Modules for Microbiology

Mastermodule

mar500 - Physiology and diversity of microorganisms

<table>
<thead>
<tr>
<th>Module label</th>
<th>Physiology and diversity of microorganisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar500</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master Microbiology &gt; Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>Module responsibility</td>
</tr>
<tr>
<td></td>
<td>Bert Engelen</td>
</tr>
<tr>
<td></td>
<td>Authorized examiners</td>
</tr>
<tr>
<td></td>
<td>Alle hier genannten</td>
</tr>
<tr>
<td></td>
<td>Lehrende der Mikrobiologie</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>none</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>The students know the cells of pro- und eukaryotes. They understand the basic mechanisms of microbial metabolism. They know the physiological and phylogenetic groups of prokaryotes, eukaryotic microorganisms and viruses. They have an overview over applied aspects of microbiology.</td>
</tr>
<tr>
<td>Module contents</td>
<td>Lecture + Exercises: Physiology and Life modes of Prokaryotes: Cellular and subcellular organization, assimilation and dissimilation, energy metabolism, transport, microbial growth, respiration, chemiosmotic theory, fermentation, anaerobic respiration, lithotrophy, photosynthesis, prokaryotic diversity, systematics and taxonomy, Archaea, Bacteria, Eukarya, pathogenic prokaryotes, evolution, microbiological techniques</td>
</tr>
<tr>
<td></td>
<td>Lecture + Exercises: Microbial Diversity The eukaryotic cell, diversity, systematics and taxonomy of prokaryotes and eukaryotic microorganisms, algae, protozoa, fungi, slime molds, phagocytosis, symbioses, pathogenic eukaryotes, diversity of eukaryotic microbes, components of viruses, virus reproduction, bacteriophages, diversity of viruses, virus diseases</td>
</tr>
<tr>
<td>Broadening lectures, one out of the following lectures:</td>
<td>Biological significance of suspended matter</td>
</tr>
<tr>
<td>Broadening Seminar: Scientific writing and presentation</td>
<td>The students know the importance and structure of scientific publications. They have learned to critically read those, and know the requirements of different parts. They are trained to to give oral presentations and know how to produce scientific reports and posters. They know how to use the library and how to find relevant literature on the internet, and how to use data banks like Endnote. They have learned how to present themselves for an application.</td>
</tr>
<tr>
<td></td>
<td>Seminar Scientific writing and presentation</td>
</tr>
<tr>
<td></td>
<td>- Types and relevance of scientific publications</td>
</tr>
<tr>
<td></td>
<td>- Parts of scientific publications step by step:</td>
</tr>
<tr>
<td></td>
<td>- Abstract, Introduction, Results, Discussion</td>
</tr>
<tr>
<td></td>
<td>- University facilities for literature search</td>
</tr>
<tr>
<td></td>
<td>- Oral presentation</td>
</tr>
<tr>
<td></td>
<td>- How to prepare posters</td>
</tr>
<tr>
<td></td>
<td>- Tips for using PowerPoint, Word and Endnote</td>
</tr>
<tr>
<td></td>
<td>- Job application</td>
</tr>
<tr>
<td>Broadening Seminar: Scientific writing and presentation</td>
<td>(Teacher: Engelen; Form of study/semester periods per week: 4 week block, 2 lectures per week, Presence: 16 hours, private study: 74 hours; Credits: 3; 2nd Semester, Learning target/competences: Physico-chemical conditions, microbial processes and methods of studying these processes in sediments)</td>
</tr>
<tr>
<td></td>
<td>(Teacher: Engelen; Form of study/semester periods per week: 4 week block, 2 lectures per week, Presence: 16 hours, private study: 74 hours; Credits: 3; 2nd Semester, Learning target/competences: Physico-chemical conditions, microbial processes and methods of studying these processes in sediments)</td>
</tr>
<tr>
<td></td>
<td>(Courses: Seminar (2 SPPW, 3 CP); Teachers: Engelen; Work load: Presence: 30 hours, private study: 60 hours)</td>
</tr>
</tbody>
</table>
hours; Passing criteria: Oral presentation or discussion of parts of scientific papers 
- alternative lectures of the MSc MUWI or Biology program (see current online schedule)
- Excursions to companies and scientific institutions

Reader's advisory
Brock, Microbiology

Links

Language of instruction
English

Duration (semesters)
2 Semester

Module frequency
jährlich

Module capacity
unlimited

Modullevel
---

Modulart
je nach Studiengang Pflicht oder Wahlpflicht

Lern-Lehrform / Type of program
Lecture + Exercises: Physiology and life modes of prokaryotes (2 + 1 semester periods per week [SPPW], 3 CP)
Lecture + Exercises: Microbial Diversity (2 + 1 SPPW, 3 CP)
1 broadening lecture or seminar (Biological significance of suspended matter / Sediment microbiology / Broadening Seminar: Scientific writing and presentation) (2 SPPW, 3 CP)
Microbiological + ICBM Colloquium (2 CP)
Excursions (1 CP)

Vorkenntnisse / Previous knowledge

Examination Time of examination Type of examination
Final exam of module At the end of the lecture period. Two written tests about the contents of the lectures 'Physiology and life modes of prokaryotes' and Microbial Diversity.

