Modulhandbuch

Engineering Physics - Master-Studiengang

im Wintersemester 2023/2024

erstellt am 27.10.2023
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>phy611</td>
<td>Theoretical Methods</td>
<td>7</td>
</tr>
<tr>
<td>phy631</td>
<td>Advanced Metrology</td>
<td>10</td>
</tr>
<tr>
<td>phy640</td>
<td>Seminar Advanced Topics in Engineering Physics</td>
<td>12</td>
</tr>
<tr>
<td>phy681</td>
<td>Tools and Skills for Engineering Sciences</td>
<td>13</td>
</tr>
<tr>
<td>phy691</td>
<td>Advanced Research Project (Preparation Master Thesis)</td>
<td>15</td>
</tr>
<tr>
<td>phy602</td>
<td>Advanced Nuclear & Particle Physics</td>
<td>17</td>
</tr>
<tr>
<td>phy603</td>
<td>Fluid Dynamics</td>
<td>18</td>
</tr>
<tr>
<td>phy607</td>
<td>Selected Topics in Advanced Physics</td>
<td>19</td>
</tr>
<tr>
<td>phy633</td>
<td>Optics</td>
<td>20</td>
</tr>
<tr>
<td>phy617</td>
<td>Fourier Methods</td>
<td>21</td>
</tr>
<tr>
<td>phy950</td>
<td>Audiologie und Akustik</td>
<td>23</td>
</tr>
<tr>
<td>bio279</td>
<td>Grundlagen der Physiologie</td>
<td>25</td>
</tr>
<tr>
<td>phy614</td>
<td>Personalized Medicine</td>
<td>27</td>
</tr>
<tr>
<td>phy678</td>
<td>Processing and analysis of biomedical data</td>
<td>29</td>
</tr>
<tr>
<td>phy685</td>
<td>Advanced Engineering Topics in Biomedical Physics & Acoustics</td>
<td>30</td>
</tr>
<tr>
<td>phy686</td>
<td>Advanced Topics in Biomedical Physics & Acoustics</td>
<td>32</td>
</tr>
<tr>
<td>phy698</td>
<td>Selected Topics on Medical Radiation Physics</td>
<td>33</td>
</tr>
<tr>
<td>phy959</td>
<td>Medizinische Strahlenphysik II</td>
<td>35</td>
</tr>
<tr>
<td>phy955</td>
<td>Medizinische Strahlenphysik I</td>
<td>36</td>
</tr>
<tr>
<td>phy964</td>
<td>Advanced Computing</td>
<td>37</td>
</tr>
<tr>
<td>phy954</td>
<td>Imaging and Data Analysis</td>
<td>38</td>
</tr>
</tbody>
</table>
phy621 - Advanced Engineering Topics in Wind Energy .. 107
phy622 - Advanced Topics in Wind Energy .. 108
phy645 - Wind Physics Measurement Project .. 109
phy985 - Stochastic Processes in Experiments .. 110
phy629 - Optimization in modern Power Systems ... 111
phy675 - Integration of Wind Power in the Power System .. 112
phy981 - HardTech Entrepreneurship .. 113
phy986 - System Safety and Reliability Engineering .. 114
phy623 - Advanced Wind Energy Meteorology .. 115
phy625 - Deep Learning ... 116
phy626 - Introduction to Dynamical Systems ... 117
phy988 - Introduction to Machine Learning and Data Mining .. 118
phy627 - Hydrodynamics II ... 119
phy628 - Computational Tool for Data Science .. 120
phy629 - Advanced CFD ... 121
phy657 - Energy Economics ... 122
phy605 - Digital Signal Processing .. 123
phy677 - Speech processing .. 125
phy679 - Acoustics .. 126
phy685 - Advanced Engineering Topics in Biomedical Physics & Acoustics 127
phy686 - Advanced Topics in Biomedical Physics & Acoustics .. 129
phy694 - Machine Learning II ... 130
Modulhandbuch Engineering Physics - Master-Studiengang

Datum 27.10.2023

Pflichtmodule

phy611 - Theoretical Methods

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Theoretical Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy611</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(180 h)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Pflichtmodule

Zuständige Personen
- Cocchi, Caterina (Modulverantwortung)
- Anemüller, Jörn (Prüfungsberechtigt)
- Avila Canellas, Kerstin (Prüfungsberechtigt)
- Cocchi, Caterina (Prüfungsberechtigt)
- Doclo, Simon (Prüfungsberechtigt)
- Hartmann, Alexander (Prüfungsberechtigt)
- Kühn, Martin (Prüfungsberechtigt)
- Kunz-Drolshagen, Jutta (Prüfungsberechtigt)
- Neu, Walter (Prüfungsberechtigt)
- Perine, Joachim (Prüfungsberechtigt)
- Poppe, Björn (Prüfungsberechtigt)
- Schmidt, Thorsten (Prüfungsberechtigt)
- Stojesandt, Bernhard (Prüfungsberechtigt)
- Strybny, Jann (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- basic programming skills (matlab, python, C/C++)

Kompetenzziele
The goal of this module is to extend the training in theoretical methods for engineering physics through the acquisition of solid and in-depth knowledge of advanced concepts and through their practice with computer simulations. Depending on the chosen course, the students will have the opportunity to strengthen their knowledge in quantum material modelling (Density-functional theory), signal processing, fluid dynamics (Modelling and Simulation), computational physics, and machine learning. In this way, they will develop skills to relate the conceptual design of models, their numerical implementation, and the physical analysis of the produced data, with the results of field and/or laboratory measurements.

Modulinhalte

Computer Physics
- Debugging; data structures; algorithms; random numbers; data analysis; percolation; Monte Carlo simulations; finite-size scaling; quantum Monte Carlo; molecular dynamics simulations; event-driven simulations; graphs and algorithms; genetic algorithms; optimization problems.

-Density-functional theory-
- The many-body problem; the Hartree-Fock approximation; Homogeneous electron gas; Hohenberg-Kohn theorems; Kohn-Sham equations; exchange-correlation potentials; pseudopotentials; basis sets.

Machine learning
- Unsupervised learning methods; algorithms for clustering, classification, component extraction, feature learning, blind source separation and dimensionality reduction; Relations to neural network models; learning in biological systems.

Modelling and Simulation
- Advanced fluid dynamics including 3D, transient and compressible processes; Theory of similarity, range of dimensionless numbers; Potential Theory;
Numerical Algorithms and possibilities of independent coding of simplest mathematical models; Introduction of a complete chain of Open-Source-CFD-Tools; Contactless high-resolving measuring techniques in the fluid dynamics.

Signal processing

System properties; Discrete-time signal processing; Statistical signal processing; Adaptive filters.

Literaturempfehlungen

Computer Physics

- K. Hartmann: Practical guide to computer simulation. World- Scientific, 2009;

Density-functional theory

- R. Martin, Electronic Structure, Cambridge University Press (2004);
- F. Bechstedt, Many-body approach to electronic excitations, Springer (2015);

Machine learning

- C. M. Bishop, Pattern Recognition and Machine Learning, Springer 2006;
Unterrichtsprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
halbjährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel / module level
Mandatory

Lehr-/Lernform / Teaching/Learning method
1 Prüfung:
- Klausuren zwischen 90 Min. und 180 Min.,
- Mündliche Prüfung zwischen 20 Min. und 45 Min.,
- Referat zwischen 10 Seiten und 20 Seiten schriftlicher Auseinandersetzung und zwischen 15 Min. und 30 Min. Vortrag,
- Hausarbeit zwischen 15 und 30 Seiten

Vorkenntnisse / Previous knowledge

Prüfung

<table>
<thead>
<tr>
<th>Prüfungsform</th>
<th>Prüfungszeiten</th>
<th>Prüfung</th>
<th>Lectures (2 or 4 hours per week) / Exercises (1 or 2 hours per week)</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td></td>
<td></td>
<td></td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td></td>
<td></td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
phy631 - Advanced Metrology

Modulbezeichnung: Advanced Metrology
Modulkürzel: phy631
Kreditpunkte: 6.0 KP
Workload: 180 h (Attendance: 56 hrs, Self study: 124 hrs)

Verwendbarkeit des Moduls: Master Engineering Physics (Master) > Pflichtmodule
Zuständige Personen:
- Huke, Philipp (Modulverantwortung)
- Huke, Philipp (Prüfungsberechtigt)
- Huke, Philipp (Modulberatung)

Teilnahmevoraussetzungen:
The course in Advanced Metrology sets up a high-level route enabling the students to acquire skills to allow them to operate effectively in the majors of Engineering Physics. This is achieved by provision of state-of-the-art technical and physical approaches covering broad aspects of advanced metrology. Experimental setups, simulations and signal analysis from experiments are explained within the context of Laser and optics, Biomedical physics and acoustics, and renewable energies. Demonstrate systematic knowledge across appropriate advanced metrology technologies, management, and environmental issues to provide solutions for international industries and/or research organisations.

Modulinhalte:

Literaturempfehlungen:
Recent publications on specific topics
D.L. Allen, D.W. Mills: Signal Analysis (Time, Frequency, Scale and Structure)

Links:
Unterrichtssprache: Englisch
Dauer in Semestern: 1 Semester
Angebotsrhythmus Modul: jährlich
Aufnahmekapazität Modul: unbegrenzt
Modullevel / module level: MM (Mastermodul / Master module)
Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method:
Lecture: 4 hrs/week first, 2 hrs/week second half of semester
Experimental /Seminar work: 0 hrs/week first, 2 hrs/week second half of semester

Vorkenntnisse / Previous knowledge:
Prüfung:
Gesamtmittel

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA-Auswahl (Specialization Biomedical Physics)</td>
<td>4</td>
<td>WiSe</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA-Auswahl (Specialization Acoustics)</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA-Auswahl (Specialization Renewable Energies)</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA-Auswahl (Specialization Laser & Optics)</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
<td>SWS</td>
<td>Angebotsrhythmus</td>
<td>Workload Präsenz</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>-----</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>140 h</td>
<td></td>
</tr>
</tbody>
</table>
phy640 - Seminar Advanced Topics in Engineering Physics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Seminar Advanced Topics in Engineering Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy640</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h (Attendance: 28 hrs, Self study: 62 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Pflichtmodule

Zuständige Personen
- Neu, Walter (Modulverantwortung)
- Herráez, Iván (Prüfungsberechtigt)
- Neu, Walter (Prüfungsberechtigt)
- Koch, Sandra (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Participation: 1st - 3rd semester. Presentation: Master thesis work in progress or finished; at least one successfully completed specialization module.

Kompetenzziele
The students are enabled to demonstrate the ability to communicate clearly, both orally and in writing, to specialist and non-specialist audiences. Demonstrate knowledge, fundamental understanding and critical awareness of current research fields in the student’s master projects. Personal development through practice of communication, presentation, time management, teamwork, problem solving, project management, critical evaluation, numeracy, and IT skills.

Modulinhalte
Current seminar topics

Literaturrempfehlungen

Links

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
halbjährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
Seminar: 2 hrs/week

Vorkenntnisse / Previous knowledge
Participation: 1st - 3rd semester. Presentation: Master thesis work in progress or finished; at least one successfully completed specialization module.

Prüfung
Presentation (45 min) and regular active and documented participation in the seminar spread over the first three semesters

Gesamtnote

Lehrveranstaltungsform
Seminar

SWS
2

Angebotsrhythmus
--

Workload Präsenzzeit
28 h
ph681 - Tools and Skills for Engineering Sciences

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Tools and Skills for Engineering Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy681</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Attendance: 28 hrs, Self study: 152 hrs)</td>
</tr>
</tbody>
</table>

- **Verwendbarkeit des Moduls**: Master Engineering Physics (Master) > Pflichtmodule

- **Zuständige Personen**: Huke, Philipp (Modulverantwortung), Doclo, Simon (Prüfungsberechtigt), Huke, Philipp (Prüfungsberechtigt), Koch, Sandra (Prüfungsberechtigt), Neu, Walter (Prüfungsberechtigt), Petrovic, Vlaho (Prüfungsberechtigt), Poppe, Björn (Prüfungsberechtigt), Reck, Martin (Prüfungsberechtigt), Schüning, Thomas (Prüfungsberechtigt), Schellenberg, Markus (Prüfungsberechtigt), Schmidt, Jonas (Prüfungsberechtigt), Teubner, Ulrich (Prüfungsberechtigt), Silies, Martin (Prüfungsberechtigt)

- **Teilnehmervoraussetzungen**: Acc. selected course

- **Kompetenzziele**: The aim of the module is that the students are qualified to plan, setup, conduct and successfully complete scientific or industrial-driven projects. Therefore, the students use the (physical) understanding of the process in question, derive and realize a solution with their necessary engineering skills and document the results properly

- **Modulinhalte**: Projects may include design of laser systems (solid-state, gas, diode lasers with ultrashort-pulses, tunability, lownoise frequency-stabilization) as well as conceptual setups in photonics and fiber technologies. One of the major topics is planning, management and conduction of a project from idea to realization.

 The excursion to the fair “LASER World of PHOTONICS” in Munich is part of the course 5.04.4671 - Tools in Advanced Photonics.

- **Literaturempfehlungen**:
 - Projektportfolio-Management : Strategisches und operatives Multi-Projektmanagement in der Praxis; Matthias Hirzel [Hrsg.] ; Wolfgang Alter [Hrsg.] ; Cornelia Niklas [Hrsg.] 4., überarbeitete und erweiterte Auflage., Wiesbaden : Springer Gabler, 2019
 - Project management 2.0 : leveraging tools, distributed collaboration, and metrics for project success Harold Kerzner Hoboken, New Jersey: John Wiley & Sons, Inc, 2015

- **Links**:
 - Unterrichtsprachen: Deutsch, Englisch
 - Dauer in Semestern: 1 Semester
 - Angebotsrhythmus Modul: halbjährlich
 - Aufnahmekapazität Modul: unbegrenzt
 - Modullevel / module level: MM-PB (Professionalsierungsbereichsmodul im Master)
 - Modulart / typ of module: je nach Studiengang Pflicht oder Wahlpflicht
 - Lehr-/Lernform / Teaching/Learning method: Seminar: 2hrs/week; Excercise: 2hrs/week

- **Vorkenntnisse / Previous knowledge**:
 - Prüfung: Internship report: Between 15 and 30 pages

<table>
<thead>
<tr>
<th>Lehre/Lernform / Teaching/Learning method</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
<td>SWS</td>
<td>Angebotsrhythmus</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>-----</td>
<td>------------------</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Praktikum</td>
<td></td>
<td>1</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Advanced Research Project (Preparation Master Thesis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulkürzel</td>
<td>phy691</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>15.0 KP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>450 h (Attendance: 320 hrs, Self study: 130 hrs)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Pflichtmodule

Zuständige Personen
- Neu, Walter (Modulverantwortung)
- Agert, Carsten (Prüfungsberechtigt)
- Avila Canellas, Kerstin (Prüfungsberechtigt)
- Anemüller, Jörn (Prüfungsberechtigt)
- Knecht, Robin (Prüfungsberechtigt)
- Güoker, Gerd (Prüfungsberechtigt)
- Blies, Svend-Age (Prüfungsberechtigt)
- Brand, Thomas (Prüfungsberechtigt)
- Holtorf, Hans-Gerhard (Prüfungsberechtigt)
- Torio, Herena (Prüfungsberechtigt)
- Cocchi, Caterina (Prüfungsberechtigt)
- Dietz, Mathias (Prüfungsberechtigt)
- Doclo, Simon (Prüfungsberechtigt)
- Doemer, Karl-Joachim (Prüfungsberechtigt)
- Drolishagen, Gerhard (Prüfungsberechtigt)
- Englert, Lars (Prüfungsberechtigt)
- Einzner, Gerald (Prüfungsberechtigt)
- Gücke, Jörg (Prüfungsberechtigt)
- Ewert, Stephan (Prüfungsberechtigt)
- Feudel, Ulrike (Prüfungsberechtigt)
- Fatikow, Sergey (Prüfungsberechtigt)
- Gülay, Levent (Prüfungsberechtigt)
- Hartmann, Alexander (Prüfungsberechtigt)
- Herráez, Iván (Prüfungsberechtigt)
- Hofmann, Volker (Prüfungsberechtigt)
- Neu, Walter (Prüfungsberechtigt)
- Huke, Philipp (Prüfungsberechtigt)
- Knipper, Martin (Prüfungsberechtigt)
- Koch, Sandra (Prüfungsberechtigt)
- Kolmeyer, Birger (Prüfungsberechtigt)
- Kühn, Martin (Prüfungsberechtigt)
- Lehnhoff, Sebastian (Prüfungsberechtigt)
- Lukassen, Laura (Prüfungsberechtigt)
- Kunz-Drolishagen, Jutta (Prüfungsberechtigt)
- Lienau, Christoph (Prüfungsberechtigt)
- Looe, Hui Khee (Prüfungsberechtigt)
- Nillius, Niklas (Prüfungsberechtigt)
- Meyer, Bernd (Prüfungsberechtigt)
- Poppe, Björn (Prüfungsberechtigt)
- Oetjen, Arne (Prüfungsberechtigt)
- Steinfeld, Gerald (Prüfungsberechtigt)
- Peinke, Joachim (Prüfungsberechtigt)
- Pehlken, Alexandra (Prüfungsberechtigt)
- Reck, Martin (Prüfungsberechtigt)
- Ruehmann, Antje (Prüfungsberechtigt)
- Schellenberg, Markus (Prüfungsberechtigt)
- Schneider, Christian (Prüfungsberechtigt)
- Schmidt, Andreas Hermann (Prüfungsberechtigt)
- Schmidt, Thorsten (Prüfungsberechtigt)
- Silles, Martin (Prüfungsberechtigt)
- Siedenburg, Kar (Prüfungsberechtigt)
- Stolzvesandt, Bernhard (Prüfungsberechtigt)
- Teubner, Ulrich (Prüfungsberechtigt)
- van de Par, Steven (Prüfungsberechtigt)
- Uppenkamp, Stefan (Prüfungsberechtigt)
- Wark, Michael (Prüfungsberechtigt)
- Wollenhaupt, Matthias (Prüfungsberechtigt)

Teilnahmeveraussetzungen
- Sound knowledge in the specialisation field of Master thesis

Kompetenzziele
- Students are able to search for and to state an adequate research problem in the field of the working group or industry (problem should be related to the topics covered in the masters programme). They are capable to derive research questions based on the statement of the problem and prepare an elaborated research proposal yielding lab work that serves as the preliminary
study for the Master's Thesis. Students are in a position to develop the specialised bases (detailed theoretical background of the topic, ample and critically annotated literature review, research objectives and research question(s), fully developed methods section, sketched workplan) of the Master's Thesis Project in terms of content and style in such a way that they form a sound basis for a successful Master's Thesis. Students gain expertise in workflow optimization, data collection and data analysis. Independent management and transformation of a complex and unpredictable problem from the general field of study contexts of the Master degree program 'Engineering Physics' (including related subject areas) utilizing scientific state-of-the-art research methods.

