a poster presentation at the biology & neuroscience student poster symposium is not mandatory but highly recommended.

Recommended reading

Provided by external and/or local supervisor, depending on the project

Links

Language of instruction

English

Duration (semesters)

1 Semester

Module frequency

every semester

Module capacity

unlimited

Module can be taken multiple times (see list of choices for each semester), however, examination of individual projects by the same supervisor is limited to EITHER two research projects (neu600 and/or neu610), OR one research project (neu600 or neu610) and the master thesis (first or second supervisor)

Reference text

All teachers from the list of MSc Neuroscience examiners at the University of Oldenburg can act as examiners, students should contact appropriate supervisors individually.

Prior to project start, external and local supervisors must fill the learning agreement form. The supervisor at the host institution is invited to submit a short, written statement of assessment, final grading is done by the supervisor from the list of examiners.

Module level

MM (Mastermodule / Master module)

Type of module

Wahlpflicht / Elective

Teaching/Learning method

Previous knowledge

Examination

Examination times

Type of examination

Final exam of module

within 2 months after conclusion of lab work

internship report

Type of course

Projektorientiertes Modul

SWS

10

Frequency

SoSe und WiSe

Workload Präsenzzzeit

140 h
neu600 - Neuroscience Research Project

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neuroscience Research Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu600</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td></td>
<td>(2 SWS Seminar (SE)</td>
</tr>
<tr>
<td></td>
<td>28 h contact / 62 h reading and presentation preparation</td>
</tr>
<tr>
<td></td>
<td>8 SWS Research Internship (IFP)</td>
</tr>
<tr>
<td></td>
<td>120 h contact / 120 h independent lab work / 30 h data analysis / 60 h preparation of written internship report / 30 h science communication workshop with poster preparation and presentation)</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Neuroscience (Master) > Research Modules

Responsible persons
- Kretzberg, Jutta (module responsibility)
- der Neuroscience, Lehrende (Prüfungsberechtigt)
- Bräuer, Anja (Prüfungsberechtigt)
- Debener, Stefan (Prüfungsberechtigt)
- Hermann, Christoph Siegfried (Prüfungsberechtigt)
- Kranczioch-Debener, Cornelia (Prüfungsberechtigt)
- Özsayr, Jale Nur (Prüfungsberechtigt)
- Puschmann, Sebastian (Prüfungsberechtigt)
- Milenkovic, Ivan (Prüfungsberechtigt)
- Sörös, Peter (Prüfungsberechtigt)
- Lücke, Jörg (Prüfungsberechtigt)
- Ruigendijk, Esther (Prüfungsberechtigt)

Further responsible persons
all MSc Neuroscience teachers, see list of examiners

Prerequisites
Depending on project choice, please check Stud.IP and ask the supervisor. Module can be taken multiple times, however, supervision of individual projects is limited to 45 ECTS for the same combination of student and supervisor (1 research module + Master thesis OR up to 3 research modules, including external research projects)

Skills to be acquired in this module
- Neurosci. knowlg.
- ++ Expt. Methods
- ++ Independent research
- ++ Scient. Literature
- + Social skills
- + Interdiscipl. knowlg.
- + Maths/Stats/Progr.
- + Data present./disc.
- + Scientific English
- + Ethics

Students perform individual research projects to learn:
- planning and organization of a research project in a group outside of University of Oldenburg
- formulate a scientific hypothesis
- planning, performing and analyzing experiments and/or simulations
- working with scientific background literature on the specific context of the project
- oral presentation and discussion of backgrounds and results in the lab seminar
Module contents

The Research Module is carried out under the guidance and supervision of a member of the Neuroscience faculty at the University of Oldenburg (see list of examiners). It comprises approximately 7 (minimum 5) weeks of experimental or theoretical work, individually or in small groups, and a regular seminar for training, reporting and feedback advice during that time. Students can choose between many options of individual projects, offered by the different groups involved in the MSc Neuroscience study program.

Research questions, methods and approaches differ between individual projects. Please refer to the list of options in Stud.IP and contact potential supervisors directly.

The timing of projects is by individual arrangement with the supervisor. Many, but not all, project options can also be scheduled during semester breaks, and / or as part-time options (lasting more than 7 weeks).

Note that, for some options, priority for admission to the project is given to students who passed a background module offered by the supervisor.

Participation in the Stud.IP workshop on science communication (https://elearning.uni-oldenburg.de/dispatch.php/course/overview?cid=6fc0dbfa53d7b3f5e3680f52af7d07f) and a poster presentation at the biology & neuroscience student poster symposium is not mandatory but highly recommended.

Recommended reading

Provided by the supervisor, depending on the project.

Links

Languages of instruction

<table>
<thead>
<tr>
<th>Duration (semesters)</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module frequency</td>
<td>every semester</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited (</td>
</tr>
<tr>
<td></td>
<td>no restriction)</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td></td>
</tr>
</tbody>
</table>

Previous knowledge

Depending on selected option - please contact the supervisor

Examination

<table>
<thead>
<tr>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>PR</td>
</tr>
</tbody>
</table>

Type of course

- within 2 months after conclusion of lab work
- in addition, mandatory but ungraded: presentation at lab seminar

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project practical training</td>
<td></td>
<td>8</td>
<td>SoSe oder WiSe</td>
<td>112</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td></td>
<td></td>
<td></td>
<td>140 h</td>
</tr>
</tbody>
</table>
neu650 - Neuroscience Team Project

Module label: Neuroscience Team Project
Module abbreviation: neu650
Credit points: 9.0 KP
Workload: 270 h
Applicability of the module:
- Master's Programme Neuroscience (Master) > Research Modules

Responsible persons:
- Kretzberg, Jutta (module responsibility)
- Albert, Jörg (Prüfungsberechtigt)
- Ashida, Go (Prüfungsberechtigt)
- Clemens, Jan (Prüfungsberechtigt)
- Kretzberg, Jutta (Prüfungsberechtigt)