At least 50 % of the reachable points in written tests about the two lectures mentioned above.

Course type Comment SWS Frequency Workload attendance
Lecture 6.00 84 h
Exercises 2.00 28 h
Study trip 1.00 14 h

Total time of attendance for the module 126 h
mar510 - Molecular Mechanisms and Interactions

<table>
<thead>
<tr>
<th>Module label</th>
<th>Molecular Mechanisms and Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar510</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master Microbiology &gt; Mastermodule</td>
</tr>
</tbody>
</table>

**Contact person**
- Module responsibility
  - Ralf Andreas Rabus
- Module counseling
  - Lehrende der Mikrobiologie

**Entry requirements**
- none

**Skills to be acquired in this module**
The students know the molecular mechanisms of metabolism, genetics and evolution. They know regulatory mechanisms on the molecular level and feedback mechanisms between organisms. They know the basics of microbial ecology and the biogeochemistry of important microbial habitats. They know molecular and chemical-analytical methods of microbiology. The have experience with the field study of microorganisms.

**Module contents**
- Lecture + exercises: Molecular Microbiology
  - Part I on DNA: structure, DNA-proteins, DNA-replication, recombination, transposition, mutation, repair, plasmids and DNA-exchange
  - Part II on gene expression: transcription, regulation of transcription, translation
  - Part III on enzymes: protein structures, basic concepts and kinetics, catalytic and regulatory strategies
  - Part IV on regulatory networks: diauxie and catabolite repression, oxygen regulation, chemotaxis
- Lecture + exercises: Microbial Ecology
  - Principles of biogeochemistry, global element cycles, mineralization of organic substances, chemotaxis, aquatic habitats, terrestrial habitats, deep subsurface biosphere, syntrophy and symbiosis, microbes in earth history, methods in microbial ecology, isotope fractionation, applied microbiology, bioremediation
- Broadening Lecture: Scientific writing and presentation
  - Presentation and analysis of structure und style of scientific publications, presentation and discussion of own written elaborations
- Excursions into the field

**Reader's advisory**
- Molecular Microbiology:
  - Stryer – Biochemistry
  - Voet – Biochemistry
  - Knippers – Molekulare Genetik
  - Snyder – Molecular Genetics of Bacteria
  - Brock - Microbiology

**Links**
- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Reference text: 12 CP | VL; Ü; KO; EX | 2. FS | Rabus

**Modulart**
- je nach Studiengang Pflicht oder Wahlpflicht

**Lern-Lehrform / Type of program**
- Lecture + Exercises: Molecular microbiology (2 +1 SPPW, 3 CP)
- Lecture + Exercises: Microbial ecology (2 + 1 SPPW, 3 CP)
- Broadening lecture: Scientific writing and presentation (2 SPPW, 3 CP)
- Excursion (1 CP)
- Microbiological + ICBM Colloquium (2 CP)

**Vorkenntnisse / Previous knowledge**

**Examination**
- Time of examination: At the end of the lecture period, the exact date will be announced during the course.
- Type of examination: Two written tests about the contents of the lectures 'Molecular Microbiology’ and 'Microbial Ecology'. At least 50 % of the reachable points in written tests about the two lectures mentioned above. Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course.
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Comment</td>
<td>4.00</td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2.00</td>
<td></td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td></td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Study trip</td>
<td></td>
<td>1.00</td>
<td></td>
<td></td>
<td>14 h</td>
</tr>
</tbody>
</table>

**Total time of attendance for the module** 126 h
mar520 - Main Module Proteomics

Module label: Main Module Proteomics
Module code: mar520
Credit points: 12.0 KP
Workload: 360 h
Used in course of study:
- Master Microbiology > Mastermodule

Contact person:
- Module responsibility:
  - Ralf Andreas Rabus
- Module counseling:
  - Lars Wöhlbrand
  - N. N.

Entry requirements:
Lecture: Physiology and diversity of prokaryotes
Lecture: Molecular Microbiology

Skills to be acquired in this module:
The students are getting directly involved in actual scientific projects in the area of physiological and/or meta-proteomics (under guidance). They

- get acquainted with state-of-the-art proteomic concepts and technologies,
- know how to write concise scientific protocols,
- know how to present/discuss their results in public.