Modulinhalte

Independent research for the definition of a physics and engineering solution to a problem in the chosen field. Specialized knowledge of a subject area as foundation for the student's research. The assignment of specific tasks will be given after consulting the responsible lecturers and is depending upon the current research profile. The Advanced research project (preliminary study to the Master's thesis) forms the basis of the Master's Thesis Project and must contain the following aspects: - Detailed theoretical background of the topic - Ample and critically annotated literature review - Research objectives and research question(s) - Fully developed methods section - Draft of a fully formed table of contents

Literaturempfehlungen

Acc. Research eld, Recent publications on specific topics

Links

Unterrichtsprachen

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

Modullevel / module level

MM (Mastermodul / Master module)

Modulart / typ of module

Pflicht / Mandatory

Lehr-/Lernform / Teaching/Learning method

Project work / 40 hours/week

Vorkenntnisse / Previous knowledge

Sound knowledge in the specialisation field of Master thesis

Prüfung

Prüfungszeiten

Prüfungsform

Gesamtmodul

home work: between 15 and 30 pages or presentation: between 20 and 45 minutes

Lehrveranstaltungsform

Seminar

SWS

Angebotsrhythmus

Workload Präsenzzeit

0 h
Advanced Physics

phy602 - Advanced Nuclear & Particle Physics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Nuclear & Particle Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy602</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Advanced Physics

Zuständige Personen
- Poppe, Björn (Modulverantwortung)
- Poppe, Björn (Prüfungsberechtigt)
- Drolshagen, Gerhard (Prüfungsberechtigt)
- Looe, Hui Khee (Prüfungsberechtigt)

Teilnahmekriterien
- Basic lectures in physics / engineering

Kompetenzziele
- Space Environment: Basic understanding of the main components of the near-Earth space environment. The students shall become familiar with the different types of radiation and particles in space, their physical characteristics and their effects on hardware and humans in space. The interdisciplinary nature of these topics shall become clear.

Modulinhalt
- Space Environment: Overview of radiation and particles in space and their energy ranges. The upper Earth atmosphere, the spectrum of the sun and its variability, plasma, solar-terrestrial interactions, the radiation belts of Earth, cosmic rays, meteoroids and meteors, near-Earth objects, space debris. Effects and potential protection measures.

Literaturempfehlungen
- Grupen: Astroparticle Physics, Springer Verlag, Heidelberg, 2005;
- Falkenburg, Rhode (Eds.): From Ultra Rays to Astroparticles, Springer Verlag, Heidelberg, 2012

Links
- Deutsch, Englisch

Unterrichtsprachen
- 1 Semester

Angebotsrhythmus Modul
- jährlich

Aufnahmekapazität Modul
- unbegrenzt

Modullevel / module level
- MM (Mastermodul / Master module)

Modulart / typ of module
- Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method
- 2 Vorlesungen: 2 SWS + 2 SWS

Vorkenntnisse / Previous knowledge
- Basic lectures in physics / engineering

Prüfung / Prüfungsform
- Gesamtmodul: Max. 180 min. Klausur oder 30 min. mündliche Prüfung

Lehrveranstaltungsform
- Vorlesung

SWS
- 4

Angebotsrhythmus
- SoSe oder WiSe

Workload Präsenzzeit
- 56 h
phy603 - Fluid Dynamics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Fluid Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy603</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Attendance: 84 hrs, Self study: 96 hrs)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > Advanced Physics</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Peinke, Joachim (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Avila Canellas, Kerstin (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lukassen, Laura (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Peinke, Joachim (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Fundamental knowledge and comprehension on the movement of fluids</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Fluid Dynamics I:</td>
</tr>
<tr>
<td></td>
<td>Basic equations: Navier-Stokes-equation, Continuity- equation, Bernoulli- equation, Vortex- equation (and Energy balance equations; laminar flows and stability analysis; exact solutions, application of basic equations</td>
</tr>
<tr>
<td></td>
<td>Fluid Dynamics II:</td>
</tr>
<tr>
<td></td>
<td>Reynolds-equation, "closing problem" of turbulence: Turbulence models: Cascade models, Stochastic models</td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td>J. Spurk, N. Aksel: Fluid Mechanics, Springer</td>
</tr>
<tr>
<td></td>
<td>P.A. Davidson: Turbulence, Oxford 2004</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Unterrichtssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotserhebung Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Hinweise</td>
<td>Unterrichtssprache: English, German on demand, if no international students participate</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Lecture: 2hrs/week; Excercise: 2hrs/week</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>Klausur</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Angebotserhebung Modul</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
phy607 - Selected Topics in Advanced Physics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Selected Topics in Advanced Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy607</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>Overall workload of 180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > Advanced Physics</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Neu, Walter (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Avila Canellas, Kerstin (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Gülker, Gerd (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Lienau, Christoph (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Nilius, Niklas (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmeveraussetzungen</td>
<td>Related to selected course/s</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>The aim of this module is, to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific physics skills.</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>Photonics, Optics, Metrology</td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Unterrichtsprachen</td>
<td></td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>Sommer- oder Wintersemester</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Hinweise</td>
<td>This module offers special as well as advanced courses in Advanced Physics. The list of eligible courses will be updated each academic year. Please refer to the courses listed for this module in Stud.IP.</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Related to selected course/s</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Related to selected course/s</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>

18 / 138
phy633 - Optics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Optics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy633</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > Advanced Physics</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Teubner, Ulrich (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Teubner, Ulrich (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Electrodynamics</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>The students acquire broad theoretical and experimental knowledge of optics together with the necessary physical background. In the laboratory they acquire practical skills during application of their knowledge from lecture. The module prepares the students to work in the field of optical science and engineering in general, and yields the base for all further specialisations within the field of optics and laser technology.</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>Fundamental and advanced concepts of optics. Topics include: reflection and refraction, optical properties of matter, polarisation, dielectric function and complex index of refraction, evanescent waves, dispersion and absorption of light, Seidel’s aberrations, Sellmeier’s equations, optical systems, wave optics, Fourier analysis, wave packets, chirp, interference, interferometry, spatial and temporal coherence, diffraction (Huygens, Fraunhofer, Fresnel), focusing and optical resolution, brilliance, Fourier optics, optics at short wavelengths (extreme UV and X-rays)</td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td>Born and Wolf: Principles of Optics (Cambridg Press);E. Hecht: Optics (Addison-Wesley); Pedrotti and Pedrotti: Introduction to Optics (Prentice-Hall); Saleh and Teich, Fundamentals of Photonics (Wiley); all those books are also available in German</td>
</tr>
</tbody>
</table>

Links
- Deutsch, Englisch
- 1 Semester
- Wintersemester
- unbegrenzt
- MM (Mastermodul / Master module)
- Wahlpflicht / Elective
- Lecture plus Lab Part: 4 hrs/week
- max 180 min written exam or 30 min oral exam or Lab work with report
- Vorlesung
- 4
- SoSe oder WiSe
- 56 h
phy617 - Fourier Methods

Modulbezeichnung: Fourier Methods

Modulkürzel: phy617

Kreditpunkte: 6.0 KP

Workload: 180 h
 (Attendance: 56hrs, Self Study: 124 hrs)

Verwendbarkeit des Moduls:
- Master Engineering Physics (Master) > Advanced Physics

Zuständige Personen:
- Teubner, Ulrich (Modulverantwortung)
- Teubner, Ulrich (Prüfungsberechtigt)
- Silles, Martin (Prüfungsberechtigt)

Teilnahmevoraussetzungen

Kompetenzziele

Physics with ultrashort pulses:

Students will get competences on the special aspects on ultrashort laser pulses which do not play a role in standard optics or laser physics. Starting from basics, the module yields advanced knowledge of the physics of femtosecond light pulses and their interaction with matter, as well as the physics of femtosecond lasers. The students will obtain skills to work with such lasers, in particular, on generation, handling, measurement, application of femtosecond pulses.

Fourier methods:

The students acquire deeper knowledge on Fourier mathematics and its applications within physics. They will learn related definitions, properties, theorems. Many examples will be presented. The students should be able to apply Fourier technology for physical and technical problems, in particular with relation of spatial and temporal domain to (spatial) frequency domain. They will get deepened insight on physical procedures by analysis within frequency domain.

Modulinhalte

The course consists of two parts, both strongly related to Fourier physics:

1) Physics with ultrashort pulses:

Linear and non-linear optics of ultrashort pulses such as: amplitude, phase and spectral phase of the electric field, chirp, phase and group velocity, dispersion, group velocity dispersion, pulse compression, self focusing, self phase modulation, frequency conversion, multi photon effects; femtosecond laser pulse generation and amplification with various schemes, measurement of ultrashort pulses; applications

2) Fourier methods:

Motivation: Application of Fourier transformation within physics. Examples of Fourier pairs; properties of Fourier transformation; symmetries; important theorems; displacement, differentiation, convolution, uncertainty relation; examples to convolution theorem, frequency comb, Hilbert transformation, auto correlation function methods of time/frequency analysis, Wigner distribution; Fourier transformation in higher dimensions: tomography; discrete Fourier transformation, sampling theorem; applications

Literaturrempfehlungen

Physics with ultrashort pulses:

A.M. Weiner: Ultrafast Optics, Wiley
Fourier-Techniken in der Physik:

Weitere spezielle Literatur wird in der Vorlesung bekannt gegeben.

Links

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method
lecture: 4 SWS

Vorkenntnisse / Previous knowledge
Basics of Optics and Laser Physics

Prüfung
Prüfungszeiten
Prüfungsform

Gesamtmodul
2 * 3 hours written or 2 * 30 minutes oral exams

Lehrveranstaltungsform
Vorlesung

SWS
2

Angebotsrhythmus
SoSe oder WiSe

Workload Präsenzzeit
28 h
phy950 - Audiologie und Akustik

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Audiology und Akustik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy950</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (180 h (Präsenzzeit 56h, Selbststudium: 124h))</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > Advanced Physics</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>van de Par, Steven (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Kollmeier, Birger (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>van de Par, Steven (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Kollmeier, Birger (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Ewert, Stephan (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen
- Einführendes Akustik Modul

Kompetenzziele

Modulinhalte

Psychophyik und Audiology
- Audiologie: Audiogramm, BERA, Schallleitungs- und Schallempfandungsstörungen, Tinnitus, Otoakustische Emissionen (Diagnostisch), Stapediusreflexaudiometrie, Impedanzaudiometrie
- Psychophyik: Wahrnehmungsgrößen, JNDs, Weber-Fechnersches Gesetz, Schwellen, Signaljektion, dprime/ROC, Lautheit, Tonhöhe, Stevenssch Gesetz, Zentrale und spektrale Maskierung, Modulationswahrnehmung, auditorische Szenenanalyse, effektive Signalverarbeitungs-Modelle

Akustik

Literaturempfehlungen
- B. Kollmeier: Skriptum Physikalische, technische und medizinische Akustik, Universität Oldenburg.
- H. Kutruff, Akustik: Eine Einführung, 2004;
- P. Damaske, Acoustics and Hearing, Springer, 2008;

Links
- Unterrichtssprache: Deutsch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: jährlich
<table>
<thead>
<tr>
<th>Aufnahmekapazität Modul</th>
<th>unbegrenzt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulelevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Vorlesung: 3 SWS, Übung: 1 SWS</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Einführendes Akustik Modul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Max. 180 min. Klausur oder 30 min. mündliche Prüfung (1 oder 2 Prüfungen)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Vorlesung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SWS</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
Schwerpunkt: Biomedical Physics

bio279 - Grundlagen der Physiologie

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Grundlagen der Physiologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>bio279</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Biomedical Physics
- Master of Education (Sonderpädagogik) Biologie (Master of Education) > Mastermodule

Zuständige Personen
- Heyers, Dominik (Modulverantwortung)
- Köppl, Christine (Modulberatung)
- Dedek, Karin (Modulberatung)
- Heyers, Dominik (Prüfungsberechtigt)
- Köppl, Christine (Prüfungsberechtigt)
- Dedek, Karin (Prüfungsberechtigt)

Teilnahmeverwirksamkeiten

Kompetenzziele
- biologische Fachkenntnisse
- Kenntnisse biologischer Arbeitstechniken
- Naturwissenschaftliche/ mathematische Grundkenntnisse
- Statistik und wissenschaftliches Programmmieren
- Abstraktes, logisches, analytisches Denken
- vertiefte Fachkompetenz in biologischem Spezialgebiet
- Selbstständiges Lernen und (forschendes) Arbeiten
- Vermittlung grundlegender Kenntnisse und Zusammenhänge der Physiologie mit Schwerpunkt Humannphysiologie
- Vermittlung des Zusammenanges zwischen Struktur und Funktion als wesentliches Basikonzept der Biologie
- Vermittlung naturwissenschaftlicher Arbeitsweise: Hypothesenbildung, Versuchsplanung, Versuchsdurchführung, Datensammlung, Interpretation, Fehleranalyse
- Anleitung zum eigenen, forschend-entdeckenden Experimentieren
- Schaffen von Experimentiegelegenheiten
- Reflektion des Experimentierens als Weg der Erkenntnisgewinnung

Modulinhalt

Literaturempfehlungen
- Klinke, Pape, Kurtz, Silbernagl: Physiologie, Aufl. 6, 2010
- Schmidt, Lang, Heckmann: Physiologie des Menschen mit Pathophysiologie, Aufl. 31, 2011
(sinnvolle Zusatzliteratur, falls verfügbar: Wehner, Gehring: Zoologie)

Links

Unterrichtssprache
Deutsch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel / module level

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
Vorlesung

Vorkenntnisse / Previous knowledge

Prüfung
Prüfungszeiten: innerhalb weniger Wochen nach Ende der WS-Vorlesungszeit
Prüfungsform
1 Klausur

Lehrveranstaltungsform
Vorlesung

SWS
4

Angebotsrhythmus

25 / 138
| Workload Präsenzzzeit | 56 h |
phy614 - Personalized Medicine

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Personalized Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy614</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(attendance: 56 hrs, self study: 124 hrs)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>- Master Engineering Physics (Master) > Schwerpunkt: Biomedical Physics</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>- Schmidt, Thorsten (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>- Schmidt, Thorsten (Prüfungsberichtig)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Statistics, Computing</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Students should understand current high-throughput methods used in research and clinics. They should be aware of the advantages and challenges and should be able to judge and interpret the results. In addition, the students should accomplish a sound understanding of basic algorithms which are used to analyze big and complex data sets. They should be able to choose, use and interpret appropriate tools and methods. Finally, students should be able to address the limitations and prospects of big-data analyses in complex systems.</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>The lecture aims to provide an overview about current experimental high-throughput methods and bioinformatic algorithms to address the challenges of exponentially growing amounts of data. In addition to basic algorithms and methods like alignments, hidden markov models, Viterbi, graphs or protein-protein interaction networks, the lecture aims to gives an introduction to a data-driven view of disease biology</td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td>Genomic and Personalized Medicine:</td>
</tr>
<tr>
<td></td>
<td>Cancer Genomics:</td>
</tr>
<tr>
<td></td>
<td>From Bench to Personalized Medicine; Graham Dellaire, Jason Berman; Academic Press; 1. Edition (17. January 2014);</td>
</tr>
<tr>
<td></td>
<td>Systems Biology:</td>
</tr>
<tr>
<td></td>
<td>A Textbook; Eda Klipp et al (2009); Wiley-VCH Verlag GmbH, Co. KGaA; Auflage: 1. Edition;</td>
</tr>
</tbody>
</table>

Links
- Unterrichtssprache: Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: jährlich
- Aufnahmekapazität Modul: unbegrenzt
- Modullevel / module level: EB (Ergänzungsbereich / Complementary)
- Modulart / typ of module: Wahlpflicht / Elective
- Lehr-/Lernform / Teaching/Learning method: Lecture: 4 hrs/week
- Vorkenntnisse / Previous knowledge: Statistics, Computing

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Max. 3 hrs written exam or 30 min oral exam. Here, you will find information about the consideration of bonus points for module marks.</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform
- Vorlesung

<table>
<thead>
<tr>
<th>SWS</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
phys678 - Processing and analysis of biomedical data

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Processing and analysis of biomedical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy678</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Biomedical Physics

Zuständige Personen
- Poppe, Björn (Modulverantwortung)
- Brand, Thomas (Prüfungsberechtigt)
- Ewert, Stephan (Prüfungsberechtigt)
- Hohmann, Volker (Prüfungsberechtigt)
- Uppenkamp, Stefan (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- Basic signal processing, algebra knowledge

Kompetenzziele
This course introduces basic concepts of statistics and signal processing and applies them to real-world examples of bio-medical data. In the second part of the course, recorded datasets are noise-reduced, analyzed, and discussed in views of which statistical tests and analysis methods are appropriate for the underlying data. The course forms a bridge between theory and application and offers the students the means and tools to set up and analyze their future datasets in a meaningful manner.

Modulinhale
- Normal distributions and significance testing,
- Monte Carlo bootstrap techniques,
- Linear regression,
- Correlation,
- Signal-to-noise estimation,
- Principal component analysis,
- Confidence intervals,
- Dipole source analysis,
- Analysis of variance

Each technique is explained, tested and discussed in the exercises.

Literaturempfehlungen

Links
- Unterrichtssprache: Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: jährlich
- Aufnahmekapazität Modul: unbegrenzt
- Modullevel / module level: MM (Mastermodul / Master module)
- Modulart / typ of module: Wahlpflicht / Elective
- Lehr-/Lernform / Teaching/Learning method: Lecture: 2hrs/week; Exersise: 2hrs/week
- Vorkenntnisse / Previous knowledge: Basic signal processing, algebra knowledge
- Prüfung: Written examination: Between 90 and 180 minutes or Oral examination: Between 20 and 45 minutes
- Gesamtmodul: Vorlesung
- SWS: 4
- Angebotserhöhung: SoSe oder WiSe
- Workload Präsenzzeit: 56 h
phy685 - Advanced Engineering Topics in Biomedical Physics & Acoustics

Modulbezeichnung: Advanced Engineering Topics in Biomedical Physics & Acoustics
Modulkürzel: phy685
Kreditpunkte: 6.0 KP
Workload: 180 h (Overall workload of 180 h)

Verwendbarkeit des Moduls:
- Master Engineering Physics (Master) > Schwerpunkt: Acoustics
- Master Engineering Physics (Master) > Schwerpunkt: Biomedical Physics

Zuständige Personen:
- Doclo, Simon (Modulverantwortung)
- Poppe, Björn (Modulverantwortung)
- Anemüller, Jörn (Prüfungsberechtigt)
- Biehs, Svend-Age (Prüfungsberechtigt)
- Blau, Matthias (Prüfungsberechtigt)
- Brand, Thomas (Prüfungsberechtigt)
- Dietz, Mathias (Prüfungsberechtigt)
- Doclo, Simon (Prüfungsberechtigt)
- Enzner, Gerald (Prüfungsberechtigt)
- Ewert, Stephan (Prüfungsberechtigt)
- Hohmann, Volker (Prüfungsberechtigt)
- Kollmeier, Birger (Prüfungsberechtigt)
- Lücke, Jörg (Prüfungsberechtigt)
- Meyer, Bernd (Prüfungsberechtigt)
- Oeljen, Arne (Prüfungsberechtigt)
- Poppe, Björn (Prüfungsberechtigt)
- Siedenburg, Kai (Prüfungsberechtigt)
- Töpken, Stephan (Prüfungsberechtigt)
- Uppenkamp, Stefan (Prüfungsberechtigt)
- van de Par, Steven (Prüfungsberechtigt)

Teilnahmevoraussetzungen: Depending on selected courses
Kompetenzziele:
The aim of this module is to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific engineering skills. The students acquire advanced knowledge and skills related to the engineering areas biomedical physics and acoustics.