Prerequisites:
Students from other programs are welcome when space is available.
Dependent on the choice of the project, different modules are prerequisites:
Current choices:
- neu340 (invertebrate neuroscience)
- neu245 (Computational Neuroscience – biophysical modeling)

Skills to be acquired in this module

Goals of this module:
Upon completion of this module, students have experienced the full cycle of a research project in a small (4 weeks full time) team project (2-5 students):
- Definition of an exact research question
- Development of a teamwork project schedule
- Literature search
- Application of experimental or modeling methods they have learned in a preceding background module
- Data analysis
 - Frequent oral status reports and data discussion
 - Poster presentation

Skills to be acquired/ competencies:

+ Neuroscience knowledge
+ Experimental Methods
+ Scientific Literature
++ Social skills
++ Maths/Stats/Programming
++ Independent Research
++ Data presentation/discussion
+ Scientific English
++ Ethics

Module contents

The seminar will cover topics of (tools for) scientific team work, literature search, and science communication.
The topics of the group projects for 2-5 students differ every year, because they are related to ongoing scientific projects (e.g. of PhD students). Current project choice:
- Invertebrate electrophysiology (requires neu340)
- Biophysical modeling (requires neu245)

Recommended reading
Journal papers will be selected based on the topic of the project

Links

Language of instruction: English
<table>
<thead>
<tr>
<th>Duration (semesters)</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module frequency</td>
<td>Last 4 weeks of summer term. Plus poster presentation at next student poster symposium (beginning of winter term)</td>
</tr>
<tr>
<td>Module capacity</td>
<td>12</td>
</tr>
</tbody>
</table>

Type of module

Teaching/Learning method

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
</table>
| Final exam of module | Portfolio tasks are performed during the module. The poster must be submitted and presented 1 week after completion of the practical work. The poster must be presented additionally at the student poster symposium (orientation week before winter semester). | Portfolio, consisting of:
 - Project plan
 - Practical experimental or modeling work, discussed in frequent oral status reports
 - Poster |

Type of course

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
</table>
| Seminar | | 2 | SoSe oder WiSe | 28
| | | | | Contact (hours): 28
| | | | | Self-studies and science communication workshop (hours): 62
| | | | | Total workload (hours): 90 |
| Practical training | | 6 | SoSe oder WiSe | 84
| | | | | Contact (hours): 84
| | | | | Independent work (including team work organization, data analysis, poster design): 96
| | | | | Total workload (hours): 180 |

Total module attendance time

| Total module attendance time | 112 h |
Skills Modules

neu710 - Neuroscientific Data Analysis in Matlab

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neuroscientific Data Analysis in Matlab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu710</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(180 h 2 SWS Lecture (VL) and Seminar (SE) Total workload 90 h: 28 h contact / 62 h individual preparation and working on assignments 2 SWS Supervised exercise (UE) Total workload 90 h: 28 h contact / 62 h individual preparation and working on assignments)</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>- Master's Programme Neuroscience (Master) > Skills Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>- Kretzberg, Jutta (module responsibility) - Kretzberg, Jutta (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upon successful completion of this course, students</td>
</tr>
<tr>
<td></td>
<td>- understand basic programming concepts. - have good knowledge about the most important aspects of the programming language Matlab and are able to write their own programs. - have basic knowledge in statistical testing. - have developed and applied a programs for the analysis of electrophysiological data. - have practiced the interpretation of data analysis results in a neuroscience context</td>
</tr>
<tr>
<td>Module contents</td>
<td>In each of the seven weeks, one or two specific topics are introduced in the lecture, practiced in the exercises and applied to electrophysiological data in a programming task: Matlab basics: Matlab windows, work space, vectors & matrices, saving & loading, graphics, scripts, functions</td>
</tr>
<tr>
<td></td>
<td>- Data types: numbers, logicals, text, categorical - Control flow: if statements, loops (for, while) - Software development: Flow charts, testing, debugging - Working with data: Searching & sorting, logical indexing - Advanced data types: sparse matrices, 3D matrices, cell arrays, structures, tables - Statistics: random numbers, probability distributions, descriptive statistics, inferential statistics - Application data analysis: Implementation of spike train analysis methods and graphics, function handles - Application Modelling: curve fitting, simulation of time series</td>
</tr>
<tr>
<td></td>
<td>With completing the seven tasks, each participant develops a toolbox of the</td>
</tr>
</tbody>
</table>
most common analysis methods for electrophysiological (spike and continuous) data. In addition to writing and commenting code, the programs are applied to experimental data. The tasks include questions about the interpretation of these analysis results.

Hence, the goal of this module is two-fold: Learning the programming language Matlab and analysis methods for electrophysiological data.

<table>
<thead>
<tr>
<th>Recommended reading</th>
<th>Pascal Wallisch: MATLAB for Neuroscientists, Elsevier, Oxford</th>
</tr>
</thead>
<tbody>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually, winter term</td>
</tr>
<tr>
<td>Module capacity</td>
<td>24</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflcht / Elective</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>basic knowledge of math and statistics</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Examination times</td>
<td></td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>during the course</td>
</tr>
<tr>
<td>Type of course</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>Frequency</td>
</tr>
<tr>
<td>Workload of compulsory attendance</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>1</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td></td>
</tr>
</tbody>
</table>

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: annually, winter term
Module capacity: 24
Module level: MM (Mastermodul / Master module)
Type of module: Wahlpflcht / Elective
Previous knowledge: basic knowledge of math and statistics
Examination times: during the course
Type of examination: practical exercise - hand in code and interpretation each week

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Total module attendance time: 56 h
neu730 - Biosciences in the Public Eye and in our Laws

Module label: Biosciences in the Public Eye and in our Laws
Module abbreviation: neu730
Credit points: 6.0 KP
Workload: 180 h
(56h contact / 84h research for presentations / 40h term paper)