Module contents:
Functional proteomics: Daily lectures introduce the students to theory and concepts of modern proteomics: (i) separation of cellular compartments and protein extraction, (ii) gel-based and -free protein separation, (iii) gel-staining, protein detection and quantification by image analysis, (iv) integrative mass spectrometry-based protein identification, (v) meta-proteomics, and (vi) focused genomic analysis. Each student will prepare a seminar presentation on selected publications relevant for the actual scientific project. The following sequence of experiments will be conducted: - extraction and quantification of total protein from prepared cell samples (incl. separation of compartments), - protein separation by SDS-PAGE and staining with Coomassie, silver and/or fluorescent dyes, - digital image acquisition and analysis, - manual and/or automated band excision, - protein identification by nanoLC-ESI-MS/MS, - nanoLC-MALDI-coupling and protein identification by MALDI-TOF-MS/MS, - physiological interpretation of predicted protein functions and relevant genomic context.

Reader's advisory:
Lottspeich - Bioanalytik

Links:

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: yearly
Module capacity: unlimited
Reference text: 12 CP | SE; PR | 2. FS | Rabus

Module level:
---

Modulart: je nach Studiengang Pflicht oder Wahlpflicht

Vorkenntnisse / Previous knowledge:

Examination:

<table>
<thead>
<tr>
<th>Type of program</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Announced at the beginning of the course.</td>
<td>One assessments of examination: Portfolio: Written protocol and contribution to the seminar (seminar presentation) Seminar presentation (25%), written protocol (75 %). Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice or the course.</td>
</tr>
</tbody>
</table>

Course type:

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>8.00</td>
<td></td>
<td>112 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module: 140 h
mar530 - Main Module Ecophysiology of anaerobes

Module label  Main Module Ecophysiology of anaerobes
Module code  mar530
Credit points  12.0 KP
Workload  360 h
Used in course of study  • Master Microbiology > Mastermodule
Contact person
  Module responsibility
  - Bert Engelen
  Authorized examiners
  - Alle hier genannten
Entry requirements  Lecture: Microbial Physiology and Diversity, recommended: Sediment Microbiology
Skills to be acquired in this module  The students can contribute to current scientific projects (under guidance). They know modern analytical techniques. They know and understand recent scientific literature. They can write scientific reports, present their results and discuss them in the public.
Module contents  "Ecophysiology of prokaryotes": Projects derived from current scientific programs are carried out, typically in groups of two students guided by a senior scientist or Ph.D student. Typical project deal with:
  - Anaerobic processes
  - Molecular analysis of microbial communities
  - Sediment microbiology
  - Physiological experiments and activity measurements
  - Impact of viruses
  - Microscopic analysis of chemotaxis
In the accompanying seminar, recent scientific studies in international journals are presented by the students. The results are summarized and discussed in a protocol fulfilling scientific level requirements.

Reader's advisory  will be announced

Links
Language of instruction  English
Duration (semesters)  1 Semester
Module frequency  jährlich
Module capacity  unlimited
Reference text  12 CP | SE; PR | 1. FS | Cypionka
Modulart  ---
Lern-/Lehrform / Type of program  Seminar (2 CP ), practical course (10 CP)
  Block course, 4 weeks, seminar and laboratory work
Vorkenntnisse / Previous knowledge
Examination  Time of examination  Type of examination
Final exam of module  Announced during the course.
  One assessments of examination:
  Portfolio: Written protocol and contribution to the seminar (seminar presentation)
  Seminar presentation (no mark), written protocol (100%)
  Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice or the course supervisor.)

Course type  Comment  SWS  Frequency  Workload attendance
Seminar  2.00
Practical  8.00  112 h
Total time of attendance for the module  140 h
mar540 - Main Module Ecology of Marine Microbial communities

Module label: Main Module Ecology of Marine Microbial communities
Module code: mar540
Credit points: 12.0 KP
Workload: 360 h

Used in course of study:
- Master Microbiology > Mastermodule

Contact person:
Module responsibility
- Meinhard Simon

Authorized examiners
- Alle hier genannten

Module counseling
- Thorsten Henning Brinkhoff

Entry requirements:
Lecture: Biological significance of suspended matter

Skills to be acquired in this module:
The students learn how to address scientific questions and to carry out experimental and/or field work in scientific projects guided by experienced researchers and PhD students. The projects are designed in the context of ongoing research on the ecology of bacterial communities in the water column, oxic sediments and associated to eukaryotic organisms. The students learn to apply various state of the art methods and approaches in aquatic microbial ecology and how to interpret data and results of the projects. They learn to write protocols in the structure of scientific papers and to present own results and reference studies to an audience.

The students gain competences in how to design experiments and address specific research questions in aquatic microbial ecology and to choose appropriate methods. They obtain practical experience in project-targeted application of state of the art methods. This enables them to obtain a more critical view on the application of these and other methods and on the validity of scientific investigations in aquatic microbial ecology.

Module contents:
"Ecology of marine microbes": The students carry out small projects coming out of ongoing research of PhD Thesis work and other current research of the working group. Typically a group of two of three students is guided by a senior researcher and/or a PhD student. In the accompanying seminar, recent scientific studies published in international journals are presented by the students. The results are written down and discussed in a protocol fulfilling scientific level requirements.