Modulinhalte: Depending on selected courses
Literaturrempfehlungen: Depending on selected courses
Links:
Unterrichtssprache: Englisch
Dauer in Semestern: 1 Semester
Angebotsrhythmus Modul: annual
Aufnahmekapazität Modul: unbegrenzt

Hinweise:
This module offers special as well as advanced engineering courses in Biomedical Physics and Acoustics. The list of eligible courses will be updated each academic year. Please refer to the courses listed for this module in Stud.IP.

Modullevel / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method: Depending on selected courses, one or two examinations
Vorkenntnisse / Previous knowledge: Depending on selected courses

Prüfung / Prüfungszeiten / Prüfungsform:
Gesamtkurs:
- One or two examinations depending on selected courses

Lehrveranstaltungsform / SWS / Angebotsrhythmus / Workload Präsenz:
- Vorlesung: 4 SWS SoSe oder WiSe 56
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Praktikum</td>
<td></td>
<td>1</td>
<td>SoSe oder WiSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 126 h
phy686 - Advanced Topics in Biomedical Physics & Acoustics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Topics in Biomedical Physics & Acoustics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy686</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Overall workload of 180 h)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering Physics (Master) > Schwerpunkt: Acoustics</td>
</tr>
<tr>
<td></td>
<td>• Master Engineering Physics (Master) > Schwerpunkt: Biomedical Physics</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>• Doclo, Simon (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>• Poppe, Björn (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>• Anemüller, Jörn (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Bitzer, Jörg (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Blau, Matthias (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Brand, Thomas (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Dietz, Mathias (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Doclo, Simon (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Eizen, Gerald (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Ewert, Stephan (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Hohmann, Volker (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Lücke, Jörg (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Kollmeier, Birger (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Meyer, Bernd (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Poppe, Björn (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Getjen, Arne (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Siedenburg, Kai (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Töpken, Stephan (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• van de Par, Steven (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Uppenkamp, Stefan (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen
Depending on selected courses

Kompetenzziele
The aim of this module is, to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific specialization skills. The students acquire advanced knowledge and skills related to the specialization areas biomedical physics and acoustics.

Modulinhalte
Depending on selected courses

Literaturempfehlungen
Depending on selected courses

Links
Depending on selected courses

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
yährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method
Depending on selected courses

Vorkenntnisse / Previous knowledge
Depending on selected courses

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
<th>Gesamtmittel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depending on selected courses, one or two examinations</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>4</th>
<th>SoSe oder WiSe</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>SoSe oder WiSe</td>
<td>0</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
phy698 - Selected Topics on Medical Radiation Physics

Modulbezeichnung
Selected Topics on Medical Radiation Physics

Modulkürzel
phy698

Kreditpunkte
6.0 KP

Workload
180 h
(Attendance: 56 hrs, Self study: 124 hrs)

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Biomedical Physics

Zuständige Personen
- Poppe, Björn (Modulverantwortung)
- Looe, Hui Khee (Prüfungsberechtigt)
- Poppe, Björn (Prüfungsberechtigt)
- Ruehmann, Antje (Prüfungsberechtigt)
- Chofor, Ndimofo (Prüfungsberechtigt)

Teilnahmeverordnung

Kompetenzziele

5.04.4242:
Neben den aktuellen Themen der Strahlenphysik erlernen die Studierenden den Umgang mit meist englischsprachigen Fachzeitschriften aus dem Bereich. Darüber hinaus werden Präsentationstechniken durch eigene Vorträge erlernt. Parallel zu der Veranstaltung wird die Verwendung eines Monte-Carlo Strahlungstransport-Codes (EGS) erlernt und somit die Fähigkeit vertieft, komplexe physikalische Modelle in eine Software umzusetzen.

5.04.4642:
Der Kurs vermittelt die Fähigkeit zum Verständnis grundlegender Anwendungen der Strahlenphysik in der Medizin. Die Studierenden erweitern somit ihre Kompetenzen im Hinblick auf die Bewertung fächerübergreifender Zusammenarbeit unterschiedlicher Disziplinen. Sie erlernen zudem den selbständigen Umgang mit fremdsprachlicher Literatur.

Modulinhalte

5.04.4242:
Aktuelle Themen aus der Medizinischen Strahlenphysik
wie: IMRT, NMR, PET, SPECT usw.;

5.04.4642:

Literaturempfehlungen

5.04.4242:
Aktuelle Themen aus der Medizinischen Strahlenphysik
wie: IMRT, NMR, PET, SPECT usw.;

5.04.4642:
Grundlagen der Strahlentherapie, Dosimetrie, Einführung in die Strahlentherapie, Wechselwirkung von Strahlung mit Materie, Elektronen, Photonen und Teilchenstrahlung, mathematische Beschreibung von
Links

<table>
<thead>
<tr>
<th>Unterrichtsprachen</th>
<th>Deutsch, Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
</tbody>
</table>

Lehr-/Lernform / Teaching/Learning method

Vorlesung: 4 SWS, Übung: 2 SWS

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Max. 180 min. Klausur oder 30 min. mündliche Prüfung</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

Vorlesung

SWS

4

Angebotsrhythmus

SoSe oder WiSe

Workload Präsenzzeit

56 h
phy959 - Medizinische Strahlenphysik II

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Medizinische Strahlenphysik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy959</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>{ Attendance: 58 hrs, Self study: 124 hrs }</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > Schwerpunkt: Biomedical Physics</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Poppe, Björn (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Poppe, Björn (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Medizinische Strahlenphysik I</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Die Studierenden werden die grundlegenden Kompetenzen eines Strahlenschutzbeauftragten kennen lernen. Dazu gehören neben den fachlichen Grundlagen im Strahlenschutz insbesondere die Kompetenz sich im deutschen Gesetz und Verwaltungssystem im Bereich des Strahlenschutzes zurecht zu finden.</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>Strahlenschutz in der Tele- und Brachytherapie, Aufbau von Beschleunigern, Dosimetrie, Baulicher und Organisatorischer Strahlenschutz, StrSchG und StrSchV sowie zugehörige DIN Normen.</td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td>StrSchG, StrSchV verschiedene DIN Normen</td>
</tr>
<tr>
<td>Links</td>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Medizinische Strahlenphysik I</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Prüfungszeit</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>Written examination: Between 90 and 180 minutes or Oral examination: Between 20 and 45 minutes</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
phy955 - Medizinische Strahlenphysik I

Modulbezeichnung: Medizinische Strahlenphysik I
Modulkürzel: phy955
Kreditpunkte: 6.0 KP
Workload: 180 h (Attendance: 56 hrs, Self study: 124 hrs)

Verwendbarkeit des Moduls: Master Engineering Physics (Master) > Schwerpunkt: Biomedical Physics
Zuständige Personen: Poppe, Björn (Modulverantwortung), Poppe, Björn (Prüfungsberechtigt)

Teilnahmevoraussetzungen: Medizinische Strahlenphysik I
Kompetenzziele: Die Studierenden erlernen die Grundlegenden Inhalte der Bildgebenden Verfahren und des Strahlenschutzes. Sie werden im Rahmen des Grundkurses Strahlenschutz zudem erstmals mit dem beruflichen Fort- und Weiterbildungssystem in Deutschland vertraut gemacht.

Modulinhalte: 5.04.4022 Spezialkurs Strahlenschutzseminar, Strahlenschutz in der Tele- und Brachytherapie, Aufbau von Beschleunigern, Dosimetrie, Baulicher und Organisatorischer Strahlenschutz, StrSchG und StrSchV sowie zugehörige DIN Normen
5.04.4021 Bildgebende Verfahren: Grundlagen der Bildgebenden Verfahren in der Medizin: CT, MRT, Ultraschall, Nuklearmedizin SPECT, PET sowie grundlegende Rekonstruktionsmethoden

Literaturrempfehlungen: Grundkurs Strahlenschutz: Unterlagen werden zur Verfügung gestellt (Skript) Bildgebende Verfahren: werden in der VL bekannt gegeben.

Links
Unterrichtsprachen: Deutsch, Englisch
Dauer in Semestern: 1 Semester
Angebotsrhythmus Modul: SoSe oder WiSe

Angebotskapazität: unbegrenzt
Modullevel / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method: 2 Lecture: each 2hrs/week

Vorkenntnisse / Previous knowledge
Prüfung: 2 Written examinations: Between 45 and 90 minutes or Oral examinations: Between 10 and 20 minutes
Prüfungszahlen: 2 Written examinations: Between 45 and 90 minutes or Oral examinations: Between 10 and 20 minutes

Lehrveranstaltungsform: Vorlesung

SWS: 4

Angebotsrhythmus: SoSe oder WiSe

Workload: Präsenzzeit 56 h
phy964 - Advanced Computing

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy964</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master Engineering Physics (Master) > Schwerpunkt: Acoustics</td>
</tr>
<tr>
<td></td>
<td>Master Engineering Physics (Master) > Schwerpunkt: Biomedical Physics</td>
</tr>
<tr>
<td></td>
<td>Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kühn, Martin (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Doclo, Simon (Modulverantwortung)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Basic knowledge in computing, knowledge in undergraduate mathematics and physics</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Learning of advanced programming concepts and their application in biomedical physics, acoustics, laser and optics, and renewable energies.</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>Advanced programming concepts for C, python and Matlab; Artificial Intelligence and Data Science; Visual Computing; Software Engineering</td>
</tr>
</tbody>
</table>

Literaturempfehlungen

Links

Unterrichtsprachen Deutsch, Englisch

Dauer in Semestern 1 Semester

Angebotsrhythmus Modul

<table>
<thead>
<tr>
<th>Lehr-/Lernform / Teaching/Learning method</th>
<th>Wahlpflicht / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture: 2hrs/week; Exersise: 2hrs/week</td>
<td></td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td></td>
<td>written exam: max 180 minutes or oral exam: max 30 minutes</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>SWS</td>
<td>Angebotsrhythmus</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>4</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Übung</td>
<td>4</td>
<td>SoSe oder WiSe</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 112 h
phy954 - Imaging and Data Analysis

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Imaging and Data Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy954</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>{ Attendance: 56 hrs, Self study: 124 hrs }</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering Physics (Master) > Schwerpunkt: Biomedical Physics</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>• Poppe, Björn (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>• Poppe, Björn (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Knowledge from the courses Astrophysics I and II</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>The students learn to use modern astronomical instruments for observation (photographic) and spectroscopy, as well as to evaluate the obtained measurement data. They will gain insights into different areas of astrophysics and data processing and will be introduced to cutting-edge research areas. In addition, students learn how a consistent description of astrophysical processes emerges from observational data, theory and modeling.</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>Preparation of observations in a seminar including selection of relevant objects, determination of observation techniques (e.g. high resolution photography or spectroscopy), execution of observations at C2PU ("Centre Pedagogique Planete et Univers, South of France") and evaluation of observations.</td>
</tr>
<tr>
<td></td>
<td>P. Lena, D. Ruoan Observational Astrophysics, Springer 2012</td>
</tr>
<tr>
<td></td>
<td>BDWarner, Photometry and Lightcurve Analysis, Springer 2006</td>
</tr>
<tr>
<td>Links</td>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Unterrichtsprachen</td>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modulart / module level</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Lecture: 4 hrs/week</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Knowledge from the courses Astrophysics I and II</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>Written examination: Between 90 and 180 minutes or Oral examination: Between 20 and 45 minutes</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
Schwerpunkt: Laser and Optics

phy608 - Medical Optics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Medical Optics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy608</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (56 hours, Self study: 124 hours)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Laser and Optics

Zuständige Personen
- Neu, Walter (Modulverantwortung)
- Neu, Walter (Prüfungsberechtigt)

Verwendbarkeit des Moduls
- Phy608 - Medical Optics

Teilnahmevoraussetzungen
- Medizin for Scientist, Optics, Laser Physics

Kompetenzziele
- To provide advanced knowledge in the eld of medical optics and optical technologies in medicine as well as their theoretical background and experimental methods. Students will be scientifically competent positioned to critically follow current developments and initiate the design (development and design) of innovative optical applications in medicine.

Modulinhalte
- Physiology and psychophysics of vision, theory of imaging systems, ophthalmic optics, lighting technology, photometry, vision in the workplace and in trac, optical measurements on patients, diagnostic and therapeutic laser applications, radiation protection (infrared, UV, laser), microscopy, di raction and subdi raction limited methods, optical spectroscopy, uorescence methods.

Literaturempfehlungen
- Media: Lecture script, transparencies, blackboard, electronic media, presentation, lecture practical demonstrations
- J. Kiefer: Biological Radiation Effects, Springer Verlag 1990

Links
- Unterrichtssprache: Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: jährlich
- Aufnahmekapazität Modul: unbegrenzt
- Modullevel / module level: MM (Mastermodul / Master module)
- Modulart / typ of module: Wahlpflicht / Elective
- Lehr-/Lernform / Teaching/Learning method: Lecture / 4 hrs/week
- Vorkenntnisse / Previous knowledge: Medizin for Scientist, Optics, Laser Physics

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>max. 2hr written examination or max 1h oral examination or experimental work and laboratory reports or presentation or homework</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
<td>SWS</td>
<td>Angebotsrhythmus</td>
<td>Workload Präsenz</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>-----</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
phy632 - Spectrophysics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Spectrophysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy632</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Attendance: 28 hrs, Self study: 62 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Laser and Optics

Zuständige Personen
- Neu, Walter (Modulverantwortung)
- Koch, Sandra (Prüfungsberechtigt)
- Neu, Walter (Prüfungsberechtigt)
- Schellenberg, Markus (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- Atomic and Molecular Physics, Optical systems

Kompetenzziele
Students gain in depth theoretical as experimental knowledge on advanced optical spectroscopy applied to atomic and molecular systems. They are qualified in setting up innovative methods and measurement devices based on their expert competence in up-to-date research and development areas. The module prepares the students to work in the field of optical science and engineering in general, and yields the base for all further specialisations within the field of optics and laser technology.

Modulinhalte
- Atomic structure and atomic spectra, molecular structure and molecular spectra, emission and absorption, width and shape of spectral lines, radiative transfer and transition probabilities, elementary plasma spectroscopy, experimental tools in spectroscopy, dispersive and interferometric spectrometers, light sources and detectors, laser spectroscopy, nonlinear spectroscopy, molecular spectroscopy, time resolved spectroscopy, coherent spectroscopy

Literaturrempfehlungen
- Saleh and Teich, Fundamentals of Photonics (Wiley); Recent publications on specific topic

Links
- Deutsch, Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: jährlich
- Aufnahmekapazität Modul: unbegrenzt
- Modultyp / module level: MM (Mastermodul / Master module)
- Lehrveranstaltungsform: Vorlesung
- SWS: 4
- Angebotsrhythmus: SoSe oder WiSe
<table>
<thead>
<tr>
<th>Workload Präsenzzzeit</th>
<th>56 h</th>
</tr>
</thead>
</table>

phy634 - Biophotonics and Spectroscopy

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Biophotonics and Spectroscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy634</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering Physics (Master) > Schwerpunkt: Laser and Optics</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>• Neu, Walter (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>• Koch, Sandra (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Neu, Walter (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>• Schellenberg, Markus (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Basics in optics and laser physics, in particular, fundamentals of optics and photonics; atomic and molecular physics; spectrophysics</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>The students thoroughly deepen their knowledge on concepts of spectroscopy as well as on biophotonics. This module provides the theoretical background for analytical applications involving UV-Visible spectroscopy, atomic absorption, emission and laser-based spectroscopies. The students develop a sound understanding of the principles and instrumentation of atomic and molecular spectroscopy with in-depth applications to a wide range of environments e.g. analytical, biological, industrial, pharmaceutical, environmental. The students develop problem solving skills with reasoning based on theory underlying spectroscopy and photonics in biosciences and medicine thus providing a background to practical laboratory training.</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>Application of atomic and molecular spectroscopy at a wide range of fields, e.g. industrial, biosciences, microscopy, pharmaceutical, environmental, trace analysis: 1. Explain the mechanisms of and fundamental distinctions between molecular and atomic spectroscopy 2. Recognise the issues regarding sensitivity and selectivity of molecular and atomic spectroscopy 3. Evaluate the limitations and analytical issues associated with each method 4. Demonstrate analytical application of these atomic and molecular absorption and emission techniques 5. Discriminate the analytical challenges that can be appropriately solved by these spectroscopic techniques</td>
</tr>
<tr>
<td>Links</td>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Unterrichtsprachen</td>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>Sommer- oder Wintersemester</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Lecture: 2 hrs/week, Seminar: 2hrs/week</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
</tr>
</tbody>
</table>
phy637 - Laser Design and Beam Guiding

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Laser Design and Beam Guiding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy637</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > Schwerpunkt: Laser and Optics</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Neu, Walter (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Neu, Walter (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Huke, Philipp (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>basic knowledge on optics and laser physics</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Students acquire advanced knowledge for the design of lasers and laser systems, they also understand the propagation of laser beams and their forming.</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>design of different laser types; physics of active and passive laser components; beams and resonators; lab work</td>
</tr>
</tbody>
</table>

Links

Unterrichtsprachen Deutsch, Englisch

Dauer in Semestern 1 Semester

Angebotsrhythmus Modul Sommersemester

Aufnahmekapazität Modul unbegrenzt

Modullevel / module level MM (Mastermodul / Master module)

Modulart / typ of module Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method Lecture: 4 hrs/week, practical applications included in lecture

Vorkenntnisse / Previous knowledge

Prüfung

Prüfungszeiten 2 hr written examination or 30 min oral examination or presentation (20 minutes) or homework (20 pages)

Prüfungsform Vorlesung

Lehrveranstaltungsform Vorlesung

SWS 4

Angebotsrhythmus SoSe oder WiSe

Workload Präsenzzeit 56 h
phy638 - Laser Material Processing

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Laser Material Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy638</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > Schwerpunkt: Laser and Optics</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Neu, Walter (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Schüning, Thomas (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Neu, Walter (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Schüning, Thomas (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Knowledge in physics, optics, production engineering</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Fundamental knowledge of the characteristics of the laser beam, Knowledge of laser sources for industrial applications, knowledge of procedures of the material processing with laser beams Knowledge of the physical-technical procedures of the individual manufacturing processes with laser beams; Ability for the estimation of favorable working parameters; The participants should be able to understand the procedures of the material processing with laser beams and evaluate the tasks of manufacturing.</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>Overview of the interactions between laser beams and materials in laser material processing. Allocation of the processes in relation to production technology with the laser beam as a tool. Intensive treatment of the manufacturing processes with laser beams in terms of quality, speed and costs. The processes of cutting, joining, surface treatment and generative manufacturing are dealt with intensively using examples from industrial production. Within the framework of lecture-accompanied project work, the application technologies are processed, optimized and evaluated by the students in the laser laboratory.</td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td>Script</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Unterrichtsprachen</td>
<td></td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Lecture: 4 hrs/week</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Knowledge in physics, optics, production engineering</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszahlen</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
</tr>
<tr>
<td>Gesammodul</td>
<td></td>
</tr>
<tr>
<td>Internship report between 15 and 30 pages or formal presentation between 10 and 20 pages report and between 15 and 30 minutes presentation or oral examination between 20 and 45 minutes</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
phy682 - Advanced Engineering Topics in Laser and Optics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Engineering Topics in Laser and Optics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy682</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Overall workload of 180 h)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Laser and Optics

Zuständige Personen
- Neu, Walter (Modulverantwortung)
- Neu, Walter (Prüfungsberechtigt)
- Teubner, Ulrich (Prüfungsberechtigt)
- Huke, Philipp (Prüfungsberechtigt)

Kompetenzziele
The aim of this module is, to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific engineering skills.