Applicability of the module
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Responsible persons
- Köppl, Christine (module responsibility)
- Sienknecht, Ulrike (module counselling)
- Köppl, Christine (Prüfungsberechtigt)
- Sienknecht, Ulrike (Prüfungsberechtigt)

Prerequisites
- "Expt. methods"
- "Scient. Literature"
- "Social skills"
- "Interdiscipl. knowlg"
- "Data present.idisc."
- "Scientific English"
- "Ethics"

Skills to be acquired in this module
- Upon completion of this course, students
 - know basic rules of good scientific practise
 - are aware of the legal framework that is relevant to biological research, e.g. on animal welfare or genetically modified organisms
 - have practised to research and summarize different viewpoints on biological research, using both scientific (peer-reviewed) and non-scientific sources
 - are able to identify and critically discuss ethical conflicts in biological research, e.g., in the context of stem cell research or data manipulation
 - are able to prepare and give a coherent presentation in a team
 - have practised to lead a group discussion

Module contents
- In supervised exercises, students research the ethical aspects and controversial issues on several specific topics in the biosciences. Everyone participates in researching all topics. Students then take turns in summarizing and presenting each topic in small teams, and leading a critical discussion of each topic. Problem-based, independent research of the scientific background by the students is an integral part of this module.

 Example topics:
 - Good scientific practise and fraud
 - Neuroenhancement
 - Artificial intelligence
 - Animal welfare, Animal experiments
 - Overfishing, Nature conservation
 - State-of-the-art genetic tools and their implications
 - Genetically modified organisms, e.g., in food production, chimeras
 - Stem cells
 - Humans as experimental subjects

 A bonus can be obtained through active participation during the semester. Active participation requires regular oral contributions to the group discussions, that go beyond giving your own talks.

 A bonus improves the exam mark by one step (0.3 or 0.4). The bonus is optional, an exam mark of 1.0 is achievable without a bonus. A bonus cannot be applied to pass a failed exam.

Recommended reading

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: annually, summer term
Module capacity: 18
<table>
<thead>
<tr>
<th>Module level</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>Fundamentals of genetics, physiology, ecology and biological systematics</td>
</tr>
<tr>
<td>Examination</td>
<td>Examination times</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>within a few weeks of summer term lecture period</td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Seminar und Übung</td>
<td>4</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td></td>
</tr>
</tbody>
</table>

neu760 - Scientific English

<table>
<thead>
<tr>
<th>Module label</th>
<th>Scientific English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu760</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>0.5 SWS Lecture (VO)</td>
</tr>
<tr>
<td></td>
<td>Total workload 23h: 8h contact / 15h research for term paper</td>
</tr>
<tr>
<td></td>
<td>3.5 SWS Supervised exercise (UE)</td>
</tr>
<tr>
<td></td>
<td>Total workload 158h: 46h contact / 46h preparation of texts and presentations / 66h term paper</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>- Master's Programme Biology (Master) > Skills Modules</td>
</tr>
<tr>
<td></td>
<td>- Master's Programme Molecular Biomedicine (Master) > Skills Modules</td>
</tr>
<tr>
<td></td>
<td>- Master's Programme Neuroscience (Master) > Skills Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Köppl, Christine (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Köppl, Christine (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>non-native speakers</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>+ Neurosci. knowlg.</td>
</tr>
<tr>
<td></td>
<td>++ Social skills</td>
</tr>
<tr>
<td></td>
<td>++ Data present./disc.</td>
</tr>
<tr>
<td></td>
<td>++ Scientific English</td>
</tr>
<tr>
<td>Upon completion of this course, students</td>
<td>- have increased their proficiency in different forms of scientific presentation and communication in English, with special emphasis on neuroscience</td>
</tr>
<tr>
<td></td>
<td>- are able to express themselves with correct sentence structure and grammar, correct use of idioms and correct pronunciation</td>
</tr>
<tr>
<td></td>
<td>- are proficient in different contexts of scientific communication (e.g., paper, poster and informal exchange by email or phone)</td>
</tr>
<tr>
<td></td>
<td>- are able to recognize and avoid common errors of non-native speakers.</td>
</tr>
<tr>
<td>Module contents</td>
<td>Lectures cover</td>
</tr>
<tr>
<td></td>
<td>- characteristics of the different forms of scientific presentations</td>
</tr>
<tr>
<td></td>
<td>- sentence structure using the passive voice</td>
</tr>
<tr>
<td></td>
<td>- scientific vocabulary and terminology as contrasted to common speech</td>
</tr>
<tr>
<td></td>
<td>- appropriate language for communication with scientific editors and referees</td>
</tr>
<tr>
<td></td>
<td>Students read neuroscience texts of an advanced level and practice explaining and presenting these in both written and oral form. They also practice different contexts of scientific communication (e.g., paper, poster and informal exchange by email or phone). Emphasis is placed on individual problems in pronunciation and language use errors.</td>
</tr>
<tr>
<td>Recommended reading</td>
<td>http://users.wpi.edu/~nab/sci_eng/ScientificEnglish.pdf</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually, semester break</td>
</tr>
<tr>
<td>Module capacity</td>
<td>12</td>
</tr>
<tr>
<td>Reference text</td>
<td>Usually held in the break before summer term Outsourced to STELS-OL (Scientific and Technical English Language Service); native English speaker with in-depth neuroscience knowlg.</td>
</tr>
<tr>
<td>Module level</td>
<td>Type of module</td>
</tr>
<tr>
<td>Previous knowledge</td>
<td>minimum English level B2 (C1 preferred) according to Common European Framework of Reference for Languages (CEFR) priority to non-native speakers, higher semester</td>
</tr>
<tr>
<td>Examination</td>
<td>Examination times</td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Examination times</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>within 2 months of completing the course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>0.5</td>
<td>WiSe</td>
<td>7</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>3.5</td>
<td>WiSe</td>
<td>49</td>
</tr>
</tbody>
</table>