Reader's advisory:
will be announced

Links:

Languages of instruction:
English, German

Duration (semesters):
1 Semester

Module frequency:
jährlisch

Module capacity:
unlimited

Reference text:
12 CP | SE; PR | 2. FS | Simon

Modulelevel:
---

Modulart:
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program:
Seminar (2 CP, 1 SPPW), practical course (10 CP, 9 SPPW)

Vorkenntnisse / Previous knowledge:

Examination Time of examination Type of examination
Final exam of module to be announced during the course.

One assessments of examination:
Portfolio: Written protocol and contribution to the seminar (seminar presentation)
Seminar presentation (no mark), written protocol (75 %),
Final oral examination (25 %). Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)

Course type Comment SWS Frequency Workload attendance
Seminar 1.00 14 h
Practical 9.00 126 h
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total time of attendance for the module</td>
<td></td>
<td></td>
<td></td>
<td>140 h</td>
</tr>
</tbody>
</table>
mar560 - Profile Module Fermentation

Module label: Profile Module Fermentation
Module code: mar560
Credit points: 6.0 KP
Workload: 180 h
Used in course of study: Master Microbiology > Mastermodule

Contact person
Module responsibility
- Ralf Andreas Rabus

Authorized examiners
- Alle hier genannten

Module counseling
- Lars Wöhlbrand

Entry requirements
Lecture: Physiology and diversity of prokaryotes (successfully completed)
Lecture: Molecular Microbiology

Skills to be acquired in this module
The students are getting directly involved in actual scientific projects in the area of general physiology (under guidance). They understand the scientific rational and design of the experiment(s), get acquainted with state-of-the-art concepts and technologies for process-controlled cultivation and growth balancing, know how to write concise scientific protocols, know how to present/discuss their results in public.

Module contents
“Fermentation”: Daily lectures introduce the students to theory and concepts of process-controlled cultivation: (i) growth physiology and balancing, (ii) design and operating mode of laboratory fermenters, (iii) pH / pO2 electrodes and kLa-determination of O2-supply, (iv) on-line gas analysis (O2, CO2, etc.) by mass spectrometry. Each student will prepare a seminar presentation on selected publications relevant for the actual scientific project.

The following sequence of experiments will be conducted:
- cultivation of bacterial pure cultures in Erlenmeyer flasks as inoculum for actual “fermenter”-cultures
- determination of optical density, the live count and dry weight of cells during cultivation in fermenter
- (dis)assembly and sterilization of fermentation devices
- operate process-controlled fermenters (incl. O2 and pH adjustments and sterile sampling)
- determine O2-consumption and CO2-production rates based on on-line GC-MS measurements
- quantitative determination and calculation growth balances

Reader’s advisory

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Reference text: 6 CP | SE; PR | 2. FS | Rabus

Modullevel: ---
Modulart: je nach Studiengang Pflicht oder Wahlpflicht
Lern-Lehrform / Type of program: Seminar (2 CP, 1 SPPW), practical course (4 CP, 4 SPPW)

Vorkenntnisse / Previous knowledge:

Examination Time of examination Type of examination
Final exam of module Announced at the beginning of the course. One assessment of examination:
- Portfolio (seminar presentation, written protocol)
- Protocol (100 %), seminar presentation (no mark).
- Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)

Course type Comment SWS Frequency Workload attendance
Seminar 1.00 14 h
Practical 4.00 56 h

Total time of attendance for the module: 70 h
mar570 - Profile Module Introduction to DNA-sequencing and sequence analysis

Module label | Profile Module Introduction to DNA-sequencing and sequence analysis
Module code | mar570
Credit points | 6.0 KP
Workload | 180 h
Used in course of study | Master Microbiology > Mastermodule

Contact person
Module responsibility
- Thorsten Henning Brinkhoff

Authorized examiners
- Thorsten Henning Brinkhoff
- Liliana Cristina Moraru

Module counseling
- Liliana Cristina Moraru

Entry requirements
Lecture during the course

Skills to be acquired in this module
The students know how to
- sequence DNA by Sanger sequencing
- assemble DNA sequences
- use internet databases for sequence comparison
- use the various facilities of the NCBI database
- analyze bacterial genomes for presence of specific genes
- use ARB, databases and literature data to create phylogenetic trees
- design primers and probes
- present and discuss scientific results
- write a scientific protocol

Module contents
Introduction into DNA-sequencing and sequence analysis: The course starts with a lecture on the first two days. During the following days the participants will give seminar talks about different scientific studies for which DNA sequencing was highly relevant. DNA sequencing will be taught in the lab of the working group. Sequence analysis, introduction into the use of various internet databases and the phylogeny program ARB will be demonstrated by individual use of laptops of the institute.