Modulinhalte
- Photonics, Optics, Metrology

Literaturempfehlungen
Related to selected course/s

Links

Unterrichtsprachen
- Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
- Sommer- oder Wintersemester
- unbegrenzt

Hinweise
This module offers special as well as advanced engineering courses in Laser and Optics. The list of eligible courses will be updated each academic year. Please refer to the courses listed for this module in Stud.IP.

Modullevel / module level
- MM (Mastermodul / Master module)

Modulart / typ of module
- Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method
Related to selected course/s

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsf orm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Related to selected course/s</td>
</tr>
</tbody>
</table>

Gesamtmodul
Related to selected course/s

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>4</td>
<td>SoSe oder WiSe</td>
<td>56</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Praktikum</td>
<td></td>
<td>1</td>
<td>SoSe oder WiSe</td>
<td>14</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
126 h
phy683 - Advanced Topics in Laser and Optics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Topics in Laser and Optics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy683</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(180 h)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Laser and Optics

Zuständige Personen
- Neu, Walter (Modulverantwortung)
- Englert, Lars (Prüfungsberechtigt)
- Lienau, Christoph (Prüfungsberechtigt)
- Neu, Walter (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- Related to selected course/s

Kompetenzziele
The aim of this module is to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific engineering skills.

Modulinhalt
- Photonics, Optics, Metrology

Literaturempfehlungen
- Related to selected course/s

Links
- Unterrichtsprachen
 Englisch, Deutsch
- Dauer in Semestern
 1 Semester
- Angebotsrhythmus Modul
 Sommer- oder Wintersemester
- Aufnahmekapazität Modul
 unbegrenzt
- Modullevel / module level
 MM (Mastermodul / Master module)
- Modultyp / typ of module
 Wahlpflicht / Elective
- Lehr-/Lernform / Teaching/Learning method
 Related to selected course/s

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Max. 180 min. Klausur oder 30 min. mündliche Prüfung</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform
- Vorlesung

<table>
<thead>
<tr>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Angebotsrhythmus
- SoSe oder WiSe

Workload Präsenzzeit
- 56 h
phy965 - Engineering Scientific Instrumentation

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Engineering Scientific Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy965</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering Physics (Master) > Schwerpunkt: Laser and Optics</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>• Huke, Philipp (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>• Huke, Philipp (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>• Basic tools in physics and engineering</td>
</tr>
<tr>
<td></td>
<td>• Knowledge about current research areas</td>
</tr>
<tr>
<td></td>
<td>• Basics in optics and spectroscopy</td>
</tr>
<tr>
<td></td>
<td>• Advanced Metrology</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Understanding the evolution of a scientific experiment from scratch to conduction. Understanding the physics / capabilities of an instrument. Learning tools for the development of a scientific instrument with an engineering and science team.</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>Relevant scientific questions often require large scientific facilities like CERN or the ELT to conduct their experiment. The evolution of a scientific project from a question to a real experiment is a complex process between large teams of engineers and scientists. In this course students will learn: a. How to derive specific cations from a scientific question b. Translate these specifications to engineering c. Develop pilot simulations of the experiment d. Develop the physical design of an instrument including d.1. Trade-off studies d.2. Management tools for the communication d.3. Engineering tools for the instrument e. Create a model of the instrument f. Conduct the experiment in the virtual environment Example project(s) from astrophysics</td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td>White/Blue books of Instruments</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Unterrichtsprachen</td>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td></td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modular / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Lecture: 3 hrs/week first, 2 hrs/week second half of semester; Seminar: 1 hrs/week first 2 hrs/week second half of the semester</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Internship report: Between 15 and 30 pages or Written examination: 120 minutes</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
<td>SWS</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
<td></td>
</tr>
</tbody>
</table>
phy966 - Intense Light Physics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Intense Light Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy966</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
</tbody>
</table>
| Workload | 180 h
 | (Attendance: 56 hrs, Self study: 124 hrs) |
| Verwendbarkeit des Moduls | Master Engineering Physics (Master) > Schwerpunkt: Laser and Optics |
| Zuständige Personen | Teubner, Ulrich (Modulverantwortung)
 | Teubner, Ulrich (Prüfungsberechtigt) |
| Teilnahmevoraussetzungen | Basics in optics and laser physics, in particular, Fundamentals of Optics and Photonics; Atomic Physics, Electrodynamics |
| Kompetenzziele | The students acquire broad experimental knowledge of the application of intense light from femtosecond and high power laser systems. They should be acquainted with the interaction of intense light with matter in general and with respect to important scientific and technical applications (in industry) such as laser material processing, high field physics (i.e. laser matter interaction at high intensity), laser generated particle and radiation sources of ultrashort duration and/or ultrashort wavelength etc |
| Modulinhalte | Femtosecond and high power laser systems and its application, absorption of intense laser light, basics of laser matter interaction at high intensity, diagnostics, applications in micro machining, laser generated ultrashort radiation such as high-order laser harmonics and femtosecond K-a-sources and keV and MeV electron and ion sources and their application to micro fabrication micro and nano analysis.; atto physics, strong field physics |
| Literaturempfehlungen | E.Gamaly; Femtosecond Laser-Matter Interactions(Pan Stanford); P.Gibbon: Short pulse laser interactions with matter (Imperial College Press); D.Bäuerle: Laser Processing and Chemistry (Springer); Further literature according indication during course |

Links

- **Unterrichtssprache**: Englisch
- **Dauer in Semestern**: 1 Semester
- **Angebotsrhythmus Modul**: jährlich
- **Aufnahmekapazität Modul**: unbegrenzt
- **Modullevel / module level**: MM (Mastermodul / Master module)
- **Modulart / typ of module**: Wahlpflicht / Elective
- **Lehr-/Lernform / Teaching/Learning method**: Lecture: 4 hrs/week, practical applications included in lecture
- **Vorkenntnisse / Previous knowledge**: Basics in optics and laser physics, in particular, Fundamentals of Optics and Photonics; Atomic Physics, Electrodynamics

Prüfung

<table>
<thead>
<tr>
<th>Gesamtmodul</th>
<th>Prüfungszeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>experimental work and laboratory reports or max. 2hr written examination or max 1h oral</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

- **Vorlesung**

SWS

- 2

Angebotsrhythmus

- SoSe oder WiSe

Workload Präsenzzeit

- 28 h
phy600 - Photonics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Photonics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy600</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > Schwerpunkt: Laser and Optics</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Teubner, Ulrich (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Teubner, Ulrich (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Silies, Martin (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Basic knowledge on optics, electrodynamics and atomic physics</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Starting from basics, the module yields advanced knowledge of the physics of lasers, laser beams, different laser types, modulators and of interaction of optical radiation with matter. The second part of the course is related to imaging sensors and sensor systems which is of major importance everywhere in science and engineering. This course provides substantial background of the relevant physics and engineering methods. In the extended laboratory part, using modern imaging systems such as scientific and professional cameras, students get experience.</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>Fundamentals of lasers (optical gain, optical resonator, laser beams), laser types, laser safety; modern image sensors (CCD,CMOS, scientific sensors such as backside illuminated ones, XUV-detectors, MCP, etc.) are treated in detail, dynamic range and noise, optical imaging systems, basics of image processing; The excursion to the fair "LASER World of PHOTONICS" in Munich is part of this course.</td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Reider, Photonics, 2016, Springer Verlag; B. Struve, Einführung in die Lasertechnik, 2009, VDE Verlag;</td>
</tr>
<tr>
<td></td>
<td>Original literature according indication during course</td>
</tr>
</tbody>
</table>

Links

<table>
<thead>
<tr>
<th>Unterrichtsprachen</th>
<th>Deutsch, Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Lecture: 4 hrs/week , practical applications included in lecture</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Basic knowledge on optics, electrodynamics and atomic physics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesammodul</td>
<td>2 hr written examination or 30 min oral examination or experimental work or homework or presentation</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Optoelectronics</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Modulkürzel</td>
<td>phy624</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering Physics (Master) > Schwerpunkt: Laser and Optics</td>
<td></td>
</tr>
</tbody>
</table>

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache

Dauer in Semestern

Angebotsrhythmus Modul

Aufnahmekapazität Modul

Modullevel / module level

Modulart / typ of module

Lehrveranstaltungsform

Vorlesung

Übung

Präsenzzeit Modul insgesamt

<table>
<thead>
<tr>
<th>Modullevel / module level</th>
<th>SPM (Schwerpunktmult / Main emphasis)</th>
<th>Wahlpflicht / Elective</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>SoSe oder WiSe</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>SoSe oder WiSe</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Präsenzzeit Modul insgesamt</th>
<th>0 h</th>
</tr>
</thead>
</table>
Schwerpunkt: Renewable Energies

inf511 - Smart Grid Management

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Smart Grid Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>inf511</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies
- Master Informatik (Master) > Angewandte Informatik
- Master Sustainable Renewable Energy Technologies (Master) > Mastermodule
- Master Umweltmodellierung (Master) > Mastermodule
- Master Wirtschaftsinformatik (Master) > Akzentsetzungsmodule der Informatik

Zuständige Personen
- Lehnhoff, Sebastian (Modulverantwortung)
- Lehrenden, Die im Modul (Prüfungsberechtigt)

Teilnahmevoraussetzungen

Kompetenzziele

Fachkompetenzen
Die Studierenden
- benennen und erkennen die bestehenden Strukturen und technischen Grundlagen von Energiesystemen zur Erzeugung, Übertragung und Verteilung elektrischer Energie und deren Zusammenspiel und Abhängigkeiten untereinander
- benennen notwendigen informations- und leittechnischen Komponenten, Verfahren und Prozesse zur Führung und zum Betrieb elektrischer Energiesysteme
- bewerten An- und Herausforderungen die sich durch den Ausbau und die Integration unvorhersehbar fluktuierender dezentraler Erzeuger in das bestehende System ergeben
- schätzen den Einfluss von verteilten Regelkonzepten und Algorithmen für dezentrale Erzeuger und Verbraucher in sogenannten Smart Grids auf den Betrieb elektrischer Energiesysteme ein

Methodenkompetenzen
Die Studierenden
- analysieren Anforderungen an Betriebssicherheit, Zuverlässigkeit, Echtzeitfähigkeit und Flexibilität in sogenannten Smart Grids auf den Betrieb elektrischen Energiesystemen
- verwenden weiterführende mathematische Methoden der Netzberechnung

Sozialkompetenzen
Die Studierenden
- erarbeiten in Kleingruppen Lösungen zu gegebenen Problemen
- diskutieren die eigenen Lösungen mit anderen

Selbstkompetenzen
Die Studierenden
• reflektieren den eigenen Umgang mit der begrenzten Ressource Energie

Modulinhalte

In dieser Veranstaltung sollen informationstechnische, energiewirtschaftliche sowie technische Grundbegriffe und Verfahren anhand konkreter Smart Grid-Ansätze herausgearbeitet und analysiert werden. Die grundlegenden Berechnungsverfahren für ein intelligentes Netzmanagement werden vorgestellt. Dieses Modul behandelt die technischen und wirtschaftlichen Rahmenbedingungen für einen zulässigen elektrischen Netzbetrieb sowie die mathematischen Modellierungsmethoden und Berechnungsverfahren zur Analyse von Betriebszuständen in elektrischen Energienetzen (im stationären Zustand). Im Einzelnen sind dies:

- Organisation des europäischen Energiemarktes (Regulatorischer Rahmen, Verantwortlichkeiten im liberalisierten elektrischen Energiesystem)
- Aufbau und Betrieb elektrischer Energieversorgungsnetze (Netztopologien, Versorgungsaufgabe, Netznutzungsentgelte, Versorgungsqualität/Systemdienstleistungen, Störfälle und Schutzsysteme)
- Intelligentes Netzmanagement (Smart Grids), Aggregationsformen, Ansätze des maschinellen Lernens)

Literaturempfehlungen

- Lehnhoff, S.: Dezentrales vernetztes Energemanagement, 2010

Links

<table>
<thead>
<tr>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td></td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>1V + 1Ü</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>keine</td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td></td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>Ende des Semesters, Wiederholung O-Woche des kommenden Semesters</td>
</tr>
<tr>
<td>Mündliche Prüfung oder Klausur.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3</td>
<td>SoSe</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>1</td>
<td>SoSe</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
phy609 - Photovoltaic Physics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Photovoltaic Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy609</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies
- Master Sustainable Renewable Energy Technologies (Master) > Mastermodule

Zuständige Personen
- Kühn, Martin (Modulverantwortung)
- Gülay, Levent (Prüfungsberechtigt)
- Knipper, Martin (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- Solid-state Physics, semi-conductor Physics, Module Renewable Energy Technologies I

Kompetenzziele
- describe schematically the events around the pn-junction under bias in the dark and under illumination, calculate the width of the space charge region, use solar cell data sheets in their professional career, discuss the concepts of solar cell materials, design and optimization, choose a PV technology for a given project

Modulinhalte
- This specialization module covers the physics of photovoltaics. The behaviour of solar cells is discussed from a fundamental physical point of view to explain the differences in performance and limits of various photovoltaic materials. Students learn how solar cells function, are designed and optimized, Optical and electronical properties of semiconductors, light absorption, Charge carrier generation/recombination/life time, Charge carrier transport across the pn-junction in equilibrium and under light and voltage bias, Transport equations, Current-voltage characteristics, efficiency, Quantum efficiency, Design concepts to optimize the efficiency, Overview of the most important PV technologies

Literaturrempfehlungen
- lecture notes for the respective courses

Links
- Unterrichtssprache: Englisch
- Dauer in Semestern: 1 Semester
- Angebotserhymus Modul: Sommersemester
- Aufnahmekapazität Modul: unbegrenzt
- Modulevel / module level: MM (Mastermodul / Master module)
- Modulart / typ of module: Wahlpflicht / Elective
- Lehr-/Lernform / Teaching/Learning method: Vorlesung: 4 SWS, Übung: 2 SWS

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td></td>
<td>written exam between 90 and 180 minutes or presentation between 20 and 45 minutes or oral exam between 20 and 45 minutes or homework between 15 and 30 pages or internshipreport between 15 and 30 pages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
- 56 h
phy616 - Computational Fluid Dynamics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Computational Fluid Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy616</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > European Wind Energy Master
- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies
- Master Sustainable Renewable Energy Technologies (Master) > Mastermodule
- Master Umweltmodellierung (Master) > Mastermodule

Zuständige Personen
- Lukassen, Laura (Modulverantwortung)
- Avila Canellas, Kerstin (Prüfungsberechtigt)
- Lukassen, Laura (Prüfungsberechtigt)
- Peinke, Joachim (Prüfungsberechtigt)
- Stoevesandt, Bernhard (Prüfungsberechtigt)

Teilnahmevereinbarungen
Fluid Dynamics I

Kompetenzziele
Deeper understanding of the fundamental equations of fluid dynamics. Overview of numerical methods for the solution of the fundamental equations of fluid dynamics. Confrontation with complex problems in fluid dynamics. To become acquainted with different, widely used CFD models that are used to study complex problems in fluid dynamics. Ability to apply these CFD models to certain defined problems and to critically evaluate the results of numerical models.

Modulinhalte

CFD I:
The Navier-Stokes equations, introduction to numerical methods, finite-differences, finite-volume methods, linear equation systems, turbulent flows, incompressible flows, compressible flows, efficiency and accuracy.

CFD II:
RANS, URANS, LES, DNS, filtering / averaging of Navier-Stokes equations, Introduction to different CFD models, Application of these CFD models to defined problems from rotor aerodynamics and the atmospheric boundary layer.

Literaturempfehlungen
J. Fröhlich, Large Eddy Simulationen turbulenter Strömungen, Teubner, Wiesbaden, 2006 (in German)

Links

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Pflicht / Mandatory

Lehr-/Lernform / Teaching/Learning method
Lecture: 2hrs/week, Excercises: 2hrs/week

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsf orm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>-Max. 180 min. Klausur oder 30 min. mündliche Prüfung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Written examination: Between 90 and 180 minutes</td>
<td></td>
</tr>
</tbody>
</table>

57 / 138
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>or Oral examination: Between 20 and 45 minutes or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 Term paper: Between 15 and 30 pages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>VA-Auswahl (Vorlesungen oder Praktikum oder Seminar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
phy641 - Energy Resources & Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Energy Resources & Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy641</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(180 h (Präsenzzeit 56h, Selbststudium: 124h))</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies
- Master European Master in Renewable Energy (Master) > Mastermodule
- Master Sustainability Economics and Management (Master) > Ergänzungsmodul
- Master Sustainable Renewable Energy Technologies (Master) > Mastermodule
- Master Umweltmodellierung (Master) > Mastermodule

Zuständige Personen
- Agert, Carsten (Modulverantwortung)
- Knipper, Martin (Modulverantwortung)
- Knipper, Martin (Prüfungsberechtigt)
- Torio, Herena (Prüfungsberechtigt)
- Schmidt, Thomas (Prüfungsberechtigt)

Teilnahmevoraussetzungen

Kompetenzziele

After successful completion of the module students should be able to:
- characterize the global energy system and analyze the structure and constraints of today’s energy system,
- explain the availability and connection between solar and wind energy,
- identify the problems and challenges of energy supply due to fluctuating energy resources with varying and seasonal load profiles,
- relate the solar irradiance conversion process as well as the atmospheric radiation balance of the earth to Wind Energy Meteorology.

Modulinhalte

This module will give an overview on the global energy system and the challenges of energy supply due to fluctuating energy resources with varying and seasonal load profiles.