Total module attendance time 56 h
neu780 - Biological Data Analysis with Python

<table>
<thead>
<tr>
<th>Module label</th>
<th>Biological Data Analysis with Python</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu780</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>2 SWS Lecture total workload 90h: 30h contact / 60h individual reading</td>
</tr>
<tr>
<td></td>
<td>2 SWS Supervised exercise total workload 90h: 45h contact / 45h solving</td>
</tr>
<tr>
<td></td>
<td>programming exercises</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Master's Programme Biology (Master) > Skills Modules</td>
</tr>
<tr>
<td></td>
<td>• Master's Programme Biology (Master) > Skills Modules</td>
</tr>
<tr>
<td></td>
<td>• Master's Programme Neuroscience (Master) > Skills Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Winklhofer, Michael (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>• Winklhofer, Michael (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>+ Neurosci. knowlg.</td>
</tr>
<tr>
<td></td>
<td>++ Maths/Stats/Progr.</td>
</tr>
<tr>
<td></td>
<td>+ Data present./disc.</td>
</tr>
<tr>
<td>The objective of the module is the acquisition of programming skills with focus on analysis of neurobiological datasets, using the programming language python. Python is available for any computer platform (PC, Mac, Linux) and is open source (for free), see https://www.python.org/.</td>
<td></td>
</tr>
<tr>
<td>Students will learn how to write effective scripts for data processing and visualisation, making use of pre-existing program libraries for various generic purposes (maths, statistics, plotting, image analysis).</td>
<td></td>
</tr>
<tr>
<td>Typical applications will be analysis of time series (e.g., electrophysiological recordings, movement data), images (e.g. immunohistochemical images, MRI slices), and spatio-temporal correlations in volume data. Students will also learn how to produce synthetical data from various noise models to assess signal-to-noise ratio in instrumental datasets.</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td>Data types and data structures, control structures, functions, modules, file input/output Standard libraries and SciPy libraries (Matplotlib, NumPy,...), scikit-image, VPython, ...</td>
</tr>
<tr>
<td>Recommended reading</td>
<td>open access</td>
</tr>
<tr>
<td>http://www.swaroopch.com/notes/python/</td>
<td></td>
</tr>
<tr>
<td>http://docs.python.org/3/tutorial/index.html</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>semester break, annually</td>
</tr>
<tr>
<td>Module capacity</td>
<td>20</td>
</tr>
<tr>
<td>Reference text</td>
<td>Shared course components with (cannot be credited twice): pb328 "Einführung in Datenanalyse mit Python" (Professionalisierungsmodul im Bachelorstudiengang Biologie)</td>
</tr>
<tr>
<td>Module level</td>
<td></td>
</tr>
<tr>
<td>Type of module</td>
<td></td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Examination times</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>term break, immediately after the course (2 weeks in February)</td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td>56 h</td>
</tr>
</tbody>
</table>
neu751 - Laboratory Animal Science

Module label: Laboratory Animal Science
Module abbreviation: neu751
Credit points: 3.0 KP
Workload: 90 h
(one week full-time in semester break + flexible time for studying and exam preparation)
1 SWS Lecture
total workload 45h: 2h contact / 20h background reading / 23h exam preparation
1 SWS Supervised exercise
total workload 45h: 35h contact / 10h background reading)

Applicability of the module
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Molecular Biomedicine (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Responsible persons
- Köppl, Christine (module responsibility)
- Köppl, Christine (Prüfungsbeauftragter)
- Langemann, Ulrike (Prüfungsbeauftragter)
- Nolte, Arne (Prüfungsbeauftragter)
- Heyers, Dominik (Prüfungsbeauftragter)
- Eiberts, Lena (Prüfungsbeauftragter)
- Dedek, Karin (Prüfungsbeauftragter)
- Schmaljohann, Heiko (Prüfungsbeauftragter)
- Winkloher, Michael (Prüfungsbeauftragter)

Prerequisites
- none

Skills to be acquired in this module
++ Expt. Methods
+ Independent Research
+ Scient. Literature
++ Social skills
++ Interdiscipl. knowlg
+ Scientific English
++ Ethics

Upon successful completion of this course, students

- know the relevant EU legislation governing animal welfare and are able to explain its meaning in common language
- understand and are able to critically discuss salient ethical concepts in animal experimentation, such as the three Rs and humane endpoint.
- have basic knowledge of the biology and husbandry of laboratory animal species held at the University of Oldenburg (rodents or birds or fish)
- are able to critically assess the needs and welfare of animals without compromising scientific integrity of the investigation
- have practical skills in handling small rodents or birds or fish
- have profound knowledge of anaesthesia, analgesia and basic principles of surgery.
- have practised invasive procedures and euthanasia.

NOTE: These objectives aim to satisfy the requirements for EU directive A „Persons carrying out animal experiments” and EU directive D „Persons killing animals”.

Module contents
Background knowledge is taught using the third-party online platform "LAS Interactive" which concludes with a written exam that has to be passed before the practical part. Topics covered are:

- Legislation, ethics and the 3Rs
- Scientific integrity
- Data collection
- Basic biology of rodents, birds and fish
- Husbandry, and nutrition of rodents, birds and fish
- Animal Welfare
- Health monitoring
- Pain and distress
- Euthanasia
Practical procedures will first be demonstrated, important aspects will then be practiced under supervision by every participant, on an animal model of their choice (rodents, birds or fish):

- Handling and external examination
- Administration of substances, blood sampling
- Euthanasia and dissection
- Transcardial perfusion
- Anaesthesia and surgery

Recommended reading
"LAS interactive" internet-based learning platform

Links

Language of instruction English
Duration (semesters) 1 Semester
Module frequency semester break, every semester
Module capacity 20 (Registration procedure / selection criteria: StudIP, sequence of registration)

Module level

Type of module

Teaching/Learning method

Previous knowledge

Examination Examination times Type of examination
Final exam of module immediately before the practical part written exam of 90 minutes