Reader’s advisory

Links
Language of instruction | English
Duration (semesters) | 1 Semester
Module frequency | jährlich
Module capacity | unlimited
Reference text | 6 CP | SE; PR | 1. or 3. FS | Brinkhoff

Modulart
- je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program
- Seminar (2 CP, 1 SPPW), practical course (4 CP, 4 SPPW)

Vorkenntnisse / Previous knowledge

Examination | Time of examination | Type of examination
Final exam of module | Announced during the course. | One assessment of examination:
| | | Portfolio (seminar presentation, written protocol)
| | | Protocol (75 %), seminar presentation (25 %).
| | | Active participation (Active and documented participation in practical courses [labs, exercises, seminars, field trips] and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)

Course type | Comment | SWS | Frequency | Workload attendance
Seminar | 1.00 | | | 14 h
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical</td>
<td></td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
<tr>
<td><strong>Total time of attendance for the module</strong></td>
<td></td>
<td></td>
<td></td>
<td>70 h</td>
</tr>
</tbody>
</table>

11 / 23
mar580 - Profile Module Microbial ecology of marine sediments

<table>
<thead>
<tr>
<th>Module label</th>
<th>Profile Module Microbial ecology of marine sediments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar580</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master Microbiology &gt; Mastermodule</td>
</tr>
</tbody>
</table>

Contact person

- Module responsibility
  - Bert Engelen
  - Alle hier genannten

Entry requirements

- Lecture: Microbial ecology

Skills to be acquired in this module

- The students know how to
  - sample marine sediments
  - characterize the cores sedimentologically and biogeochemically
  - collect and analyze porewater
  - determine total cell counts
  - quantify groups of organisms molecular biologically
  - cultivate different physiological groups of bacteria
  - present and discuss scientific results
  - write a scientific protocol

Module contents

Microbial ecology of marine sediments: The physiological diversity of microorganisms and their spatial distribution within marine sediments are demonstrated according to chemical and physical parameters. Different physiological groups are analysed along the sediment column of intertidal sandflat or beach. Sediment sampling is performed at the back barrier area of the island ‘Spiekeroog’ at the beginning of the course. Oxygen penetration, porewater sulfate and methane concentrations are measured down to a depth of app. 5 meters. As microbiological parameters, total cell numbers are counted and the numbers of archaea and bacteria are calculated after quantitative PCR (qPCR). More specifically, the relative amounts of sulfate reducers and methanogens are also determined by qPCR targeting key-genes for sulfate reduction and methanogenesis. Furthermore, every single group of students will specifically enrich one physiological type of microorganisms from distinctive sediment layers. Microbial growth and activity are monitored over the whole period of the course.

Accompanying the course, all participants will give a talk to introduce ‘their’ physiological group concerning its ecology, physiology, and strategies for a specific enrichment. All the data and observations of the single groups will be combined at the end of the course to draw an overall picture of microbial diversity and the occurrence of the different physiological groups corresponding to relevant geochemical gradients.

Reader's advisory

Links

- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Reference text: 6 CP | SE; PR | 2. FS | Engelen
- Modullevel: ---
- Modulart: je nach Studiengang Pflicht oder Wahlpflicht
- Lern-Lehrform / Type of program: Seminar (2 CP, 1SPPW ), practical course (4 CP, 4 SPPW)
  - Block course, 2 weeks, seminar and laboratory work

Vorkenntnisse / Previous knowledge

Examination

- Time of examination: Announced during the course.
- Type of examination: One assessment of examination:
  - Portfolio (seminar presentation, written protocol)
  - Protocol (100 %), seminar presentation (no mark).
  - Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or...
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
<th>seminar presentations according to the advice of the course supervisor.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>Comment</td>
<td>SWS</td>
<td>Frequency</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>4.00</td>
<td></td>
</tr>
</tbody>
</table>

**Total time of attendance for the module**

70 h
mar600 - Profile Module Methods in Aquatic Microbial Ecology

Module label  Profile Module Methods in Aquatic Microbial Ecology
Module code   mar600
Credit points  6.0 KP
Workload      180 h
Used in course of study
  • Master Microbiology > Mastermodule

Contact person
  Module responsibility
  • Meinhard Simon
  Authorized examiners
  • Alle hier genannten
  Module counseling
  • Thorsten Henning Brinkhoff

Entry requirements
For the practical course lecture: Methods in Aquatic Microbial Ecology

Skills to be acquired in this module
The students learn to:
  • Analyze bacterial substrates at ambient concentrations such as dissolved amino acids and carbohydrates by high performance liquid chromatography (HPLC), organic carbon by TOC and POC/PON analyser and the composition of the pool of dissolved organic matter by Fourier-Transform Ion Cyclotron Resonance Mass spectrometry (FT-ICR-MS),
  • Determine bacterial cell numbers by flow cytometry and epifluorescence microscopy and to analyse these data by image analysis,
  • Extract bacterial DNA from water and sediment samples,
  • to amplify bacterial genes by specific primers and PCR,
  • Assess bacterial communities by culture-independent methods such as denaturing gradient gel electrophoresis,
  • present and discuss scientific results
  • write a scientific protocol
  • The students gain competences in:
  • Understanding how to analyse dissolved substrates of heterotrophic aquatic bacterial communities by state of the art approaches.
  • How to assess the abundance of aquatic bacterial communities by state of the art approaches.
  • Analyzing the composition of bacterial communities by PCR-based culture-independent approaches.

