Background Modules

neu120 - Lab Exercises in Development and Evolution

<table>
<thead>
<tr>
<th>Module label</th>
<th>Lab Exercises in Development and Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu120</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Used in course of study
- Master Neuroscience > Background Modules

Contact person
- Module responsibility
 - Ulrike Sienknecht
- Authorized examiners
 - Alle hier genannten
- Module counseling
 - Hans Gerd Nothwang

Entry requirements
- required previous credits

Skills to be acquired in this module
- Neurosci. knowlg. Expt. methods Independent research + Scient. literature + Social skills
- ++ Interdiscipl. knowlg. Maths/Stats/Progr. + Data present./disc. + Scientific English Ethics
- Fundamentals and concepts of developmental and evolutionary biology

Module contents
- Lab exercises in comparative developmental biology on mouse and chicken embryos. Methods: in-ovo live observation; developmental stage discrimination and description, tissue preparation for histology, sectioning, staining, and microscopy

Reader's advisory

Links
- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Reference text: Course in the first half of the semester
- Modullevel: MM (Mastermodul)
- Modulart: Wahlpflicht

Lern-/Lehrform / Type of program

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>same winter term</td>
<td>SWS</td>
<td>Frequency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>4.00</td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>0 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total time of attendance for the module
- 56 h
neu140 - Neurophysiology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neurophysiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu140</td>
</tr>
<tr>
<td>Credit points</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master Neuroscience > Background Modules</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td>Module responsibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Martin Greschner</td>
</tr>
<tr>
<td>Authorized examiners</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alle hier genannten</td>
</tr>
<tr>
<td>Module counseling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Karin Dedek</td>
</tr>
<tr>
<td></td>
<td>Jutta Kretzberg</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>attendance in pre-meeting</td>
</tr>
<tr>
<td>Module contents</td>
<td>Lecture: first week, 5*4 h introduction to current neurophysiology. Seminar: weeks 2-4, each 4 h discussion of background literature and results of own experiments. Lab course: weeks 2-4, each 25 h electrophysiological experiments with introduction to at least two of the techniques extracellular recording / intracellular recording / patch clamp</td>
</tr>
<tr>
<td>Reader's advisory</td>
<td>Background and seminar literature will be available in Stud.IP</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td>Course in the first half of the semester Regular active participation and presentation(s) within the scope of the seminar are required to pass the module</td>
</tr>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>summer semester, first half</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2.00</td>
</tr>
<tr>
<td>Seminar</td>
<td>1.00</td>
</tr>
<tr>
<td>Practical</td>
<td>5.00</td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td>112 h</td>
</tr>
</tbody>
</table>
neu150 - Neuroanatomy

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neuroanatomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu150</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master Biologie > Background Modules</td>
</tr>
<tr>
<td></td>
<td>Master Neuroscience > Background Modules</td>
</tr>
</tbody>
</table>

Contact person

- Ulrike Janssen-Bienhold
- Karin Dedek

Module responsibility

- Ulrike Janssen-Bienhold
- Karin Dedek

Authorized examiners

- Karin Dedek
- Ulrike Janssen-Bienhold

Module counseling

- Karin Dedek

Entry requirements

- attendance in pre-meeting

Skills to be acquired in this module

- Neurosci. knowlg.
- Expt. methods
- Independent research
- Scient. literature
- Social skills
- Interdiscipl. knowlg.
- Maths/Stats/Progr.
- Data present./disc.
- Scientific English
- Ethics

Practice: Performing neuroanatomical experiments. Gaining modern methodological skills.

Module contents

- Lecture: 14 h Introduction to current neurobiological approaches and results.
- Seminar: 14 h Discussion of background literature and results of own experiments.
- Lab course: 3 weeks, each 24 h neuroanatomical experiments in small groups on vertebrate retina and brain.

Reader's advisory

- Background and seminar literature will be available in Stud.IP

Links

- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Reference text: Course in the first half of the semester
- Regular active participation and presentation(s) within the scope of the seminar are required to pass the module

Modulelevel

- MM (Mastermodul)

Modulart

- Wahlpflicht

Lern-/Lehrform / Type of program

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>summer semester, first half</td>
<td>Portfolio (75 %), report (25%)</td>
</tr>
</tbody>
</table>

Workload attendance

Lecture
- Comment: 1.00
- SWS: SuSe
- Frequency: 14 h

Seminar
- Comment: 1.00
- SWS: SuSe
- Frequency: 14 h

Practical
- Comment: 3.00
- SWS: SuSe
- Frequency: 42 h

Total time of attendance for the module

- 70 h
neu170 - Molecular Genetics and Cell Biology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Molecular Genetics and Cell Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu170</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>• Master Neuroscience > Background Modules</td>
</tr>
</tbody>
</table>

Contact person

<table>
<thead>
<tr>
<th>Module responsibility</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• John Neidhardt</td>
<td></td>
</tr>
<tr>
<td>Authorized examiners</td>
<td></td>
</tr>
<tr>
<td>• Alle hier genannten</td>
<td></td>
</tr>
<tr>
<td>Module counseling</td>
<td></td>
</tr>
<tr>
<td>• Karl-Wilhelm Koch</td>
<td></td>
</tr>
<tr>
<td>• Kathrin Thedieck</td>
<td></td>
</tr>
</tbody>
</table>

Entry requirements

Skills to be acquired in this module

+ Neurosci. knowlg. + Expt. methods Independent research + Scient. literature + Social skills
++ Interdiscipl. knowlg. Maths/Stats/Progr. Data present./disc. + Scientific English Ethics

Students interested in molecular genetics, cell biology, molecular biology, and neurobiology will acquire the knowledge after completion of the course:

- Genetic basis of diseases, inheritance patterns of diseases and gene therapeutic approaches
- Cell nucleus and genomic DNA, Nucleic acid structure and function
- Signaling and Cancer
- Gene expression
- RNA Processing
- Translation
- structures of proteins and protein functions
- Membranes and membran proteins
- Energie metabolism in the cell
- sequencing techniques and knowledge of several other selected lab techniques
- Basic knowledge of how to perform research projects.