Type of course Comment SWS Frequency Workload of compulsory attendance
Lecture 1 SoSe und WiSe 14
Exercises 1 SoSe und WiSe 14

Total module attendance time 28 h
neu790 - Communicating Neuroscience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Communicating Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu790</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

\[
\text{Workload} = 90 \, \text{h} \\
(28 \, \text{h contact} / 62 \, \text{h individual reading and preparing discussion questions})
\]

<table>
<thead>
<tr>
<th>Applicability of the module</th>
<th>Master's Programme Biology (Master) > Skills Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master's Programme Neuroscience (Master) > Skills Modules</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsible persons</th>
<th>Kretzberg, Jutta (module responsibility)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kretzberg, Jutta (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Köppl, Christine (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites	+ Neurosci. knowlg.
---------------------------------	++ Scient. Literature
	++ Social skills
	++ Interdiscipl. knowlg.
	++ Data present./disc.
	++ Scientific English
	++ Ethics

Upon successful completion of this course, students will have thought about and discussed in depth scientific, social and ethical aspects of communication in and about neuroscience. In particular, participants practice critical reading of neuroscience literature, learn about the scientific publication process and discuss science communication to the general public.

Module contents

The overall goal of critical discussion of neuroscientific results in a scientific, social and ethical context requires preparation and active participation both before (Stud.IP wiki) and during the weekly sessions. Each participant is responsible for the preparation and moderation of at least one session in a group of 2-3 students. For passing the module, additional active participation is required in at least 10 of the seminar sessions. The specific papers and topics that are discussed vary, but typically cover:

- How to find literature?
- How to read different types of scientific papers: Classic papers, review papers, perspective papers, recent original papers?
- Publication process, Authorship and impact metrics
- Alternative publication paths and data sharing in neuroscience
- Science communication for the general public and on social media
- Face-to-face scientific communication

Recommended reading

List of published papers, as well as online resources for preparation will be selected by the teachers and participants and announced via Stud.IP.

Background neuroscience textbooks, e.g.:

Galizia, Lledo ‘Neuroscience – From Molecule to Behavior’, 2013, Springer

Nicholls et al. ‘From Neuron to Brain’, 5th edition 2012, Sinauer

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>winter semester</td>
</tr>
<tr>
<td>Module capacity</td>
<td>20 (Registration procedure / selection criteria: StudIP)</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
</tbody>
</table>

Teaching/Learning method

<table>
<thead>
<tr>
<th>Previous knowledge</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>Presentation (ungraded, pass / fail)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Frequency
WiSe

<table>
<thead>
<tr>
<th>Workload Präsenzzeit</th>
<th>28 h</th>
</tr>
</thead>
</table>
neu800 - Introduction to Matlab

<table>
<thead>
<tr>
<th>Module label</th>
<th>Introduction to Matlab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu800</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>2 SWS Supervised exercise (UE) “Introduction to MATLAB”</td>
<td></td>
</tr>
<tr>
<td>Total workload 90h: 28h contact / 62h practising learned programming skills</td>
<td></td>
</tr>
<tr>
<td>Applicability of the module</td>
<td></td>
</tr>
<tr>
<td>Master's Programme Biology (Master) > Skills Modules</td>
<td></td>
</tr>
<tr>
<td>Master's Programme Biology (Master) > Skills Modules</td>
<td></td>
</tr>
<tr>
<td>Master's Programme Neuroscience (Master) > Skills Modules</td>
<td></td>
</tr>
<tr>
<td>Responsible persons</td>
<td></td>
</tr>
<tr>
<td>Gießing, Carsten (module responsibility)</td>
<td></td>
</tr>
<tr>
<td>Gießing, Carsten (Prüfungsberechtigt)</td>
<td></td>
</tr>
<tr>
<td>Prerequisites</td>
<td></td>
</tr>
<tr>
<td>++ Expt. Methods</td>
<td></td>
</tr>
<tr>
<td>+ Social skills</td>
<td></td>
</tr>
<tr>
<td>+ Interdiscipl. knowlg.</td>
<td></td>
</tr>
<tr>
<td>++ Maths/!Stats/Progr.</td>
<td></td>
</tr>
<tr>
<td>+ Data present./disc.</td>
<td></td>
</tr>
<tr>
<td>+ Scientific English</td>
<td></td>
</tr>
<tr>
<td>Within this introductory course students will learn the basics of MATLAB programming. Participants will be introduced in fundamental programming concepts.</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td>The modul comprises an introduction to data structures, flow control, loops, graphics, basic data analyses with MATLAB, scripts and functions.</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>annually, summer term, second half</td>
</tr>
<tr>
<td>Module capacity</td>
<td>12 (in total with bio640) (shared course components with (cannot be credited twice): bio640)</td>
</tr>
<tr>
<td>Module level</td>
<td></td>
</tr>
<tr>
<td>Type of module</td>
<td></td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Examination times</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>end of summer term</td>
</tr>
<tr>
<td>Working on exercises</td>
<td>Regular active participation</td>
</tr>
<tr>
<td>Type of course</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Total module attendance time</td>
<td></td>
</tr>
</tbody>
</table>
neu810 - International Meeting Contribution

Module label: International Meeting Contribution

Module abbreviation: neu810

Credit points: 3.0 KP

Workload: 90 h

Applicability of the module:
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Responsible persons:
- Kretzberg, Jutta (module responsibility)
- Kretzberg, Jutta (Prüfungsberechtigt)
- Köppl, Christine (Prüfungsberechtigt)

Prerequisites:

Skills to be acquired in this module:
- + Neurosci. knowlg.
- ++ Independent research
- + Scient. Literature
- ++ Social skills
- + Interdiscipl. knowlg.
- ++ Data present./disc.
- + Scientific English
- + Ethics

Preparation, presentation and critical discussion of own studies for an international audience:
- participate in an international meeting
- prepare a poster or talk for an international meeting
- present own results in a way that is appropriate for the target audience
- put own studies into the context of scientific literature
- acquire additional knowledge about a broader field of research

Module contents:

Active participation in a scientific conference, workshop, summer school etc., lasting a minimum of 3 full days. Student must be the presenter (poster or talk) and an author of the presented work, typically carried out in the context of a research module or the Master thesis.