Module contents
Methods in Aquatic Microbial Ecology: The course starts with a lecture introducing basic issues of aquatic microbial ecology with an emphasis on methodological aspects. This lecture is completed before the practical work starts.
During the practical course of a block of two weeks the participants carry out analyses and experiments on:
  • determining the concentration of dissolved organic substrates (amino acids, carbohydrates, dissolved and particulate organic carbon),
  • the abundance of bacterial communities in aquatic systems
  • The composition of bacterial communities in environmental samples by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA targeted gene fragments.

The main emphasis is on analyses and approaches of bacterial communities in the water column.

Reader's advisory
Lecture notes, available on Stud.IP

Links
Language of instruction  English
Duration (semesters)  1 Semester
Module frequency  jährlich
Module capacity  unlimited
Reference text  6 CP | SE; PR | 1. or 3. FS | Simon
Modullevel  MM (Mastermodul)
Modulart  Wahlpflicht
Lern- / Lehrform / Type of program  Lecture, seminar (2 CP, 1 SPPW), practical course (4 CP, 4 SPPW)

Vorkenntnisse / Previous knowledge

| Examination | Time of examination | Type of examination |
### Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>One assessment of examination: Portfolios (seminar presentation, written protocol)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protocol (100 %), seminar presentation (no mark). Active participation (Active and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>documented participation in practical courses (labs, exercises, seminars, field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>trips) and courses. These include e.g. the delivery of exercises, writing a lab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>report or seminar presentations according to the advice of the course supervisor.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td>14 h</td>
<td>14 h</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>

**Total time of attendance for the module**

70 h
mar610 - Profile Module Isolation and characterization of microorganisms

<table>
<thead>
<tr>
<th>Module label</th>
<th>Profile Module Isolation and characterization of microorganisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar610</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>• Master Microbiology &gt; Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td>Module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Bert Engelen</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>Microbial Physiology and diversity (M1)</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>In this course the students will isolate bacteria and other microorganisms. They will learn classical microbiological techniques as enrichment culture, aseptic work, preparation of liquid and solid media, cultivation under oxic and anoxic condition, on agar plates and in deep agar dilution, description of microbes by techniques as staining, microscopy, microphotography.</td>
</tr>
<tr>
<td>Module contents</td>
<td>Isolation and characterization of microorganisms: Seminar</td>
</tr>
<tr>
<td></td>
<td>Prior to the laboratory work the participants shall read literature about first isolation, description and current studies on their target organisms and present this and their isolation strategy in the seminar. During the course and at the end, results and a possible molecular identification of isolates will be presented and discussed. Practical work: Every student prepares media and agar plates required for the isolation of the different target organisms. If pure cultures have been isolated, they should be transferred to long-term storage on agar and in liquid nitrogen. Sampling sites and different stages of the enrichment and isolation are documented by macro- and microphotography and described in the report. Finally, tests to verify purity of the culture and its identification, as well as a phylogenetic analysis are requested.</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td>6 CP</td>
</tr>
<tr>
<td>Modullevel</td>
<td>---</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Seminar (2 CP, 1 SPPW ), practical course (4 CP, 4 SPPW)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Announced during the course.</td>
</tr>
<tr>
<td></td>
<td>One assessment of examination:</td>
</tr>
<tr>
<td></td>
<td>Portfolio (seminar presentation, written protocol)</td>
</tr>
<tr>
<td></td>
<td>Protocol (100 %), webpage, seminar presentation (no mark). Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Seminar</td>
<td>1.00</td>
</tr>
<tr>
<td>Practical</td>
<td>4.00</td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td></td>
</tr>
</tbody>
</table>
mar620 - Profile Module Marine Chemical Ecology

Module label Profile Module Marine Chemical Ecology
Module code mar620
Credit points 6.0 KP
Workload 180 h
Used in course of study • Master Microbiology > Mastermodule

Contact person
Module responsibility
- Peter Schupp
Module counseling
- Sven Rohde

Entry requirements Lecture: Organic chemistry

Skills to be acquired in this module Students will learn about the chemical properties and major ecological roles of secondary metabolites, how to investigate the secondary metabolites of marine invertebrates and algae, how to analyze secondary metabolite profiles, how to isolate compounds of interest and how to conduct various bioassays to assess potential ecological roles of crude extracts and potentially isolated compounds. Students will also learn how to statistically evaluate their results.

Module contents Chemical Ecology: The course consists of lectures, followed by laboratory experiments. Students will research about various topics in marine chemical ecology. Laboratory work will include production of extracts from various invertebrates and algae. Extracts will be tested in various feeding assays to assess the chemical properties of extracts. Extracts will also be tested for antimicrobial activity with environmental strains. This includes the culture of test bacteria and antimicrobial assays. Final evaluation will be a laboratory report about the experiments. This will include statistical analysis of their experiments and discussion of their results in the framework of the lectures and seminars presented during the course.