Energy Meteorology (Lecture - 90 h workload)

Section I: Solar Irradiance
- Radiation laws,
- Solar geometry,
- Interaction of solar irradiance with the atmosphere,
- Radiation climatology,
- Solar radiation model,
- Statistical properties of solar irradiance,
- Measuring devices to ascertain solar radiation balance,
- Satellite-supported data acquisition to assess solar irradiance,

Section II: Wind Flow
- Origin and potential of atmospheric energy movements, Heat balance of the atmosphere,
- Physical laws of atmospheric flow,
- Wind circulation in the atmosphere, local winds,
- Wind flow in atmospheric layers (vertical structure, Ekman Layer),
- Assessment of wind potential (European Wind Atlas: model, concept,
- Wind Measurements,

Energy Systems (Lecture - 90 h workload)
- Definitions, separation electrical - thermal energy use,
- Resources and reserves,
- Energy system analysis: Efficiencies at various levels of the energy chain; Exergy analysis,
- Energy scenarios,
- Climate change,
- Advanced (power plant) technologies for conventional fuels,
- Electric power systems with large shares of renewables

Literatureempfehlungen

Energy Meteorology:
- IEA Word Energy Outlook (http://wordenergyoutlook.org/)

Energy Systems:
- Boyle, G. et al. (Eds.): Energy Systems and Sustainability (Oxford University Press, 2003)
- EIA: International Energy Outlook 2016 (www.eia.doe.gov/forecasts/ieo/)

Links

Unterrichtssprache: Englisch
Dauer in Semestern: 1 Semester
Angebotsrhythmus Modul: jährlich
Aufnahmekapazität Modul: unbegrenzt
Modullevel / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Pflicht / Mandatory
Lehr-/Lernform / Teaching/Learning method: Lecture, Exercises

Vorkenntnisse / Previous knowledge

Prüfung: Prüfungszeiten: Prüfungsform
Gesamtmodul: 2 Written Exams (max 90 min each)
At the end of the lecture period

Lehrveranstaltungsform: Vorlesung
SWS: 4
Angebotsrhythmus: SoSe oder WiSe
| Workload Präsenzzeit | 56 h |
phy644 - Wind Energy Physics, Data & Analysis

<table>
<thead>
<tr>
<th>Modulbezeichnung (Module designation)</th>
<th>Wind Energy Physics, Data & Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel (Module code)</td>
<td>phy644</td>
</tr>
<tr>
<td>Kreditpunkte (Credit points)</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload (Workload)</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(attendance: 2*28 hrs, self-study: 124 hrs)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls (Utilization of the module)</td>
<td>Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies</td>
</tr>
<tr>
<td>Zuständige Personen (Responsibility persons)</td>
<td>Kühn, Martin (Moduleverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Avila Canellas, Kerstin (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Kühn, Martin (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Peinke, Joachim (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Steinfeld, Gerald (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Schmidt, Andreas Hermann (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Torio, Herena (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen (Requirements for participation)</td>
<td>The module starts in the winter term; Wind Energy Physics has to be taken before participating in Wind Physics Measurement Project</td>
</tr>
<tr>
<td>Kompetenzziele (Competence objectives)</td>
<td>After successful completion of the module students should be able to: - Evaluate wind energy related measurements, - Interpret such measurements gained in the field of wind energy applications, - Critically evaluate measured data</td>
</tr>
<tr>
<td>Modulinhalte (Course contents)</td>
<td>The winter term lecture lecture teaches the basic knowledge in wind energy physics. Physical properties of fluids, wind characterization and anemometers, aerodynamic aspects of wind energy converter, dimensional analysis, (pi-theorem), and wind turbine performance, design of wind turbines, electrical systems. The sequentially following WPhyMPr addresses problems based on real wind data, which will be solved on at least four important aspects in wind physics. The course will comprise lectures and assignments as well as self-contained work in groups of 3 persons. The content consist of the following four main topics, following the chronological order of the work process: Data handling/measurements, measurement technology, handling of wind data, assessment of measurement artefacts in wind data, preparation of wind data for further processing); Energy Meteorology (geographical distribution of winds, wind regimes on different time and length scales, vertical wind profile, distribution of wind speed, differences between onshore and offshore conditions); Measure – Correlate – Predict (MCP) (averaging of wind data, bin-wise averaging of wind data, long term correlation and long term correction of wind data, sources of long term wind data); LIDAR (analyses and conversion of data from LIDAR measurements)</td>
</tr>
<tr>
<td></td>
<td>IEC 61400 12 1:2005 Power performance measurements of electricity producing wind turbines; guideline</td>
</tr>
<tr>
<td>Links (Links)</td>
<td>Unterrichtssprache (Teaching language)</td>
</tr>
<tr>
<td></td>
<td>Dauer in Semestern (Duration in semesters)</td>
</tr>
<tr>
<td></td>
<td>Angebotsrhythmus Modul (Offering rhythm of module)</td>
</tr>
<tr>
<td></td>
<td>Aufnahmekapazität Modul (Enrollment capacity of module)</td>
</tr>
<tr>
<td>Hinweise (Notes)</td>
<td>Modullevel / module level</td>
</tr>
<tr>
<td></td>
<td>Modulart / typ of module</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Seminar: 2 SWS, Seminar: 2 SWS</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>Portfolio</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
phy646 - Wind Physics Student's Lab

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Wind Physics Student's Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy646</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies

Zuständige Personen

- Schmidt, Andreas Hermann (Prüfungsberechtigt)
- Kühn, Martin (Modulverantwortung)

Teilnahmevoraussetzungen

- Basic computer knowledge; mechanics; mathematical methods for physics and engineering; basic knowledge of wind energy utilization; previous knowledge of metrology, basic knowledge of aerodynamics

Kompetenzziele

The "Wind Physics Student's Lab" aims to foster the learning process by own research activities of the students in wind physics and additionally to build up skills for scientific and experimental work and scientific writing. Therefore, this course is also intended as preparation for the master thesis. The course is organized as seminar with integrated work in the laboratory. The students will investigate an individual, self-formulated research question and will be guided by the supervisors through the research-based learning process. The work in groups and discussion of solutions aims to improve skills in team working. In order to introduce the students to current wind energy research, the course is offered in three versions. These versions represent the work of the three research groups at ForWind - University Oldenburg.

Modulinhalte

The seminar "Dynamics and control of grid-connected wind turbines" is related to the work of the research group Wind Energy Systems (WESys). It intends to give a deeper insight into two elds of wind engineering: One is the grid connection and interaction of wind turbines and the other is their operational control as special case in the eld of control engineering. The seminar uses an experimental system which allows to investigate control tasks and interaction mechanisms of the functional chain of wind eld, rotor, drive train, generator, transformer and electric grid. The seminar consists of three main phases:

1st phase: Preparational learning
- building up basic competences
- identification of the technical tasks
- introduction to current research
- introduction to the experiment
- investigating standard situations, physical effects and functional principles by means of the experimental system

2nd phase: Research-based learning
- defining own research questions
- defining an experimental strategy
- planning the experiment
- set-up, execution, data acquisition and decommissioning of the experiment

3rd phase: Evaluation and documentation
- evaluating the experiment
- documentation with a short report (paper)
- presentation.

The seminar "Wind turbine rotor in turbulent infl ow" is connected to the scientific work of the research group Turbulence, Wind Energy and Stochastics (TWIST). In this seminar, turbulent wind elds and their effects on wind turbines will be investigated. Students learn to measure wind flows in high resolutions and how turbulence can be described, investigated and evaluated for different purposes. The students gain a deep understanding of the phenomenon of turbulence. They perform own experiments in a wind tunnel with an active turbulence grid. They learn to establish their own research questions and are encouraged to develop own methods. The seminar consists of three main phases:

1st phase: Preparational learning
2nd phase: Research-based learning

- defining own research questions
- defining an experimental strategy
- planning the experiment
- set-up, execution, data acquisition and decommissioning of experiments

3rd phase: Evaluation and documentation

- evaluating the experiments

Literaturempfehlungen

German Language: CEwind eG / Alois Schaffarczyk, *Einführung in die Windenergieotechnik*, 1st Ed. 2012, Carl Hanser Verlag, Munich

Links

Unterrichtssprache

Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

Sommer- und Wintersemester

Aufnahmekapazität Modul

unbegrenzt

Hinweise

Each seminar offered within the module holds for 6 credit points. Thus, students have to register for only one of the offered seminars within the module.

Modulevel / module level

MM (Mastermodul / Master module)

Modulart / typ of module

Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Seminar with laboratory experiments for research oriented learning / Seminar mit Blockpraktikum zum forschungsbasierten Lernen: 4 hrs/week

Vorkenntnisse / Previous knowledge

Wind Energy Utilization (BA) or equivalent course, Design of Wind Energy Systems: in SAME SEMESTER or before

Prüfung / Prüfungsform

Portfolio

Gesamtmmodul / Lehrveranstaltungsform

Seminar

SWS

4

Angebotsrhythmus / SoSe oder WiSe

56 h
phy647 - Future Power Supply Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Future Power Supply Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy647</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies
- Master Sustainable Renewable Energy Technologies (Master) > Mastermodule
- Master Umweltmodellierung (Master) > Mastermodule

Zuständige Personen
- Agert, Carsten (Prüfungsberechtigt)
- Torio, Herena (Modulverantwortung)
- Agert, Carsten (Modulverantwortung)

Teilnahmevoraussetzungen
Knowledge from module RE technology I, Mathematics

Kompetenzziele
After successful completion of the module students should be able to
- explain the management, power balancing and the provision of ancillary services within future electricity grid configurations with high shares of fluctuating and distributed generation
- perform power system simulation with related software tools
- describe different grid-designs, including mini- and microgrids
- compare different markets for electricity (Futures’ Market, Day-Ahead-Market, Intraday-Market, Balancing Power Market, Self-Consumption) and assess the suitability of these concepts for promoting the implementation of higher shares of fluctuating distributed power generation within the electricity grid.
- explain the technical principles and resulting limiting factors of concepts and components required for power control within "Smart City", "Smart Grid", and "Smart Home" concepts

Modulinhalte
Future Power Supply Systems:
- Technology and characteristics of conventional power plants based e.g. on coal, gas, and nuclear,
- Fundamentals, structure, technologies and operation of (AC-) electricity grids (incl. balancing power, voltage management, etc.),
- Fluctuating distributed generation: Characteristics and solutions on the transmission and distribution grid levels, incl. storage, vehicle-to-grid-concepts, smart inverters, heat pumps / CHP, etc.
- Interactions between technology and economics: The different electricity markets (Futures Market, Day-Ahead-Market, Intraday-Market, Balancing Power Market, Self-Consumption) and their links to the physical world,
- "Smart City", "Smart Grid”, "Smart Home”,
- Mini- and Micro-Grids,
- Energy scenarios and modelling,
- Chemical energy carriers in the energy system: power-to-gas (e.g. methane) and power-to-liquids (e.g. methanol)

Literaturempfehlungen
Future Power Supply Systems:

Links
Unterrichtssprache: Englisch
Dauer in Semestern: 1 Semester
Angebotsrhythmus Modul: Sommersemester
Aufnahmekapazität Modul: unbegrenzt
<table>
<thead>
<tr>
<th>Modullevel / module level</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Lecture and Seminar: 4 hrs/week</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
phy648 - Wind Resources and their Applications

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Wind Resources and their Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy648</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Attendance: 72 hrs, Self study: 108 hrs)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies</td>
</tr>
<tr>
<td></td>
<td>Master Sustainable Renewable Energy Technologies (Master) > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master Umweltmodellierung (Master) > Mastermodule</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Kühn, Martin (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Steinfeld, Gerald (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Waldl, Hans-Peter (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Energy Meteorology</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>assess different aspects of wind energy farms by modelling, comparison, explanation of wind energy potential, wind energy farm’s output, power curves, wind energy project development, assess in detail influences of meteorological/climatological aspects on the performance of wind power systems, summarize physical processes governing atmospheric wind flows, value atmospheric boundary layer flow relevant for wind power conversion, argue methods for wind resource assessment and forecasting</td>
</tr>
</tbody>
</table>

Modulinhalte

Advanced Wind Energy Meteorology (Lecture – 90 h workload)
Atmospheric Boundary Layer (turbulence, vertical structure, special BL effects)
Atmospheric Flow Modelling: Linear models, RANS and LES models
Wind farm modelling
Offshore-Specific Conditions
Resource Assessment and Wind Power Forecasting
Wind Measurements and Statistics
Wind Energy Applications - from Wind Resource to Wind Farm Operations (Lecture – 90 h workload)
Evaluation of Wind Resources
Weibull Distribution
Wind velocity measurements to determine energy yield
Basics of Wind Atlas Analysis and Application Program (WAsP) Method, Partial models using WAsP
Measure-Correlate-Predict (MCP) Method of long term corrections of wind measurement data in correlation to long term reference data
Conditions for stable, neutral and instable atmospheric conditions
Wind yield from wind distribution and the power curve
Basics in appraising the yearly wind yield from a wind turbine.
Wake Effect and Wind Farm
Recovery of original wind fields in the downstream of wind turbines
Basics of Risø Models
Spacing and efficiency in wind farms
Positive and Negative Effects of Wind Farms
Wind Farm Business
Income from the energy yield from wind farms
Profit optimization by increase of energy production
Wind farm project development
Wind farm operation and
Surveillance of power production vs. wind climate, power curves, and turbine availability

Literatureempfehlungen

Advanced Wind Energy Meteorology
Burton, T., N. Jenkins, D. Sharpe and E. Bossanyi, 2011:

Links

Unterrichtssprache Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul jährlich
Aufnahmekapazität Modul unbegrenzt
Modullevel / module level MM (Mastermodul / Master module)
Modulart / typ of module Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method Vorlesung: 4 SWS
Vorkenntnisse / Previous knowledge Knowledge in Basics Wind Energy, Fluid Dynamics I, Matlab
Prüfung Prüfungszeiten Prüfungsform
Gesamtmodul 1 Written examination: 120 minutes or Oral examination: Between 30 and 45 minutes or Internship report: Between 15 and 20 pages in one lecture and regular active participation in the other lecture
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Vorlesung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
phy649 - Design of Wind Energy Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Design of Wind Energy Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy649</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Attendance: 56 hrs, Self study: 108 hrs)</td>
</tr>
</tbody>
</table>
| Verwendbarkeit des Moduls | • Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies
• Master Sustainable Renewable Energy Technologies (Master) > Mastermodule |
| Zuständige Personen | • Kühn, Martin (Modulverantwortung)
• Kühn, Martin (Prüfungsberechtigt)
• Schmidt, Andreas Hermann (Prüfungsberechtigt) |
| Teilnahmevoraussetzungen | Wind Energy Utilization (Bachelor) or Wind Energy (Master) |
| Kompetenzziele | The students attending the course will have the possibility to expand and sharpen of their knowledge about wind turbine design from the basic courses. The lectures include topics covering the whole spectrum from early design phase to the operation of a wind turbine. Students will learn in exercises how to calculate and evaluate design aspects of wind energy converters.
At the end of the lecture, they should be able to:
- estimate the site specific energy yield,
- calculate the aerodynamics of wind turbines using the blade element momentum theory,
- model wind fields to obtain specific design situations for wind turbines,
- estimate the influence of dynamics of a wind turbine, especially in the context of fatigue loads,
- transfer their knowledge to more complex topics such as simulation and measurements of dynamic loads,
- calculate the economic aspects of wind turbine |
| Modulinhalte | Introduction to industrial wind turbine design,
- rotor aerodynamics and Blade Element Momentum (BEM) theory,
- dynamic loading and system dynamics,
- wind field modelling for fatigue and extreme event loading,
- design loads and design aspects of onshore wind turbines,
- simulation and measurements of dynamic loads,
- design of offshore wind turbines,
- power quality and grid integration on wind turbines |
Garrad Hassan, Bladed, Wind Turbine Design Software, Theory Manual;
Selected papers from e.g. Wind Energy Journal, Wiley Interscience |
<p>| Links | Englisch |</p>
<table>
<thead>
<tr>
<th>Dauer in Semestern</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Lecture and seminar: 2 and 2 hrs/week</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Basics in Wind Energy Utilisation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Internship report: Between 15 and 30 pages</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Vorlesung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
</tbody>
</table>

| Workload Präsenzzzeit | 56 h |
phy687 - Advanced Engineering Topics in Renewable Energies

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Engineering Topics in Renewable Energies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy687</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Overall workload of 180 h)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies

Zuständige Personen
- Kühn, Martin (Modulverantwortung)
- Avila Canellas, Kerstin (Prüfungsberechtigt)
- Holtorf, Hans-Gerhard (Prüfungsberechtigt)
- Feudel, Ulrike (Prüfungsberechtigt)
- Kühn, Martin (Prüfungsberechtigt)
- Steinfeld, Gerald (Prüfungsberechtigt)
- Peirike, Joachim (Prüfungsberechtigt)
- Schmidt, Jonas (Prüfungsberechtigt)
- Stoevesandt, Bernhard (Prüfungsberechtigt)

Teilnahmeveranlassungen
Related to selected course/s

Kompetenzziele
The aim of this module is, to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific engineering skills in the field renewable energy technologies.

Modulinhalte
E.g. metrology, data logging, measurement methodology, construction, monitoring, control engineering, remote sensing.

Literaturempfehlungen
Related to selected course/s

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Hinweise
This module offers special as well as advanced courses in engineering science. The list of eligible courses will be updated each academic year. Please refer to the courses listed for this module in Stud.IP.

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Wahlplicht / Elective

Lehr-/Lernform / Teaching/Learning method
Related to selected course/s

Vorkenntnisse / Previous knowledge
Related to selected course/s

Prüfung
<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related to selected course/s</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform
Vorlesung (oder Seminar mit Praktikum)
(Hier ist ein Kommentar)

SWS
4

Angebotsrhythmus
SoSe oder WiSe

Workload Präsenzzeit
56 h
phy689 - Advanced Topics in Renewable Energies

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Topics in Renewable Energies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy689</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Overall workload of 180 h)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies

Zuständige Personen
- Kühn, Martin (Modulverantwortung)
- Avila Canellas, Kerstin (Prüfungsberechtigt)
- Feudel, Ulrike (Prüfungsberechtigt)
- Holtorf, Hans-Gerhard (Prüfungsberechtigt)
- Kühn, Martin (Prüfungsberechtigt)
- Peirke, Joachim (Prüfungsberechtigt)
- Wächter, Matthias (Prüfungsberechtigt)
- Stoevesandt, Bernhard (Prüfungsberechtigt)
- Steinfeld, Gerald (Prüfungsberechtigt)
- Wark, Michael (Prüfungsberechtigt)
- Steinberger-Wickens, Robert (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Related to selected course/s

Kompetenzziele
The aim of this module is, to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific engineering skills.

Modulinhalte
E.g. Fluid dynamics, metrology, data logging, measurement methodology, construction, monitoring, control engineering, remote sensing.

Literaturempfehlungen
Related to selected course/s

Unterrichtsprachen
Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method
Related to selected course/s

Vorkenntnisse / Previous knowledge
Related to selected course/s

Prüfung
Related to selected course/s

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>4</td>
<td>SoSe oder WiSe</td>
<td>56</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
84 h
phy984 - Advanced Energy Materials

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Energy Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy984</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies</td>
</tr>
</tbody>
</table>

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

<table>
<thead>
<tr>
<th>Unterrichtsprachen</th>
<th>Deutsch, Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Angebotsrhythmus Modul

<table>
<thead>
<tr>
<th>Aufnahmekapazität Modul</th>
<th>unbegrenzt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modullevel / module level</td>
<td>EB (Ergänzungsbereich / Complementary)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
</tbody>
</table>

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td></td>
<td>KL</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>SWS</th>
<th>Seminar</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Angebotsrhythmus</th>
<th>SoSe oder WiSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
phy987 - Control of Wind Turbines and Wind Farms

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Control of Wind Turbines and Wind Farms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy987</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Attendance: 72 hrs, Self study: 108 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies
- Master Sustainable Renewable Energy Technologies (Master) > Mastermodule

Zuständige Personen
- Kühn, Martin (Modulverantwortung)
- Kühn, Martin (Prüfungsberechtigt)
- Petrovic, Vlaho (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- Wind Energy Utilization (Bachelor) or Wind Energy Physics (Master) or Basics of Wind Energy (Master SURE) and Design of Wind Energy Systems (can be attended in parallel)

Kompetenzziele

After successful completion of the course, students
- will have understood the structure and the main components of the control system in a wind farm
- will have understood the main objectives for a wind farm control system and will be able to develop appropriate control algorithms for the said objectives
- will have understood relevant physical phenomena in a wind farm
- will be able to develop a control-oriented model of a wind turbine, and will have understood how to use it for the design and analysis of control algorithms
- will be able to independently apply different techniques from control engineering
- will have trained how to use methods from linear algebra and mathematical analysis for the design and analysis of control algorithms

Modulinhalte

The course covers the main techniques used in wind turbine and wind farm control. The course is structured in five sections:

Section I: Introduction to control in wind energy
- Introduction to the governing physics
- Control objectives in wind energy
- Overview of the control system

Section II: Control oriented modelling
- Modelling in time domain
- Modelling in frequency domain
- Time and frequency response

Section III: Standard wind turbine control
- Torque and pitch control
- Tuning of a PI controller
- Stability analysis
- Control of coupled systems
Section IV: Advanced wind turbine control
- Advanced control design approaches
- State space control
- Estimation techniques

Section V: Wind farm control
- Wake control strategies
- Active power control
- Power maximization

Literature recommendations

Links

Unterrichtssprache: Englisch
Dauer in Semestern: 1 Semester
Angebotsrhythmus Modul: jährlich
Aufnahmekapazität Modul: unbegrenzt
Modullevel / module level: EB (Ergänzungsbereich / Complementary)
Modulart / typ of module: Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method: Lectures and exercises: 4 hours per week and home assignments

Vorkenntnisse / Previous knowledge: Basic knowledge in linear algebra and mathematical analysis is required. Furthermore, a basic understanding of wind turbines and wind farms is required (e.g. Design of Wind Energy Systems). A good grasp of the Matlab/Simulink environment is required for exercises.