It is mandatory to present the poster or talk to Christine Köppl or Jutta Kretzberg prior to the meeting and incorporate the feedback on the presentation.

Recommended reading:
dependent on the scientific topic

Language of instruction: English

Duration (semesters): 1 Semester

Module frequency: every semester, flexible

Module capacity: unlimited (please contact module organizer individually)

Module level: MM (Mastermodul / Master module)

Type of module: Wahlpflicht / Elective

Teaching/Learning method

Previous knowledge

Examination

Examination times

Type of examination

Final exam of module

presentation (ungraded, pass/fail)

Type of course: Seminar

SWS: 2

Frequency: SoSe und WiSe
| Workload Präsenzzzeit | 28 h |
neu725 - Multivariate Statistics and Applications in R

Module label: Multivariate Statistics and Applications in R
Module abbreviation: neu725
Credit points: 6.0 KP
Workload: 180 h
- 2 SWS Lecture (30h contact / 60h self-studies and exam preparation)
- 2 SWS Seminar (30h contact / 60h statistical data analysis in R)

Applicability of the module:
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Responsible persons:
- Hildebrandt, Andrea (module responsibility)
- Hildebrandt, Andrea (Prüfungsberechtigt)

Prerequisites:
- Recommended in semester 1/3
- Weeks 11-13 of summer semester

Skills to be acquired in this module:
- Students will acquire basic knowledge in planning empirical investigations, managing and understanding quantitative data and conducting a wide variety of multivariate statistical analyses. They will learn how to use the statistical methodology in terms of good scientific practice and how to interpret, evaluate and synthesize empirical results from the perspective of statistical modeling in basic and applied research context. The courses in this module will additionally point out statistical misconceptions and help students to overcome them.
- Independent research
- Scientific literature
- Social skills
- Interdisciplinary knowledge
- Mathematics/Statistics/Programming
- Data presentation and discussion
- Scientific English
- Ethics

Module contents:
Part 1: Multivariate Statistics I (lecture):
- Graphical representation of multivariate data
- The Generalized Linear Modeling (GLM) framework
- Multiple and moderated linear regression with quantitative and qualitative predictors
- Logistic regression
- Multilevel regression (Generalized Linear Mixed Effects Modeling – GLMM)
- Non-linear regression models
- Path modeling
- Factor analysis (exploratory & confirmatory)
- (Multilevel) Structural equation modeling (SEM linear and non-linear)

Part 2: Analysis Methods with R (seminar)
- Data examples and applications of GLM, GLMM, polynomial, spline and local regression, path modeling, factor analyses and SEM

Recommended reading:
- Course material will be available in Stud.IP

Links:

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: Winter term, annually
Module capacity: Unlimited
- Recommended in semester 1/3
- Weeks 11-13 of summer semester

Module level:
Type of module:
Teaching/Learning method:
Previous knowledge:

Examination:
- Examination times:
- Type of examination:

Final exam of module:
- End of winter semester
- Written exam
<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance of at least 70% in the seminars (in addition, mandatory but ungraded)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total module attendance time 56 h
neu820 - Neuroscience Journal Club

Module label: Neuroscience Journal Club
Module abbreviation: neu820
Credit points: 3.0 KP
Workload: 90 h (30h contact / 60h reading and preparation of oral and poster presentation)

Applicability of the module:
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Biology (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Responsible persons:
- Mertsch, Sonja (module responsibility)
- Mertsch, Sonja (Prüfungsberechtigt)

Prerequisites:
- Students will learn to read, interpret, present and discuss neuroscientific literature.
 - ++ Neurosci. knowledge
 - + Expt. Methods
 - ++ Scient. Literature
 - ++ Social skills
 - + Interdiscipl. knowledge
 - ++ Data present./disc.
 - + Scientific English
 - + Ethics

Module contents:
- Week 1: How to read and present a scientific paper and how to generate a scientific poster?
 - Distribution of papers to participants
- Week 2: Example presentation of a scientific paper by the teacher with discussion
- Week 3-13: Oral presentation / moderation of discussion of one scientific paper per week by one or two student(s)
- Week 14: Short poster presentations of all students

The focus topic of the scientific literature will change between semesters. In winter semester 2021/22, the topic will be regenerative ophthalmology with the focus on tissue engineering.

Recommended reading:
- Scientific literature will be available in Stud.IP

Links:

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: winter term, annually
Module capacity: 20
Module level:

Type of module:
- Seminar

Teaching/Learning method:

Previous knowledge:

Examination:
- Examination times: during the semester
- Type of examination: presentation and attendance of at least 70% in the seminars

Type of course:
- Seminar

SWS: 2
Frequency: SoSe und WiSe
Workload: Präsenzzeit: 28 h
Module Overview

Module Label: Microscopic Imaging in Biomedical Sciences
Module Code: gsw200
Credit Points: 3.0 KP
Workload: 90 h

Applicability of the Module
- Master's Programme Molecular Biomedicine (Master) > Skills Modules
- Master's Programme Neuroscience (Master) > Skills Modules

Responsible Persons
- Dedek, Karin (module responsibility)
- Groß, Petra (Prüfungsberechtigt)
- Dedek, Karin (Prüfungsberechtigt)
- Solovyeva, Vita (Prüfungsberechtigt)

Prerequisites
- Enrolment in Master’s programmes Molecular Biomedicine and Neuroscience.