Reader's advisory Marine Chemical Ecology, McClintock, Baker

Links Language of instruction English
Duration (semesters) 1 Semester
Module frequency jährlich
Module capacity unlimited
Modullevel Abschlussmodul (Abschlussmodul)
Modulart Wahlpflicht

Lern-/Lehrform / Type of program Seminar (2 CP, 1 SPPW ), practical course (4 CP, 4 SPPW)
Compact Course

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>One assessment of examination: Portfolio (seminar presentation, written protocol) Portfolio (seminar presentation – no mark, written protocol 100%). Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 70 h
mar621 - Profile Module Techniques in light microscopy and electron microscopy

Module label: Profile Module Techniques in light microscopy and electron microscopy
Module code: mar621
Credit points: 6.0 KP
Workload: 180 h

Used in course of study:
- Master Microbiology > Mastermodule

Contact person:
- Module responsibility
  - Erhard Rhiel

Entry requirements:
none

Skills to be acquired in this module:
The students will learn:
- the basics/theory of scanning electron microscopy (SEM) and transmission electron microscopy (TEM)
- different sample preparation methods for SEM
- to operate our scanning electron microscope
- to perform sputter coating
- to perform negative staining TEM
- to operate our transmission electron microscope
- to perform immuno-labelling for light microscopy

Module contents:
The profile module "Techniques in light microscopy and electron microscopy" runs over a period of 10 days, distributed over three weeks. On the first day, seminars will introduce into the theory, i.e. of SEM and TEM. The remaining 9 days are for practice. The main topics of the course are: basic principles and functioning of light and electron microscopes, sample preparation, fixation, low temperature SEM, low vacuum SEM, negative staining TEM, and immuno-labelling for light microscopy.

Reader’s advisory:
will be announced

Links:

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited

Reference text:
6 CP | SE; PR | 1. or 3. FS | Rhiel

Module level:
---

Modulart:
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program:
Lecture (1 CP), seminar (1 CP) & practical course (4 CP)
Seminar and laboratory work, at three days for three weeks

Vorkenntnisse / Previous knowledge:

Examination:

<table>
<thead>
<tr>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>after delivery of the two course assessments</td>
<td>One assessment of examination: (seminar presentation, poster).</td>
</tr>
<tr>
<td></td>
<td>Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)</td>
</tr>
</tbody>
</table>

Course type:

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module:
70 h

18 / 23
mar630 - Research Project

Module label: Research Project
Module code: mar630
Credit points: 12.0 KP
Workload: 360 h

Used in course of study:
- Master Microbiology > Mastermodule

Contact person:
Module responsibility
- Bert Engelen
Module counseling
- Lehrende der Mikrobiologie

Entry requirements:
1 main and 1 profile module

Skills to be acquired in this module:
The students are able to work (under guidance) on an ambitious research project. They understand recent scientific literature and can regard it for their own work. They can prepare, carry out, write down, present and defend their work in the public.

Module contents:
The contents concern variable recent scientific questions on a high scientific level.

Reader's advisory:
project-specific, will be announced

Links:
Language of instruction: English
Duration (semesters): 2 Semester
Module capacity: unlimited
Modulart: je nach Studiengang Pflicht oder Wahlpflicht
Lern-/Lehrform / Type of program:
- Practical work (10 CP), Seminar (2 CP)

Obligatory (2 Research Projects have to be completed)

Vorkenntnisse / Previous knowledge

Examination Time of examination Type of examination
Final exam of module: Announced during the course.
Two assessments of examination:
Written protocol and / or written English thesis, presentation
Quality of the scientific performance and thesis (75 %),
Final seminar and public defense (25 %). Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)

Course type Comment SWS Frequency Workload attendance
Seminar
6.00
84 h
Practical
12.00
168 h

Total time of attendance for the module: 252 h
mar640 - Research Project

Module label: Research Project
Module code: mar640
Credit points: 12.0 KP
Workload: 360 h
Used in course of study: Master Microbiology > Mastermodule

Contact person:
- Module responsibility
  - Bert Engelen
- Module counseling
  - Lehrende der Mikrobiologie

Entry requirements: 1 main and 1 profile module

Skills to be acquired in this module:
The students are able to work (under guidance) on an ambitious research project. They understand recent scientific literature and can regard it for their own work. They can prepare, carry out, write down, present and defend their work in the public.

Module contents:
The contents concern variable recent scientific questions on a high scientific level.

Reader's advisory:
project-specific, will be announced

Links:
Language of instruction: English
Duration (semesters): 2 Semester
Module frequency: halbjährlich
Module capacity: unlimited
Modullevel: ---
Modulart: je nach Studiengang Pflicht oder Wahlpflicht
Lern-/Lehrform / Type of program: Practical work (10 CP), Seminar (2 CP)

Vorkenntnisse / Previous knowledge:

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
</table>
| Final exam of module | Announced during the course. | Two assessments of examination:
  - Written protocol and / or written English thesis, presentation
  - Quality of the scientific performance and thesis (75 %),
  - Final seminar and public defense (25 %).