Prüfung

Gesamtmodul: Written examination: Between 90 and 180 minutes or Oral examination: Between 20 and 45 minutes or Internship report: Between 15 and 30 pages

Lehrveranstaltungsform

Vorlesung: 2 SWS, Angebotsrhythmus: SoSe oder WiSe, Präsenzzeit Modul insgesamt: 28
Übung: 2 SWS, Angebotsrhythmus: SoSe oder WiSe, Präsenzzeit Modul insgesamt: 28

Präsenzzzeit Modul insgesamt: 56 h
phy967 - Advanced Laboratories in Renewable Energies

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Laboratories in Renewable Energies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy967</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies

Zuständige Personen
- Kühn, Martin (Modulverantwortung)
- Avila Canellas, Kerstin (Prüfungsberechtigt)
- Hölling, Michael (Prüfungsberechtigt)
- Kühn, Martin (Prüfungsberechtigt)

Teilnehmervoraussetzungen

Kompetenzziele
Students acquire the competence to plan, execute, analyze, document and present complex and advanced physical experiments. They deepen their experience in working with state-of-the-art measurement and analyzing equipment within the field of Experimental Physics applied in the field of renewable Energy. The Adv. Labs are research oriented.

Modulinhalte
Each student performs 3 labs selected from a pool of labs addressing advanced measurement techniques and equipment represented in the Renewable Energy research work of various research groups at the Institute of Physics. The pool includes topics on material analysis, optical measurement techniques and state-of-the-art technologies.

Literaturrempfehlungen

Links
- Deutsch, Englisch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unbegrenzt

Modullevel / module level
- MM (Mastermodul / Master module)

Modulart / typ of module
- Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method
- Laboratory work 3 hours per week and seminar 1 hour per week

Vorkenntnisse / Previous knowledge

Prüfung

<table>
<thead>
<tr>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>labs with 3 protocols plus Homework tasks</td>
<td></td>
</tr>
</tbody>
</table>

Gesamtmodul

Lehrveranstaltungsform
- Praktikum

SWS

<table>
<thead>
<tr>
<th>Angebotsrhythmus</th>
<th>SoSe oder WiSe</th>
</tr>
</thead>
</table>

Workload Präsenzzzeit
- 0 h
Modulpre22 - Solar Energy

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Solar Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre022</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies
- Master Sustainability Economics and Management (Master) > Ergänzungsmodul
- Master Sustainable Renewable Energy Technologies (Master) > Mastermodule
- Master Umweltmodellierung (Master) > Mastermodule

Zuständige Personen
- Agent, Carsten (Modulverantwortung)
- Torio, Herena (Modulverantwortung)
- Torio, Herena (Prüfungsberechtigt)
- Knipper, Martin (Prüfungsberechtigt)
- Gülay, Levent (Prüfungsberechtigt)

Teilnahmevoraussetzungen

Kompetenzziele
After successful completion of the module students should be able to:

- understand, describe and compare major technologies for solar energy use: solar thermal and photovoltaic systems
- analyse various system components and their interconnections within a solar energy system.
- critically appraise and assess various technologies for solar energy use and components involved in such solar systems.
- size and evaluate the performance of solar systems as a function of their operation conditions, components and system layout
- critically evaluate non-technical impact and side effects when implementing renewable energy supply systems

Modulinhalte
This module gives an overview on renewable energy heat and photovoltaic technologies. Main focus hereby are the scientific principles of components and their technical description as well as first suitable system performance assessment methods.

Photovoltaics (Lecture: 90 h workload)

- Basic and most important properties of solar radiation related to photovoltaics
- PV cells basics: Fundamental physical processes in photovoltaic materials
- Characterization and basic modelling of solar cells
- Component Description: PV generator; Charge controller; Inverter; Balance of system components; System Description
- Grid Connected System
- Stand Alone System

Renewable Energy Heat (Seminar & Exercises: 90 h workload)

- Assessment of solar thermal ambient parameters: regional global, diffuse, reflected solar radiation on horizontal and on tilted plane,
Solar Energy PV

- Stuart R. Wenham, Martin A. Green, Muriel E. Watt & Richard Corkish (Eds.), 2007: Applied Photovoltaics, Earthscan Publications Ltd.

Renewable Energy Heat

Links

Unterrichtsprachen

Dauer in Semestern 1 Semester

Angebotsrhythmus Modul unbegrenzt

Aufnahmekapazität Modul MM (Mastermodul / Master module)

Modulart / typ of module Pflicht / Mandatory

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung 2 Examinations: Written Exam (1.5h, weight 50%) and Presentation of a Paper (15 min presentation, 5 pages report, weight 50%)

Gesamtdauer At the end of the lecture period; submission of the report at the end of the semester

Prüfungsform

Angebotsrhythmus Workload Präsenz

Links

Unterrichtsprachen

Dauer in Semestern 1 Semester

Angebotsrhythmus Modul unbegrenzt

Aufnahmekapazität Modul MM (Mastermodul / Master module)

Modulart / typ of module Pflicht / Mandatory

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung 2 Examinations: Written Exam (1.5h, weight 50%) and Presentation of a Paper (15 min presentation, 5 pages report, weight 50%)

Gesamtdauer At the end of the lecture period; submission of the report at the end of the semester

Prüfungsform

Angebotsrhythmus Workload Präsenz
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
pre113 - Photovoltaic Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Photovoltaic Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre113</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(180 Stunden)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies
- Master Sustainable Renewable Energy Technologies (Master) > Mastermodule

Zuständige Personen
- Agert, Carsten (Prüfungsberechtigt)
- Knipper, Martin (Prüfungsberechtigt)
- Knipper, Martin (Modulverantwortung)
- Agert, Carsten (Modulverantwortung)

Teilnahmevoraussetzungen

Kompetenzziele

After successful completion of the module students should be able to:

- categorize and feature different PV systems
 - PV on-grid,
 - PV off-grid / stand alone,
 - PV-pumping,
 - PV-hybrid
 by their setup and by standard quality indicators.

- explain the operation principles of the listed PV systems
- explain concepts behind PV system design
- design a photovoltaic system by Fermi Estimate
- design a photovoltaic system by a simulation software
- be aware of the limitation of both design methods
- discuss energy flow diagrams of PV systems
- describe in depth involved balance of system components e.g.
 - inverter,
 - charge controllers
 - cabling
 - generator stand
 - storage battery with a focus on housing (ventilation)

Modulinhalte

This specialization module covers more in-depth topics concerning photovoltaics systems.

The module consists of:
Photovoltaic Systems Lecture (90h workload)

Description and operation of PV System’s balance of system components

- inverter,
- charge controllers
- cabling
- generator stand
- storage battery with a focus on housing (ventilation)

Quality indicators for PV Systems and their regional differences

- PV on-grid,
- PV off-grid / stand alone,
- PV-pumping,
- PV-hybrid

Sizing of PV systems – back of the envelope approach as well as by a simulation software

Photovoltaic Systems Seminar (90h workload)

Within the seminar groups of up to five students select a PV system related research question, work on the solution and present their findings.

In addition, external PV experts are invited to present from their work experience.

An excursion to a PV power plant concludes the lessons learned in the field.

Literatureempfehlungen

- Konrad Mertens, Photovoltaik, Lehrbuch zu Grundlehren, Technologie und Praxis, 5. Aktualisierte Auflage
- GSES, Off-Grid PV Systems – Design and Installation, first edition international, April 2020
- Lecture notes for the respective courses
Links

<table>
<thead>
<tr>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td></td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>SPM (Schwerpunktmodul / Main emphasis)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Lecture, Exercise, Seminar & Excursion</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>It is desirable to have passed the lecture Photovoltaics 5.06.M121</td>
</tr>
</tbody>
</table>

Prüfung

| Gesamtmodul | Throughout the Semester |

Presentation: Between 20 and 45 minutes and regular active participation

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
pre14 - Solar Energy Meteorology

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Solar Energy Meteorology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre114</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies
- Master Sustainable Renewable Energy Technologies (Master) > Mastermodule

Zuständige Personen
- Torio, Herena (Modulverantwortung)
- Agert, Carsten (Modulverantwortung)
- Schmidt, Thomas (Prüfungsberechtigt)
- Lezaca Galeano, Jorge Enrique (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Successful participation in “Energy Meteorology 5.06.M117

Kompetenzziele

After successful completion of the module students should be able to

- explain the concepts of physical processes governing the surface solar irradiance available for solar energy applications
- model the solar radiation and show their expertise in application, adaptation and development of models
- discuss state-of-the-art-methods in satellite-based irradiance estimation and solar power forecasting
- discuss and present state of the art of the application of modern solar energy meteorology on a wide range (from residential systems to solar power plants, from solar thermal to photovoltaic systems)

Modulinhalte

This specialization module covers more in-depth topics concerning solar energy meteorology.

Based on students’ knowledge about the solar resource, solar thermal and photovoltaic technology, students deepen their knowledge on the resource for such systems.

Lecture

- Physics of radiative processes in the atmosphere
- Physical modelling of atmospheric radiative transfer (incl. computing tools)
- Solar irradiance modelling for solar energy applications
- Solar spectral irradiance: Theory for relevance for solar energy systems
- Satellite-based estimation of solar irradiance
- Solar irradiance (and solar power) forecasting
- Solar radiation measurements: Basics and setup of high quality measurement system

Seminar
• sources of solar data and discussion of their quality
• solar resource assessment:
 • basic models,
 • measurements,
 • satellite models
 • data sets
• validation and application of solar resource data sets
• forecasting of solar radiation: sky-camera forecasts, satellite-based forecasts, numerical weather predictions, statistical methods
 • forecast validation
 • selected applications
• irradiance and PV power forecasting
• application of solar resource data for yield assessment

Literatureempfehlungen
- https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V001
- https://nsrdb.nrel.gov/
- re.jrc.ec.europa.eu/pvgis/

Links
Unterrichtssprache
- Englisch
Dauer in Semestern
- 1 Semester
Angebotsrhythmus Modul
- Annual, summer semester
Aufnahmekapazität Modul
- unbegrenzt
Modullevel / module level
- MM (Mastermodul / Master module)
Modulart / typ of module
- Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method
- Lecture: 2hrs/week
 Seminar: 2hrs/week
Vorkenntnisse / Previous knowledge
- Physical principles of Black Body Radiation
 Basics of Solar Radiation

Prüfung
Prüfungszeiten
Prüfungsform
Gesamtmodul
- During the semester
 - 1 Written examination: 90 to 180 minutes and regular active participation
Lehrveranstaltungsform
Kommentar
SWS
Angebotsrhythmus
Workload Präsenz
Vorlesung
- 2
 - SoSe oder WiSe
 - 28
Seminar
- 2
 - SoSe oder WiSe
 - 28
Präsenzzeit Modul insgesamt
- 56 h
Modul: Advanced Computing (phy964)

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy964</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master Engineering Physics (Master) > Schwerpunkt: Acoustics</td>
</tr>
<tr>
<td></td>
<td>Master Engineering Physics (Master) > Schwerpunkt: Biomedical Physics</td>
</tr>
<tr>
<td></td>
<td>Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kühn, Martin (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Doelo, Simon (Modulverantwortung)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic knowledge in computing, knowledge in undergraduate mathematics and physics</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Learning of advanced programming concepts and their application in biomedical physics, acoustics, laser and optics, and renewable energies.</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced programming concepts for C, python and Matlab; Artificial Intelligence and Data Science; Visual Computing; Software Engineering</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Learning of advanced programming concepts and their application in biomedical physics, acoustics, laser and optics, and renewable energies.</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced programming concepts for C, python and Matlab; Artificial Intelligence and Data Science; Visual Computing; Software Engineering</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Learning of advanced programming concepts and their application in biomedical physics, acoustics, laser and optics, and renewable energies.</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced programming concepts for C, python and Matlab; Artificial Intelligence and Data Science; Visual Computing; Software Engineering</td>
</tr>
</tbody>
</table>

Literaturempfehlungen

- Deutsch, Englisch

Unterrichtsprachen

- Deutsch, Englisch

Dauer in Semestern

- 1 Semester

Angebotsrhythmus Modul

- MM (Mastermodul / Master module)

Modulart / typ of module

- Wahllicht / Elective

Lehr-/Lernform / Teaching/Learning method

- Lecture: 2hrs/week; Exersise: 2hrs/week

Vorkenntnisse / Previous knowledge

- Basic knowledge in computing, knowledge in undergraduate mathematics and physics

Prüfung

- Gesamtmodul
 - written exam: max 180 minutes or oral exam: max 30 minutes

Lehrveranstaltungsform

- Vorlesung: 4 SWS, Angebotsrhythmus: SoSe oder WiSe, Workload Präsenz: 56 h
- Übung: 4 SWS, Angebotsrhythmus: SoSe oder WiSe, Workload Präsenz: 56 h

Präsenzzeit Modul insgesamt

- 112 h
pre200 - Selected Renewable Energy Technologies

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Selected Renewable Energy Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>pre200</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies
- Master Sustainability Economics and Management (Master) > Ergänzungsmodule
- Master Sustainable Renewable Energy Technologies (Master) > Mastermodule
- Master Umweltmodellierung (Master) > Mastermodule

Zuständige Personen
- Wark, Michael (Modulverantwortung)
- Torio, Herena (Modulverantwortung)
- Torio, Herena (Prüfungsberechtigt)
- Pehlken, Alexandra (Prüfungsberechtigt)
- Wark, Michael (Prüfungsberechtigt)
- Steinberger-Wilckens, Robert (Prüfungsberechtigt)

Teilnahmevoraussetzungen

Kompetenzziele
The module intends to give an overview and deeper understanding of front-edge topics and technologies relevant for the energy transition. Current main such topics are the rolling out of the hydrogen economy as well as circular economy and critical material use and ocean energy converters. In the context of the energy transition in the global south, small hydro turbines may play a relevant role and are also part of the module content. Main skills to be achieved in the module are:

- Understand and describe front-edge topics in the energy transition.
- Cross-sectoral topics, technologies and new research topics relevant for the energy transition.
- Understand the principles, chemical and energy conversion processes involved in hydrogen and fuel cell systems.
- Understand the role of hydrogen in the energy transformation and the main energy conversion processes in which it is involved.
- Critically evaluate and describe hydrogen storage systems (electrolyser, gas storage and fuel cells) as well as their uses, advantages, characteristics and pitfalls.
- Understand and describe principles governing ocean energy converters
- Understand and describe principles governing micro-hydro energy converters
- Understand and describe concepts for circular economy and recycling in the energy sector
- Understand methods for assessing critical materials, their definitions and importance for the energy transition

Modulinhalte

Hydrogen and fuel cells (3 CP)
- Basics of hydrogen production (materials, processes, efficiencies, environmental impacts)
- Basics of fuel cells (function, materials, construction, systems applications)
- Basics of hydrogen storage systems (their setup, control, safety aspects)

Hidden Champions of RE (3 CP)
- Basic concepts for circular economy and recycling of materials in the energy sector
- Basic definitions and methods for appraising critical materials for the energy transition
- Ocean energy converters: principles and examples
- Micro hydro energy converters: their principles, characteristics and uses
<table>
<thead>
<tr>
<th>Literaturempfehlungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Unterrichtssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td></td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>SPM (Schwerpunktmodul / Main emphasis)</td>
</tr>
<tr>
<td>Modultyp / type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtdauer</td>
<td>At the end of the semester</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Modulkürzel</td>
<td>phy616</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > European Wind Energy Master
- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies
- Master Sustainable Renewable Energy Technologies (Master) > Mastermodule
- Master Umweltmodellierung (Master) > Mastermodule

Zuständige Personen
- Lukassen, Laura (Modulverantwortung)
- Avila Canellas, Kerstin (Prüfungsberechtigt)
- Lukassen, Laura (Prüfungsberechtigt)
- Peinke, Joachim (Prüfungsberechtigt)
- Stoevesandt, Bernhard (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Fluid Dynamics I

Kompetenzziele
Deeper understanding of the fundamental equations of fluid dynamics.
Overview of numerical methods for the solution of the fundamental equations of fluid dynamics. Confrontation with complex problems in fluidodynamics. To become acquainted with different, widely used CFD models that are used to study complex problems in fluid dynamics. Ability to apply these CFD models to certain defined problems and to critically evaluate the results of numerical models.

Modulinhalte

CFD I:
The Navier-Stokes equations, introduction to numerical methods, finite-differences, finite-volume methods, linear equation systems, turbulent flows, incompressible flows, compressible flows, efficiency and accuracy.

CFD II:
RANS, URANS, LES, DNS, filtering / averaging of Navier-Stokes equations, Introduction to different CFD models, Application of these CFD models to defined problems from rotor aerodynamics and the atmospheric boundary layer.

Literaturempfehlungen
J. Fröhlich, Large Eddy Simulationen turbulenter Strömungen, Teubner, Wiesbaden, 2006 (in German)

Links

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Pflicht / Mandatory

Lehr-/Lernform / Teaching/Learning method
Lecture: 2hrs/week, Excercise: 2hrs/week

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
</table>

90 / 138
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Max. 180 min. Klausur oder 30 min. mündliche Prüfung</td>
<td>Written examination: Between 90 and 180 minutes or Oral examination: Between 20 and 45 minutes or 1 Term paper: Between 15 and 30 pages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>VA-Auswahl (Vorlesungen oder Praktikum oder Seminar)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SWS</th>
<th>4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Angebotsrhythmus</th>
<th>SoSe oder WiSe</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload Präsenzzeit</th>
<th>56 h</th>
</tr>
</thead>
</table>
Introduction to Micro Meteorology for Wind Energy

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Introduction to Micro Meteorology for Wind Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy659</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
</tbody>
</table>

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache

Dauer in Semestern

Angebotsrhythmus Modul

Aufnahmekapazität Modul

Modulevel / module level

Modulart / typ of module

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung | **Prüfungszeiten** | **Prüfungsform** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td></td>
<td>1 Klausur oder 1 Referat oder 1 mündliche Prüfung oder 1 Hausarbeit oder 1 fachpraktische Übung</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

VA-Auswahl (Das Modul wird an der Partnerhochschule angeboten.)