Skills to be acquired in this module
- **Competencies:**
 - + deepened biological expertise
 - ++ deepened knowledge of biological working methods
 - + data analysis skills
 - ++ interdisciplinary thinking
 - ++ critical and analytical thinking
 - ++ data presentation and discussion (written and spoken)
 - + team work

Module Contents
The module focuses on microscopy, imaging and methods of microscopy.

Lecture:
Basics in optics, microscopy methods, image processing, biomedical applications

Seminar:
Examples for selected microscopy methods and their application. Different microscopical methods and their applications are discussed and compared. Students will understand the basics and limitations of microscopy methods and learn to evaluate them. Selected methods are demonstrated.

Recommended Reading
Literature will be provided during the lecture/seminar.

Language of instruction
English

Duration (semesters)
1 Semester

Module Frequency
afternoon event during winter semester

Module Capacity
16
(Selection criteria: attendance at first meeting)

Module Level
MM (Mastermodul / Master module)

Type of module
Wahlpflicht / Elective

Teaching/Learning method
Lecture and Seminar

Previous knowledge
basic physics, basic cell biology

Examination

- **Examination Times:**
- **Type of Examination:**
 - graded: written examination (60 min.),
 - ungraded: presentation

Note: to qualify for the exam, regular participation during the semester is mandatory, no more than 2 days of absence

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1</td>
<td>WiSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Total module attendance time: 28 h
neu830 - Introduction to the Neuroanatomy of the Brain

Module label: Introduction to the Neuroanatomy of the Brain
Module abbreviation: neu830
Credit points: 3.0 KP
Workload: 90 h (30h contact / 60h reading and preparation of presentation)

Applicability of the module:
- Master's Programme Neuroscience (Master) > Skills Modules

Responsible persons:
- Maier, Esther Christine (module responsibility)
- Maier, Esther Christine (Prüfungsberechtigt)

Prerequisites:

Skills to be acquired in this module:
++ Neurosci. knowlg.
+ Social skills
+ Interdiscipl. knowlg.
+ Data present./disc.
+ Scientific English
+ Ethics

Students should be able to correctly identify the anatomical structures of the brain and describe the major pathways connecting the different parts of the nervous system. They also should acquire an understanding of the functional brain anatomy and brain circuitry and use this knowledge to analyse clinical symptoms and understand the basis of the neurological exam carried out to evaluate patients in the clinic.

Competencies:
- Developmental origin of the brain
- Anatomical knowledge of brain structure
- Functional anatomical knowledge of the brain
- Understanding the basis of the neurological exam
- Find and name anatomical structures during virtual dissections and annotations
- Group work

Module contents:
This block course offers an introduction to neuroanatomy with a focus on the brain.
The course combines lectures on the development and the anatomy of the brain with virtual dissection classes, 3D brain models, annotation exercises and clinical case studies.

Recommended reading:
Scientific literature will be available in Stud.IP

Links:
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: annually (winter term, semester break)
Module capacity: 20 (up to 10 student from Master Programme Neuroscience, up to 10 students from Master Programme Neurocognitive Psychology)

Module level: MM (Mastermodul / Master module)
Type of module: Wahlpflicht / Elective

Teaching/Learning method

Previous knowledge
Examination
Final exam of module
during the course
Type of examination
presentation

Type of course: Seminar

SWS: 2
Frequency: WiSe
Workload Präsenzzeit: 28 h
neu715 - Neuroscientific Data Analysis in Python

Module label: Neuroscientific Data Analysis in Python
Module abbreviation: neu715
Credit points: 6.0 KP
Workload: 180 h
Applicability of the module:
- Master's Programme Neuroscience (Master) > Skills Modules

Responsible persons:
- Clemens, Jan (module responsibility)
- Clemens, Jan (Prüfungsberechtigt)
- Clemens, Jan (Module counselling)

Prerequisites:
- Enrolment in Master program Neuroscience

Skills to be acquired in this module:

Goals of this module:
Upon completion of this module, students...
- understand basic programming concepts.
- have good knowledge about the most important aspects of the programming language Python and are able to write their own programs.
- have basic knowledge in statistical testing.
- have developed and applied programs for the analysis of neuroscientific data.
- have practiced the interpretation of data analysis results in a neuroscience context.
- have learned about and practiced data sharing and version control.

Skills to be acquired/competencies:
+ Neuroscience knowledge
+ Social skills
++ Maths/Stats/Programming
+ Data presentation/discussion
+ Scientific English
+ Ethics

Module contents:
In each of the seven weeks, one or two specific topics are introduced in the lecture, practiced in the exercises and applied to electrophysiological data in a programming task:
- Python basics: jupyter notebooks; code environments; scripts and functions; loading and saving data; plotting
- Data types: numerical, logical, text, lists, dictionaries, tuples
- Control flow: if statements, loops (for, while)
- Software development: Testing, debugging, version control, sharing code and data, reproducibility
- Working with data: Searching & sorting, logical indexing
- Advanced data structures: Tables; image and video data
- Statistics: random numbers, probability distributions, descriptive statistics, inferential statistics
- Application data analysis: Implementation of spike train analysis methods and graphics, function handles
- Application Modeling: curve fitting, simulation of time series

With completing the seven tasks, each participant programs a set of common analysis methods for neuroscientific data. In addition to writing and commenting code, the programs are applied to experimental data. The tasks include questions about the interpretation of these analysis results.

Hence, the goal of this module is two-fold: Learning the programming language Python and analysis methods for neuroscientific data.