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>6.00</td>
<td></td>
<td>84 h</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>12.00</td>
<td></td>
<td>168 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module: 252 h
mar622 - Profile Module R programming for (meta)-genomic sequence analysis

<table>
<thead>
<tr>
<th>Module label</th>
<th>Profile Module R programming for (meta)-genomic sequence analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar622</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>• Master Microbiology &gt; Mastermodule</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>Module responsibility</td>
<td></td>
</tr>
<tr>
<td>• Liliana Cristina Moraru</td>
<td></td>
</tr>
<tr>
<td>Authorized examiners</td>
<td></td>
</tr>
<tr>
<td>• Liliana Cristina Moraru</td>
<td></td>
</tr>
<tr>
<td>Entry requirements</td>
<td>The course „Introduction in sequencing and sequence analysis”. Previous programming experience is not required.</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>DNA sequencing has become a routine method in microbiology research. Most of the times, sequence analysis requires knowledge of a programming language. One of the programming languages most used for this purpose is R. The course will cover the following topics:</td>
</tr>
<tr>
<td>I. programming in R using an integrated development environment (RStudio)</td>
<td></td>
</tr>
<tr>
<td>II. working with strings (stringr package)</td>
<td></td>
</tr>
<tr>
<td>III. working with lists and data frames (readr and dplyr package)</td>
<td></td>
</tr>
<tr>
<td>IV. sequence analysis (seqinr, Bioconductor packages: Biostrings, GenomicRanges, Decipher)</td>
<td></td>
</tr>
<tr>
<td>V. (meta)-genomic and data visualization (ggplot2, Gviz)</td>
<td></td>
</tr>
<tr>
<td>VI. Creating sequence / metadata databases</td>
<td></td>
</tr>
<tr>
<td>VII. Accessing and mining sequence / metadata databases though R based web applications (Shiny, DT and Shinyjs packages)</td>
<td></td>
</tr>
<tr>
<td>VIII. reporting in R (Rmarkdown and Knitr packages)</td>
<td></td>
</tr>
<tr>
<td>IX. managing code (Roxygen2 package)</td>
<td></td>
</tr>
<tr>
<td>X. microbial genome annotation using R</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td>R programming for (meta)-genomic sequence analysis will run over a two weeks period. A single, introductory lecture will be offered within the first day of the course. Then, the course will be structured in programming exercises which cover all topics at point 12. The exercises are designed to exemplify the use R programming within the framework of microbial (meta)-genome analysis. In addition to the teacher –student sessions, the students will work on individual projects. Each student will receive a short microbial genome (e.g. viral genome), and will analyze it by building custom, self-programmed pipelines. The output from the individual projects will consist in a analysis report prepared in Rmarkdown and Knitr packages. The report will include both the R code and the genome analysis results.</td>
</tr>
<tr>
<td>Reader’s advisory</td>
<td>will be announced</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>once a year</td>
</tr>
<tr>
<td>Module capacity</td>
<td>15</td>
</tr>
<tr>
<td>Modullevel</td>
<td>---</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlmodul / Opportunity</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Seminar and computer lab, 2 continuous weeks</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Announced during the course.</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Seminar</td>
<td>2.00</td>
</tr>
<tr>
<td>Practical</td>
<td>2.00</td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td>56 h</td>
</tr>
</tbody>
</table>
**Abschlussmodul**

*mam - Master´s Thesis Module*

<table>
<thead>
<tr>
<th>Module label</th>
<th>Master’s Thesis Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mam</td>
</tr>
<tr>
<td>Credit points</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master Microbiology &gt; Abschlussmodul</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>Module responsibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bert Engelen</td>
</tr>
<tr>
<td>Authorized examiners</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alle hier genannten</td>
</tr>
<tr>
<td>Module counseling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lehrende der Mikrobiologie</td>
</tr>
</tbody>
</table>

**Entry requirements**

Skills to be acquired in this module: The students are able to work (under guidance) on an extended research project. They understand recent scientific literature and can regard it for their own work. They can prepare, carry out, write down, present and defend their work in the public.

**Module contents**
The contents concern variable recent scientific questions on a high scientific level

**Reader's advisory**

Links

- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: halbjährlich
- Module capacity: unlimited
- Module level: Abschlussmodul (Abschlussmodul)
- Modulart: Pflicht

Lern-/Lehrform / Type of program: Seminar (2 CP, 2 SPPW); Practical work (28CP, 28 SPPW)

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Written English thesis, seminar with public discussion in English</td>
</tr>
<tr>
<td></td>
<td></td>
<td>According to the examination regulations; quality of the scientific performance and thesis (83.3 %), final seminar and public defense (16.7 %)</td>
</tr>
</tbody>
</table>

Course type: Seminar

SWS: 2.00

Frequency

Workload attendance: 28 h