SWS

Angebotsrhythmus

Workload Präsenzzeit

56 h
Modulbezeichnung
Fluiddynamics II/Wind Energy Meterology

Modulkürzel
phy670

Kreditpunkte
6.0 KP

Workload
180 h

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > European Wind Energy Master

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache
Deutsch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
unbegrenzt

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Pflicht / Mandatory

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung

<table>
<thead>
<tr>
<th>Gesamtmodul</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Klausur oder 1 mündliche Prüfung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform | Kommentar | SWS | Angebotsrhythmus | Workload Präsenz |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
phy673 - Diffusions and Stochastic Differential Equations

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Diffusions and Stochastic Differential Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy673</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > European Wind Energy Master

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache
- Deutsch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unbegrenzt

Modullevel / module level
- MM (Mastermodul / Master module)

Modulart / typ of module
- Pflicht / Mandatory

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung

Prüfungszahlen

Prüfungsform

Gesamtmodul

Klausur oder mündliche Prüfung

Lehrveranstaltungsform

Vorlesung und Übung (Das Modul wird an der Partnerhochschule angeboten.)

SWS
- 4

Angebotsrhythmus
- SoSe oder WiSe

Workload Präsenzzeit
- 56 h
phy674 - Turbulent Flows

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Turbulent Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy674</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td></td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td></td>
</tr>
<tr>
<td>Modulinhalte</td>
<td></td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td></td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Pflicht / Mandatory</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeit</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Vorlesung und Übung (Das Modul wird an der Partnerhochschule angeboten.)</td>
</tr>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
phy684 - Wind Turbine Technology and Aerodynamics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Wind Turbine Technology and Aerodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy684</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>10.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>300 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>• Master Engineering Physics (Master) > European Wind Energy Master</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zuständige Personen</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Teilnahmeveranlassungen</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kompetenzziele</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulinhalte</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literaturempfehlungen</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dauer in Semestern</th>
<th>1 Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Angebotsrhythmus Modul</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Aufnahmekapazität Modul</th>
<th>unbegrenzt</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modullevel / module level</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulart / typ of module</th>
<th>Pflicht / Mandatory</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehr-/Lernform / Teaching/Learning method</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td></td>
<td>1 Klausur oder 1 Referat oder 1 mündliche Prüfung oder 1 Hausarbeit oder 1 fachpraktische Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung (Das Modul wird an der Partnerhochschule angeboten.)</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Seminar (Das Modul wird an der Partnerhochschule angeboten.)</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Übung (Das Modul wird an der Partnerhochschule angeboten.)</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Präsenzzeit Modul insgesamt</th>
<th>84 h</th>
</tr>
</thead>
</table>
phy688 - Planning and Development of Wind Farms

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Planning and Development of Wind Farms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy688</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
</tbody>
</table>

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache
Deutsch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
unbegrenzt

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Pflicht / Mandatory

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td></td>
<td>KL</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA-Auswahl (Das Modul wird an der Partnerhochschule angeboten.)</td>
<td>KL</td>
</tr>
</tbody>
</table>

SWS
4

Angebotsrhythmus
SoSe oder WiSe

Workload Präsenzzeit
56 h
phy692 - Research Project European Wind Energy Master

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Research Project European Wind Energy Master</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy692</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
</tbody>
</table>

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

unbegrenzt

Modullevel / module level

Modulart / typ of module

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung

Prüfungszeiten

Prüfungsform

Gesamtmodul

BE

Lehrveranstaltungsform

Seminar

SWS

Angebotsrhythmus

Workload Präsenzzeit

0 h
phy991 - Stochastic Processes

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Stochastic Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy991</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > European Wind Energy

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache Englisch

Dauer in Semestern 1 Semester

Angebotshäufigkeit Modul

Aufnahmekapazität Modul unbegrenzt

Modullevel / module level MM (Mastermodul / Master module)

Modulart / typ of module Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung Prüfungszeiten Prüfungsform

<table>
<thead>
<tr>
<th>Gesamtmodul</th>
<th>KL</th>
<th>SWS</th>
<th>Angebotshäufigkeit</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 84 h
phy992 - Time Series Analysis

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Time Series Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy992</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td></td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td></td>
</tr>
<tr>
<td>Modulinhalte</td>
<td></td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Unterrichtssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
</tbody>
</table>

Lehr-/Lernform / Teaching/Learning method

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>KL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
<td>SWS</td>
<td>Angebotsrhythmus</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>

Dauer in Semestern	1 Semester
Aufnahmekapazität Modul	unbegrenzt
Modullevel / module level	MM (Mastermodul / Master module)
Modulart / typ of module	Wahlpflicht / Elective

<table>
<thead>
<tr>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
phy993 - Advanced Time Series Analysis

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Time Series Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy993</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>10.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>300 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
</tbody>
</table>

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache: Deutsch

Dauer in Semestern: 1 Semester

Angebotsrhythmus Modul: unbegrenzt

Modullevel / module level: MM (Mastermodul / Master module)

Modulart / typ of module: Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>KL</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>4</td>
<td>SoSe oder WiSe</td>
<td>56</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt: 84 h
phy994 - Optimization and Data Fitting

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Optimization and Data Fitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy994</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td></td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td></td>
</tr>
<tr>
<td>Modulinhalte</td>
<td></td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Unterrichtssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td></td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>KL</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2</td>
</tr>
<tr>
<td>Praktikum</td>
<td>2</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td>56 h</td>
</tr>
</tbody>
</table>
phy995 - Physics of Sustainable Energy

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Physics of Sustainable Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy995</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > European Wind Energy Master

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache | Deutsch

Dauer in Semestern | 1 Semester

Angebotsrhythmus Modul

Aufnahmekapazität Modul | unbegrenzt

Modullevel / module level | MM (Mastermodul / Master module)

Modulart / typ of module | Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung	Prüfungszeiten	Prüfungsform
Gesamtmodul | | KL

Lehrveranstaltungsform | Vorlesung

SWS | 4

Angebotsrhythmus | SoSe oder WiSe

Workload Präsenzzeit | 56 h
phy996 - Offshore Wind Energy

Modulbezeichnung: Offshore Wind Energy
Modulkürzel: phy996
Kreditpunkte: 10.0 KP
Workload: 300 h

Verwendbarkeit des Moduls: Master Engineering Physics (Master) > European Wind Energy Master

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache: Englisch
Dauer in Semestern: 1 Semester

Angebotsrhythmus Modul: unbegrenzt

Modullevel / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung:
Prüfungszeiten:
Prüfungsform:

Gesamtmodul: KL

Lehrveranstaltungsform: Vorlesung

SWS: 6

Angebotsrhythmus: SoSe oder WiSe

Workload Präsenzzeit: 84 h
phy997 - Wind Turbine Measurement Techniques

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Wind Turbine Measurement Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy997</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>10.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>300 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
</tbody>
</table>

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

unbegrenzt

Modullevel / module level

MM (Mastermodul / Master module)

Modulart / typ of module

Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorlesung

Vorkenntnisse / Previous knowledge

Prüfung

Prüfungszeiten

Prüfungsform

KL

Gesamtmodul

Vorlesung

SWS

6

Angebotsrhythmus

SoSe oder WiSe

Workload Präsenzzeit

84 h
PHY998 - Probabilistic Methods in Wind Energy

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Probabilistic Methods in Wind Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy998</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > European Wind Energy

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache
- Deutsch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unbegrenzt

Modullevel / module level
- MM (Mastermodul / Master module)

Modulart / typ of module
- Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>KL</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
- 56 h
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Engineering Topics in Wind Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy621</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td></td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td></td>
</tr>
<tr>
<td>Modulinhalte</td>
<td></td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Unterrichtsprachen</td>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td></td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>EB (Ergänzungsbereich / Complementary)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td></td>
</tr>
<tr>
<td>Angebotstyp / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeit</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform</td>
<td></td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>KL</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
Module: Advanced Topics in Wind Energy

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Topics in Wind Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy622</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master Engineering Physics (Master) > European Wind Energy Master

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache

Deutsch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

unbegrenzt

Modullevel / module level

EB (Ergänzungsbereich / Complementary)

Modulart / typ of module

Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung

Prüfungszeiten	Prüfungsform
Gesamtmodul | KL

Lehrveranstaltungsform

VA-Auswahl

SWS

2

Angebotsrhythmus

SoSe oder WiSe

Workload Präsenzzeit

28 h
phy645 - Wind Physics Measurement Project

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Wind Physics Measurement Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy645</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > European Wind Energy Master

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

<table>
<thead>
<tr>
<th>Unterrichtsprachen</th>
<th>Deutsch, Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Angebotsrhythmus Modul

<table>
<thead>
<tr>
<th>Aufnahmekapazität Modul</th>
<th>unbegrenzt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modullevel / module level</td>
<td>EB (Ergänzungsbereich / Complementary)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
</tbody>
</table>

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td></td>
<td>KL</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>SWS</th>
<th>Vorlesung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Angebotsrhythmus

<table>
<thead>
<tr>
<th>Angebotsrhythmus</th>
<th>SoSe oder WiSe</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload Präsenzzeit</th>
<th>28 h</th>
</tr>
</thead>
</table>
phy985 - Stochastic Processes in Experiments

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Stochastic Processes in Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy985</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td></td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td></td>
</tr>
<tr>
<td>Modulinhalte</td>
<td></td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td></td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>EB (Ergänzungsbereich / Complementary)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Prüfung</td>
<td>Gesamtmodul</td>
</tr>
<tr>
<td></td>
<td>Prüfungsform</td>
</tr>
<tr>
<td>Prüfung</td>
<td>KL</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>
phy629 - Optimization in modern Power Systems

Modulbezeichnung	Optimization in modern Power Systems
Modulkürzel | phy629
Kreditpunkte | 5.0 KP
Workload | 150 h

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > European Wind Energy Master

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtsprachen | Deutsch, Englisch
Dauer in Semestern | 1 Semester

Angebotsrhythmus Modul | unbegrenzt
Modullevel / module level | MM (Mastermodul / Master module)
Modulart / typ of module | Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method
Vorkenntnisse / Previous knowledge

Prüfung	Prüfungszeiten	Prüfungsform
Gesamtmodul | KL |
Lehrveranstaltungsform | Kommentar | SWS | Angebotsrhythmus | Workload Präsenz
Vorlesung | 2 | SoSe oder WiSe | 28
Übung | 2 | SoSe oder WiSe | 28
Präsenzzeit Modul insgesamt | | 56 h
phy675 - Integration of Wind Power in the Power System

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Integration of Wind Power in the Power System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy675</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
</tbody>
</table>

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

unbegrenzt

Modullevel / module level

MM (Mastermodul / Master module)

Modulart / typ of module

Pflicht / Mandatory

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>KL</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
<td>SWS</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>SoSe oder WiSe</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
phy981 - HardTech Entrepreneurship

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>HardTech Entrepreneurship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy981</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>10.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>300 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td></td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td></td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td></td>
</tr>
<tr>
<td>Modulinhalte</td>
<td></td>
</tr>
<tr>
<td>Literaturempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Dauer in Semistemern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
</tbody>
</table>

Lehr-/Lernform / Teaching/Learning method

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gesamtmodul</td>
<td>KL</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
<td>SWS</td>
<td>Angebotsrhythmus</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td>56 h</td>
<td></td>
</tr>
</tbody>
</table>
phy986 - System Safety and Reliability Engineering

Modulbezeichnung: System Safety and Reliability Engineering
Modulkürzel: phy986
Kreditpunkte: 5.0 KP
Workload: 150 h

Verwendbarkeit des Moduls:
- Master Engineering Physics (Master) > European Wind Energy Master

Zuständige Personen:

Teilnahmevoraussetzungen:

Kompetenzziele:

Modulinhalte:

Literaturempfehlungen:

Links:

Unterrichtsprachen: Deutsch, Englisch

Dauer in Semestern: 1 Semester

Angebotsrhythmus Modul:

Aufnahmekapazität Modul: unbegrenzt

Modullevel / module level: MM (Mastermodul / Master module)

Modulart / typ of module: Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method:

Vorkenntnisse / Previous knowledge:

Prüfung

Prüfungszeiten

Prüfungsform

Gesamtmodul

KL

Lehrveranstaltungsform

Kommentar

SWS

Angebotsrhythmus

Workload Präsenz

Vorlesung

2

SoSe oder WiSe

28

Übung

2

SoSe oder WiSe

28

Präsenzzeit Modul insgesamt

56 h
phy623 - Advanced Wind Energy Meteorology

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Wind Energy Meteorology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy623</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>

| Verwendbarkeit des Moduls | Master Engineering Physics (Master) > European Wind Energy Master |

<table>
<thead>
<tr>
<th>Zuständige Personen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Teilnahmeveranlassungen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kompetenzziele</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulinhalte</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literaturempfehlungen</th>
<th>Deutsch, Englisch</th>
</tr>
</thead>
</table>

| Dauer in Semestern | 1 Semester |

<table>
<thead>
<tr>
<th>Angebotsträger Modul</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unterrichtsprachen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
</table>

| Dauer in Semestern | 1 Semester |

<table>
<thead>
<tr>
<th>Angebotsträger Modul</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modullevel / module level</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulart / typ of module</th>
<th>Pflicht / Mandatory</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehr-/Lernform / Teaching/Learning method</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>KL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsträger Modul</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td>2</td>
<td></td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |

<table>
<thead>
<tr>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>
phy625 - Deep Learning

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Deep Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy625</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
</tbody>
</table>

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache

Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

unbegrenzt

Modullevel / module level

MM (Mastermodul / Master module)

Modulart / typ of module

Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung

KL

Lehrveranstaltungsform

Vorlesung

SWS

2

Angebotsrhythmus

SoSe oder WiSe

Workload Präsenzzeit

28 h
phy626 - Introduction to Dynamical Systems

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Introduction to Dynamical Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy626</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > European Wind Energy Master

Zuständige Personen

Teilnehmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unbegrenzt

Modullevel / module level
- MM (Mastermodul / Master module)

Modulart / typ of module
- Pflicht / Mandatory

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>KL</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform
- Vorlesung

<table>
<thead>
<tr>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

117 / 138
phy988 - Introduction to Machine Learning and Data Mining

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Introduction to Machine Learning and Data Mining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy988</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
</tbody>
</table>

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalt

Literaturrempfehlungen

Links

Unterrichtsprachen Deutsch, Englisch

Dauer in Semestern 1 Semester

Angebotsrhythmus Modul unbegrenzt

Modulevel / module level MM (Mastermodul / Master module)

Modulart / typ of module Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung Prüfungszeiten Prüfungsform

Gesamtmodul KL

Lehrveranstaltungsform Vorlesung

SWS 2

Angebotsrhythmus SoSe oder WiSe

Workload Präsenzzeit 28 h
phy627 - Hydrodynamics II

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Hydrodynamics II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy627</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > European Wind Energy Master

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache
- Deutsch

Dauer in Semestern
- 1 Semester

Angebotsrhythmus Modul
- unbegrenzt

Modullevel / module level
- SPM (Schwerpunktm bodul / Main emphasis)

Modulart / typ of module
- Pflicht / Mandatory

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>KL</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>SoSe oder WiSe</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td>SoSe oder WiSe</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 0 h |

119 / 138
phy628 - Computational Tool for Data Science

Modulbezeichnung: Computational Tool for Data Science
Modulkürzel: phy628
Kreditpunkte: 3.0 KP
Workload: 90 h
Verwendbarkeit des Moduls: Master Engineering Physics (Master) > European Wind Energy Master

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache: Deutsch
Dauer in Semestern: 1 Semester

Angebotsrhythmus Modul: unbegrenzt

Modullevel / module level: SPM (Schwerpunktmodul / Main emphasis)
Modulart / typ of module: Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung
Prüfungszeiten
Prüfungsform

Gesamtmodul
KL

Lehrveranstaltungsform
Kommentar
SWS
Angebotsrhythmus
Workload Präsenz

Vorlesung
SoSe oder WiSe
0

Übung
SoSe oder WiSe
0

Präsenzzeit Modul insgesamt
0 h
phy629 - Advanced CFD

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced CFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy629</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>• Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
</tbody>
</table>

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

unbegrenzt

Modullevel / module level

SPM (Schwerpunktmus / Main emphasis)

Modulart / typ of module

Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung	Prüfungszeiten	Prüfungsform
Gesamtmodul | KL | |
Lehrveranstaltungsform | Kommentar | SWS | Angebotsrhythmus | Workload Präsenz |
Vorlesung | SoSe oder WiSe | 0 |
Übung | SoSe oder WiSe | 0 |
Präsenzzeit Modul insgesamt | | 0 h |
phy657 - Energy Economics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Energy Economics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy657</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>150 h</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > European Wind Energy Master</td>
</tr>
</tbody>
</table>

Zuständige Personen

Teilnahmevoraussetzungen

Kompetenzziele

Modulinhalte

Literaturempfehlungen

Links

Unterrichtssprache Deutsch

Dauer in Semestern 1 Semester

Angebotsrhythmus Modul unbegrenzt

Modullevel / module level SPM (Schwerpunktmodul / Main emphasis)

Modulart / typ of module Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Vorkenntnisse / Previous knowledge

Prüfung	Prüfungszeiten	Prüfungsform
Gesamtmodul | KL | |

Lehrveranstaltungsform	Kommentar	SWS	Angebotsrhythmus	Workload Präsenz
Vorlesung | SoSe oder WiSe | 0 |
Übung | SoSe oder WiSe | 0 |

Präsenzzeit Modul insgesamt 0 h
Schwerpunkt: Acoustics

phy605 - Digital Signal Processing

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Digital Signal Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy605</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master Engineering Physics (Master) > Schwerpunkt: Acoustics

Zuständige Personen

- Doclo, Simon (Modulverantwortung)
- Doclo, Simon (Prüfungsberechtigt)

Teilnahmevoraussetzungen

Basic knowledge about continuous-time signals and systems and statistics. In addition, Matlab programming skills are required.

Kompetenzziele

The students acquire knowledge about theoretical concepts and methods of signal processing and system theory for discrete-time signals and systems. The students are able to apply these theoretical concepts and methods in analytical, numerical and programming exercises.

Modulinhalte

System properties (stability, linearity, time-invariance, causality); Discrete-time signal processing: sampling theorem, time-domain analysis (impulse response, convolution), z-transform, frequency-domain analysis (transfer function, discrete-time Fourier transform, discrete Fourier transform, FFT, STFT), digital filter design (FIR, IIR, linear phase filter, all-pass filter, signal flow graph), multirate signal processing (down/up-sampling, filter banks); Statistical signal processing: stationarity, ergodicity, correlation, Wiener-Khinchin theorem, spectral estimation; Adaptive filters: optimal filters, Wiener filter, time-domain algorithms (RLS, NLMS), frequency-domain algorithms (FDAF); Matlab exercises about discrete-time signal processing and adaptive filters.