Recommended reading:
Literature will be available in Stud.IP

Language of instruction: English
<table>
<thead>
<tr>
<th>Duration (semesters)</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module frequency</td>
<td>Annually, first half of winter term</td>
</tr>
<tr>
<td>Module capacity</td>
<td>25</td>
</tr>
</tbody>
</table>

Module level

Teaching/Learning method

Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>During the course</td>
<td>Portfolio, consisting of 7 weekly programming and interpretation tasks</td>
</tr>
</tbody>
</table>

Type of course

<table>
<thead>
<tr>
<th>Type of course</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contact (hours): 28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Self-study and preparation for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>exam (hours): 62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total workload (hours): 90</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contact (hours): 28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Self-study and preparation for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>exam (hours): 62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total workload (hours): 90</td>
</tr>
</tbody>
</table>

Total module attendance time 56 h
neu900 - Recent Skills for Neuroscience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Recent Skills for Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module abbreviation</td>
<td>neu900</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Neuroscience (Master) > Skills Modules</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Kretzberg, Jutta (module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Albert, Jörg (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Clemens, Jan (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Kretzberg, Jutta (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

Upon completion of this module, students know about a specific field of skills and its application in neuroscience. (Topics are subject to change)

Skills to be acquired/ competencies:

- Neuroscience knowledge
- Experimental Methods
- Scientific Literature
- Social skills
- Maths/Stats/Programming
- Data presentation/discussion
- Scientific English
- Ethics

Module contents

The contents of this module can change every semester to serve as a flexible addition to the standard choice of modules that are offered yearly.

Please check Stud.IP for more specific information.

Recommended reading

Journal papers will be selected based on the specific topic of the module in each semester.

Links

Language of instruction: English

Duration (semesters): 1 Semester

Module frequency:

This module is not offered on a regular basis, but serves as flexible addition to the standard choice of modules. The course period changes depending on lab availability.

Module capacity

12

Module level

Type of module

Teaching/Learning method

Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Examination times</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Präsentation</td>
</tr>
<tr>
<td></td>
<td>Active participation: presentation, ungraded</td>
</tr>
</tbody>
</table>

Type of course

Seminar

SWS

2

Frequency

SoSe oder WiSe

Workload Präsenzzeit

28 h
Abschlussmodul

mam - Master Thesis

Module label: Master Thesis
Module abbreviation: mam
Credit points: 30.0 KP
Workload: 900 h

2 SWS Seminar (SE): 28 h contact, 62 h individual preparation (reading, preparation of presentations)
18 SWS Thesis project: total 810 h.

Percentages of contact (individual supervision) and independent work (independent lab work, data analysis, reading, thesis writing) depend on the topic and methods of the thesis project.

Applicability of the module

- Master's Programme Neuroscience (Master) > Abschlussmodul

Responsible persons

- Kretzberg, Jutta (module responsibility)
- Bräuer, Anja (Prüfungsberechtigt)
- Herrmann, Christoph Siegfried (Prüfungsberechtigt)
- Kranzioch-Debener, Cornelia (Prüfungsberechtigt)
- Lütke, Jörg (Prüfungsberechtigt)
- Milenkovic, Ivan (Prüfungsberechtigt)
- Puschmann, Sebastian (Prüfungsberechtigt)
- Ruigendijk, Esther (Prüfungsberechtigt)
- Sörös, Peter (Prüfungsberechtigt)
- Özurt, Jale Nur (Prüfungsberechtigt)
- Albert, Jörg (Module counselling)

Prerequisites

The start of the master thesis requires prior completion of at least 60 ECTS.

Prior to the start of the thesis project, the form for application for the final thesis and final oral examination needs to be submitted to the examination office and approved by the examination committee. External examiners (not listed on the list of neuroscience examiners) need to apply for the status of an official examiner prior to the start of the project.

Depending on project choice, please ask the supervisor for additional requirements.

Skills to be acquired in this module

++ Neurosci. knowlg.
++ Expt. Methods
++ Independent research
++ Scient. Literature
++ Social skills
+ Interdiscipl. knowlg.
+ Maths/Stats/Progr.
++ Data present./disc.
+ Scientific English
+ Ethics

In their Master thesis, students perform individual research projects in the
limited time of 6 months. Learning goals:

- planning and organization of a research project
- teamwork in a research group
- formulate a scientific hypothesis
- planning, performing and analyzing experiments and/or simulations
- working with scientific background literature on the specific context of the project
- oral presentation and discussion of backgrounds and results in the lab seminar
- write a scientific report
- optional: Prepare and present a scientific poster

Module contents

The master thesis comprises 6 months of experimental or theoretical work and thesis writing, and a regular seminar for training, reporting and feedback advice during that time. The aim, methods and results of the thesis are presented in a final oral presentation and exam (Master's colloquium).

Students can choose between many options of individual projects, offered by the different groups involved in the MSc Neuroscience study program. Research questions, methods and approaches differ between individual projects. The timing of projects is by individual arrangement with the supervisor. Note that, for some options, priority for admission to the project is given to students who passed a background and/or research module offered by the supervisor. Please refer to the Stud.IP MSc Neuroscience information community forum for information on the groups and contact potential supervisors directly.

The master thesis project is generally carried out under the guidance and supervision of a member of the Neuroscience faculty at the University of Oldenburg (see list of examiners) and additionally evaluated by a second examiner. External master thesis projects and/or evaluation by persons who are not on the list of examiners need prior approval by the examination committee.

Participation in the Stud.IP workshop on science communication (https://elearning.uni-oldenburg.de/dispatch.php/course/overview?cid=6fc0dbbf5a53d7bf3fe36bed0f52ac7d0f7) and a poster presentation at the biology & neuroscience student poster symposium is not mandatory but highly recommended.

Recommended reading

Provided by the supervisor, depending on the project.

Links

Languages of instruction

- Duration (semesters): 1 Semester
- Module frequency: every semester
- Module capacity: unlimited
- Module level: MM (Mastermodul / Master module)
- Type of module: Pflicht / Mandatory
- Teaching/Learning method: Individual project
- Previous knowledge: Depending on selected option – please contact the supervisor
- Examination: Depending on selected option – please contact the supervisor
- Type of course: Seminar
- Final exam of module: within 6 months after approval of the application
- Type of examination: Thesis (90%), oral presentation (10 %)
- Type of course: Seminar
- SWS: 2
- Frequency: SoSe und WiSe
- Workload Präsenzzeit: 28 h