Literaturempfehlungen

Links

Unterrichtsprachen

Deutsch, Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

unbegrenzt

Modullevel / module level

MM (Mastermodul / Master module)

Modulart / type of module

Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

Lecture: 2hrs/week; Exercise: 2hrs/week

Vorkenntnisse / Previous knowledge

Basic knowledge about continuous-time signals and systems and statistics. In addition, Matlab programming skills are required.

Prüfung

Gesamtmodul

written exam (max. 3 hours) or 30 minutes oral exam

Lehrveranstaltungsform

Vorlesung

SWS

4

Angebotsrhythmus

SoSe oder WiSe
| Workload Präsenzzeit | 56 h |
phy677 - Speech processing

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Speech processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy677</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(180 h (Präsenzzeit 56h, Selbststudium: 124h))</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > Schwerpunkt: Acoustics</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Doclo, Simon (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Doclo, Simon (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Enzner, Gerald (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Kollmeier, Birger (Prüfungsberechtigt)</td>
</tr>
<tr>
<td></td>
<td>Meyer, Bernd (Prüfungsberechtigt)</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Introductory signals and systems lecture</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>The students will be able to (a) explain the foundations of speech production, perception and analysis, (b) understand the mathematical and information-theoretical principles of speech signal processing, and (c) apply the studied methods to explain the working principle of practical speech processing systems.</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>Speech production and perception, speech analysis, speech signal processing (STFT, LPC, cepstrum, speech enhancement), speech coding, speech synthesis, automatic speech recognition, speech quality and intelligibility measures, selected topics on speech processing research.</td>
</tr>
<tr>
<td>Links</td>
<td>Englisch</td>
</tr>
<tr>
<td>Unterrichtssprache</td>
<td></td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Vorlesung: 2 SWS, Übung: 2 SWS</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Introductory signals and systems lecture</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>Prüfungsform</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
phy679 - Acoustics

Modulbezeichnung	Acoustics
Modulkürzel	phy679
Kreditpunkte	6.0 KP
Workload	180 h (Attendance: 56 hrs, Self study: 124 hrs)
Verwendbarkeit des Moduls	Master Engineering Physics (Master) > Schwerpunkt: Acoustics
Zuständige Personen	van de Par, Steven (Modulverantwortung)
Ewert, Stephan (Prüfungsberechtigt)	
Kollmeier, Birger (Prüfungsberechtigt)	
van de Par, Steven (Prüfungsberechtigt)	

Kompetenzziele | The students acquire knowledge about advanced concepts in acoustics, electro-acoustics, room acoustics, acoustical measurement methods and virtual acoustics. The students acquire skills to critically and independently apply these concepts and methods to acoustical problems.

Modulinhalte | Acoustical measurement methods (sound pressure, spectrum, transfer function, intensity); Non-linear measurement methods (Hammerstein model); Inverse problems in acoustics and regularization; High-resolution methods, acoustic camera; Binaural virtual acoustics; Spherical harmonics, virtual acoustics (Ambisonics, Wave Field Synthesis); Transaural systems; Room acoustics simulation.

| H. Kuttruff: Room Acoustics, CRC Press, 2016;

Links | Unterrichtssprache: Englisch
| Dauer in Semestern: 1 Semester
| Angebotsrhythmus Modul: jährlich
| Aufnahmekapazität Modul: unbegrenzt
| Modullevel / module level: MM (Mastermodul / Master module)
| Modulart / typ of module: Wahlpflicht / Elective
| Lehr-/Lernform / Teaching/Learning method: Lecture: 3hrs/week; Excercises: 1hrs/week
| Vorkenntnisse / Previous knowledge: Introductory acoustics lecture
| Prüfung: written exam (max. 3 hours) or 30 minutes oral exam or presentation or homework or practical report
| Lehrveranstaltungsform: Vorlesung

SWS | 4
Angebotsrhythmus | SoSe oder WiSe
Workload Präsenzzeit | 56 h
phy685 - Advanced Engineering Topics in Biomedical Physics & Acoustics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Engineering Topics in Biomedical Physics & Acoustics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy685</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Overall workload of 180 h)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
- Master Engineering Physics (Master) > Schwerpunkt: Acoustics
- Master Engineering Physics (Master) > Schwerpunkt: Biomedical Physics

Zuständige Personen:
- Doclo, Simon (Modulverantwortung)
- Poppe, Björn (Modulverantwortung)
- Ansmüller, Jörn (Prüfungsberechtigt)
- Biehs, Svend-Age (Prüfungsberechtigt)
- Blau, Matthias (Prüfungsberechtigt)
- Brand, Thomas (Prüfungsberechtigt)
- Dietz, Mathias (Prüfungsberechtigt)
- Doclo, Simon (Prüfungsberechtigt)
- Enzner, Gerald (Prüfungsberechtigt)
- Ewert, Stephan (Prüfungsberechtigt)
- Hohmann, Volker (Prüfungsberechtigt)
- Kollmeier, Birger (Prüfungsberechtigt)
- Lücke, Jörg (Prüfungsberechtigt)
- Meyer, Bernd (Prüfungsberechtigt)
- Oeljen, Arne (Prüfungsberechtigt)
- Poppe, Björn (Prüfungsberechtigt)
- Siedenburg, Kai (Prüfungsberechtigt)
- Töpken, Stephan (Prüfungsberechtigt)
- Üppenkamp, Stefan (Prüfungsberechtigt)
- van de Par, Steven (Prüfungsberechtigt)

Teilnahmevoraussetzungen: Depending on selected courses
Kompetenzziele:
The aim of this module is to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific engineering skills. The students acquire advanced knowledge and skills related to the engineering areas biomedical physics and acoustics.

Modulinhale:
Depending on selected courses

Literaturrempfehlungen:
Depending on selected courses

Links:

Unterrichtssprache: Englisch
Dauer in Semestern: 1 Semester
Angebotsrhythmus Modul: annual
Aufnahmekapazität Modul: unbegrenzt

Hinweise:
This module offers special as well as advanced engineering courses in Biomedical Physics and Acoustics. The list of eligible courses will be updated each academic year. Please refer to the courses listed for this module in Stud.IP.

Modullevel / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method:
Depending on selected courses, one or two examinations

Vorkenntnisse / Previous knowledge:
Depending on selected courses

Prüfung:

Gesamtmodul: One or two examinations depending on selected courses

Lehrveranstaltungsform: Kommentar
SWS: Angebotsrhythmus
Workload Präsenz: Vorlesung

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>SWS</th>
<th>SoSe oder WiSe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>56</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
<td>SWS</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Praktikum</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 126 h
phy686 - Advanced Topics in Biomedical Physics & Acoustics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Topics in Biomedical Physics & Acoustics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy686</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Overall workload of 180 h)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Acoustics
- Master Engineering Physics (Master) > Schwerpunkt: Biomedical Physics

Zuständige Personen
- Doclo, Simon (Modulverantwortung)
- Poppe, Björn (Modulverantwortung)
- Anemüller, Jörn (Prüfungsberechtigt)
- Bitzer, Jörg (Prüfungsberechtigt)
- Blau, Matthias (Prüfungsberechtigt)
- Brand, Thomas (Prüfungsberechtigt)
- Dietz, Mathias (Prüfungsberechtigt)
- Doclo, Simon (Prüfungsberechtigt)
- Einzner, Gerald (Prüfungsberechtigt)
- Ewert, Stephan (Prüfungsberechtigt)
- Hohmann, Volker (Prüfungsberechtigt)
- Lücke, Jörg (Prüfungsberechtigt)
- Kollmeier, Birger (Prüfungsberechtigt)
- Meyer, Bernd (Prüfungsberechtigt)
- Poppe, Björn (Prüfungsberechtigt)
- Oetjen, Arne (Prüfungsberechtigt)
- Siedenburg, Kai (Prüfungsberechtigt)
- Töpken, Stephan (Prüfungsberechtigt)
- van de Par, Steven (Prüfungsberechtigt)
- Uppenkamp, Stefan (Prüfungsberechtigt)

Teilnahmevoraussetzungen
Depending on selected courses

Kompetenzziele
The aim of this module is, to give students further access to also small courses (3 CP) which address the specific interest of the student and deliver unique in-depth knowledge or the opportunity to train specific specialization skills. The students acquire advanced knowledge and skills related to the specialization areas biomedical physics and acoustics.

Modulinhalt
Depending on selected courses

Literaturempfehlungen
Depending on selected courses

Links
Depending on selected courses

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / type of module
Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method
Depending on selected courses

Vorkenntnisse / Previous knowledge
Depending on selected courses

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungsform</th>
<th>Depending on selected courses, one or two examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamttotest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
<td>SWS</td>
</tr>
<tr>
<td>Vorlesung</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
phy694 - Machine Learning II

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Machine Learning II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy694</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>Attendance: 56 hrs, Self study: 124 hrs</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Master Engineering Physics (Master) > Schwerpunkt: Acoustics</td>
</tr>
<tr>
<td>Zuständige Personen</td>
<td>Lücke, Jörg (Modulverantwortung)</td>
</tr>
<tr>
<td></td>
<td>Lücke, Jörg (Prüfungsberechtigt)</td>
</tr>
</tbody>
</table>

Kompetenzziele

The students will deepen their knowledge on mathematical models of data and sensory signals. Building upon the previously acquired Machine Learning models and methods, the students will be lead closer to current research topics and will learn about models that currently represent the state-of-the-art. Based on these models, the students will be exposed to the typical theoretical and practical challenges in the development of current Machine Learning algorithms. Typical challenges are analytical and computational intractabilities, or local optima problems. Based on concrete examples, the students will learn how to address such problems. Applications to different data will teach skills to use the appropriate model for a desired task and the ability to interpret an algorithm’s result as well as ways for further improvements. Furthermore, the students will learn interpretations of biological and artificial intelligence based on state-of-the-art Machine Learning models.

Modulinhalte

This course builds up on the basic models and methods introduced in introductory Machine Learning lectures. Advanced Machine Learning models will be introduced alongside methods for efficient parameter optimization. Analytical approximations for computationally intractable models will be defined and discussed as well as stochastic (Monte Carlo) approximations. Advantages of different approximations will be contrasted with their potential disadvantages. Advanced models in the lecture will include models for clustering, classification, recognition, denoising, compression, dimensionality reduction, deep learning, tracking etc. Typical application domains will be general pattern recognition, computational neuroscience and sensory data models including computer hearing and computer vision.

Literaturrempfehlungen

- Pattern Recognition and Machine Learning, C. M. Bishop, Springer 2006. (best suited for lecture);

Links

- Unterrichtssprache: Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: jährlich
- Aufnahmekapazität Modul: unbegrenzt
- Modulniveau / module level: MM (Mastermodul / Master module)
- Modulart / typ of module: Wahlpflicht / Elective
- Lehr-/Lernform / Teaching/Learning method: Lecture: 2hrs/week, Exercise: 2hrs/week (incl. prog. laboratory)
- Vorkenntnisse / Previous knowledge: Basic knowledge in higher Mathematics taught as part of first degrees in Physics, Mathematics, Statistics, Engineering or Computer Science (basic linear algebra and analysis) is required. Additionally, programming skills are required (Matlab or python).
- Prüfung: written exam (max. 3 hours) or 30 minutes oral exam
- Lehrveranstaltungsform: Vorlesung
<table>
<thead>
<tr>
<th>SWS</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
phy696 - Advanced Topics Speech and Audio Processing

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Topics Speech and Audio Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy696</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Acoustics

Zuständige Personen
- Doclo, Simon (Modulverantwortung)
- Doclo, Simon (Prüfungsberechtigt)
- Gerkmann, Timo (Prüfungsberechtigt)

Teilnahmevoraussetzungen
- Basic principles of discrete-time signal processing (preferably completed the course Digital Signal Processing). In addition, Matlab programming skills are required.

Kompetenzziele
- The students gain in-depth knowledge about speech and audio processing methods and systems. The students gain practical insights by implementing and evaluating these methods for specific speech and audio applications.

Modulinhalte
- After reviewing the basic principles of speech processing and statistical signal processing (adaptive filtering, estimation theory), this course covers techniques and underlying algorithms that are essential in many modern-day speech communication and audio processing systems (e.g. mobile phones, hearing aids, headphones): acoustic echo and feedback cancellation, noise reduction, dereverberation, microphone and loudspeaker array processing, active noise control. During the exercises a typical hands-free speech.

Literaturempfehlungen
- P. Vary, R. Martin: Digital Speech Transmission, Wiley, 2006;
- S. Haykin: Adaptive Filter Theory, Prentice Hall, 2013,

Links
- Englisch
- 1 Semester
- jährlich
- unbegrenzt
- MM (Mastermodul / Master module)
- Wahlpflicht / Elective
- Lecture: 2hrs/week, Exercise: 2hrs/week

Prüfungszeiten
- oral exam (30 minutes) or homework or practical report

Vorkenntnisse / Previous knowledge
- Basic principles of discrete-time signal processing (preferably completed the course Digital Signal Processing). In addition, Matlab programming skills are required

Prüfung

Gesamtmodul

Lehrveranstaltungsform
- Vorlesung

SWS
- 4

Angebotsrhythmus
- SoSe oder WiSe

Workload Präsenzzeit
- 56 h
phy960 - Psychoacoustics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Psychoacoustics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy960</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls

- Master Engineering Physics (Master) > Schwerpunkt: Acoustics

Zuständige Personen

- van de Par, Steven (Modulverantwortung)
- van de Par, Steven (Prüfungsberechtigt)

Kompetenzziele

The students acquire knowledge about concepts and methods in auditory perception, psychoacoustics, subjective test design, and auditory scene analysis. The students acquire skills to apply these concepts and methods in practice (e.g. sound quality measurement, signal processing algorithms).

Modulinhalte

Applied psychophysics

Subjective listening experiment design and models of human auditory perception will be treated with a focus on application in sound quality measurement (e.g. for vehicle noise and sound reproduction) and in digital signal processing algorithm development (e.g. for low bit-rate audio coding and headphone virtualizers).

Auditory Scene Analysis in Speech and Music

Basic principles of auditory scene analysis: sequential and simultaneous segregation, schema-based segregation; scene analysis in music perception: the cocktail party problem, speech intelligibility in complex acoustic environments, hearing loss, and experimental methods; speech and music perception with hearing aids and cochlear implants

Literaturempfehlungen

Links

- Unterrichtssprache: Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: jährlich
- Aufnahmekapazität Modul: unbegrenzt
- Modullevel / module level: MM (Mastermodul / Master module)
- Modulart / typ of module: Wahlpflicht / Elective
- Lehr-/Lernform / Teaching/Learning method: Lecture: 3hrs/week, Exercise: 1hrs/week
- Vorkenntnisse / Previous knowledge: Introductory acoustics lecture
- Prüfung: one or two examination, totaling to 180 min. written exam or 30 min. oral exam

Gesamtdenvertzung

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Kommentar</td>
<td>SWS</td>
<td>Angebotsrhythmus</td>
<td>Workload Präsenz</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>-----</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td>84 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
phy964 - Advanced Computing

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Advanced Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>phy964</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Attendance: 56 hrs, Self study: 124 hrs)</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Schwerpunkt: Acoustics
- Master Engineering Physics (Master) > Schwerpunkt: Biomedical Physics
- Master Engineering Physics (Master) > Schwerpunkt: Renewable Energies

Zuständige Personen
- Kühn, Martin (Modulverantwortung)
- Doelo, Simon (Modulverantwortung)

Teilnahmevoraussetzungen
Basic knowledge in computing, knowledge in undergraduate mathematics and physics

Kompetenzziele
Learning of advanced programming concepts and their application in biomedical physics, acoustics, laser and optics, and renewable energies.

Modulinhalte
Advanced programming concepts for C, python and Matlab; Artificial Intelligence and Data Science; Visual Computing; Software Engineering

Literaturempfehlungen

Links
Deutsch, Englisch

Dauer in Semestern
1 Semester

Aufnahmekapazität Modul
unbegrenzt

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method
Lecture: 2hrs/week; Exercise: 2hrs/week

Vorkenntnisse / Previous knowledge
Basic knowledge in computing, knowledge in undergraduate mathematics and physics

Prüfung

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td></td>
<td>written exam: max 180 minutes or oral exam: max 30 minutes</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform / Teaching/learning method

| Vorlesung | 4 | SoSe oder WiSe | 56 |
| Übung | 4 | SoSe oder WiSe | 56 |

Präsenzzeit Modul insgesamt
112 h

135 / 138
Abschlussmodul
mam - Masterarbeitsmodul

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Masterarbeitsmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel</td>
<td>mam</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls
- Master Engineering Physics (Master) > Abschlussmodul

Zuständige Personen
- Brückner, Hans Josef (Prüfungsberechtigt)
- Agert, Carsten (Prüfungsberechtigt)
- Avila Canellas, Kerstin (Prüfungsberechtigt)
- Blehs, Sven (Prüfungsberechtigt)
- Brand, Thomas (Prüfungsberechtigt)
- Struve, Bert (Prüfungsberechtigt)
- Dietz, Mathias (Prüfungsberechtigt)
- Doclo, Simon (Prüfungsberechtigt)
- Ewert, Stephan (Prüfungsberechtigt)
- Hohmann, Volker (Prüfungsberechtigt)
- Feudel, Ulrike (Prüfungsberechtigt)
- Hartmann, Alexander (Prüfungsberechtigt)
- Schüning, Thomas (Prüfungsberechtigt)
- Lücke, Jörg (Prüfungsberechtigt)
- Kollmeier, Birger (Prüfungsberechtigt)
- Kühn, Martin (Prüfungsberechtigt)
- Neu, Walter (Prüfungsberechtigt)
- Lukassen, Laura (Prüfungsberechtigt)
- Kunz-Drolshagen, Jutta (Prüfungsberechtigt)
- Lienau, Christoph (Prüfungsberechtigt)
- Poppe, Björn (Prüfungsberechtigt)
- Meyer, Bernd (Prüfungsberechtigt)
- Nilus, Niklas (Prüfungsberechtigt)
- Peinke, Joachim (Prüfungsberechtigt)
- van de Par, Steven (Prüfungsberechtigt)
- Schmidt, Thorsten (Prüfungsberechtigt)
- Strybny, Jann (Prüfungsberechtigt)
- Teubner, Ulrich (Prüfungsberechtigt)
- Uppenkamp, Stefan (Prüfungsberechtigt)
- Wark, Michael (Prüfungsberechtigt)
- Wollenhaupt, Matthias (Prüfungsberechtigt)
- der Masterarbeit, BetreuerIn (Modulverantwortung)

Teilnahmevoraussetzungen
- Master Curriculum Engineering Physics

Kompetenzziele
Die erlernten Kenntnisse und Methoden sind auf ein konkretes wissenschaftliches Problem anzuwenden und mit den erworbenen Schlüsselqualifikationen wie Teamarbeit, Projektmanagement und Präsentationstechniken zu kombinieren.

Modulinhalte

Literaturempfehlungen
Abhängig von den gewählten Veranstaltungen

Links
- Deutsch, Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel / module level
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
Seminar, Labor und Selbststudium

Vorkenntnisse / Previous knowledge

Prüfung / Previous knowledge
Prüfungszeiten
Prüfungsform
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td></td>
<td>Master Thesis und Kolloquium</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzeit</td>
<td>0 h</td>
<td></td>
</tr>
</tbody>
</table>