Module contents

Subjects of the lecture and seminar:

- Storing and processing of genetic information
- mutation analysis
- genetic high throughput techniques
- structure and function of proteins/membranes, cytoskeleton, meta-bolic signaling, molecular

basis of neurodegenerative diseases.

Exercises: Learning current methods of human genetics, cellular and molecular neurobiology; introduction to cell cultivation techniques.

- DNA extraction and agarose gel analysis
- Sanger sequencing and sequence analysis
- PCR-based techniques
- bioinformatic analysis of high throughput data
- cell culture
- gene therapy of dominant diseases

Reader’s advisory

Several selected scientific papers for the seminar (selection may vary)

Textbooks of Molecular Cell Biology; Alberts, Molecular biology of the cell

Links

Language of instruction | English |
Duration (semesters) | 1 Semester |
Module frequency | jährlich |
Module capacity | unlimited |
Reference text | Course in the first half of the semester |
Modullevel | MM (Mastermodul) |
Modulart
Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>70% written exam, 30% presentation(s) Presentation(s) within the frame of the seminar. Regular active participation is required for the module to be passed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2.00</td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>6.00</td>
<td></td>
<td>84 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td></td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module
140 h
neu190 - Biochemical concepts in signal transduction

Module label: Biochemical concepts in signal transduction
Module code: neu190
Credit points: 15.0 KP
Workload: 450 h
Used in course of study: Master Neuroscience > Background Modules

Contact person:
Module responsibility:
- Karl-Wilhelm Koch

Authorized examiners:
- Alle hier genannten

Module counseling:
- Alexander Scholten

Entry requirements:
Skills to be acquired in this module
- Neurosci. knowlg. Expt. methods Independent research + Scient. literature + Social skills
- Interdiscipl. knowlg. Maths/Stats/Progr. + Data present./disc. + Scientific English Ethics

Upon successful completion of this course, students:
- know fundamental principles of molecular mechanisms of signal processing in cells
- know the properties and functional roles of proteins involved in signaling pathways
- have a basic understanding of structure-function relationships of receptor molecules (e.g. G-protein-coupled receptors) and their down-stream targets
- know the main hypotheses and their experimental confirmation in selected signal transduction pathways
- are able to discuss and present current concepts and knowledge of cellular signaling
- learn by selected experiments, how to study experimentally protein function in signaling
- are able to assess experimentally prepared data sets and have a good command of how to present them scientifically
- have a basic knowledge how to plan and perform a sequential set of experiments in molecular life sciences
- have a basic knowledge how to operate and use scientific equipment like spectrophotometer, fluorescence spectrophotometer, clean benches in cell culture and chromatographic systems (HPLC)

Module contents:
Lecture on the molecular fundamentals of cellular signal processes
Lecture topics:
- Introduction to the concept of signal transduction
- G protein-coupled receptors
- G proteins and effector molecules
- Biochemical properties of secondary messenger molecules
- Down-stream targets of secondary messengers and physiological responses
- Calcium and signaling networks
- Nitric Oxide and nitric oxide synthases
- Tyrosine-Kinase-receptors
- Signaling cascades of monomeric G proteins
- Molecular regulation of the cell cycle
- Biochemical aspects of sensory cells, their receptors and signaling pathways

Seminar:
Signal transduction
Students prepare presentations and discussions on current reviews written by leading experts in the fields; topics include: structural basis of G-protein coupled receptors, G proteins, adenylate cyclases, cyclic nucleotide research, calcium signaling, signal transduction in vision, ion channel function, nitric oxide synthase function.

Exercises:
Students perform experiments on cellular signal transduction and enzymology; they learn to express proteins in heterologous cell systems; they learn how to purify proteins and characterize them in subsequent assay systems.

Reader's advisory:
Current reviews on topics of signal transduction as preparation for the presentation in the Seminar; list of reviews will be adjusted every year;
Textbooks of cell biology and biochemistry. Alberts et al., Molecular Biology of the Cell, 5th edition or later; Stryer, Biochemistry, 7th edition or later; these textbooks are updated almost every 3 or 4 years.
Current literature on topics of signal transduction (as announced in the preparatory meeting).
Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td>Course in the second half of the semester. Regular active participation and seminar presentation(s) are required to pass the module.</td>
</tr>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
</tbody>
</table>

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>within 2 months after the end of the course</td>
<td>50% written exam of 90 min., 50% report(s) Paper(s) are to be read. Regular active participation is required for the module to be passed.</td>
</tr>
</tbody>
</table>

Workload attendance

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>1.00</td>
<td></td>
<td>WiSe</td>
<td>14 h</td>
</tr>
<tr>
<td>Exercises</td>
<td>8.00</td>
<td></td>
<td>WiSe</td>
<td>112 h</td>
</tr>
<tr>
<td>Seminar</td>
<td>1.00</td>
<td></td>
<td>WiSe</td>
<td>14 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module

140 h
Module Overview

Module Code: neu210
Module Name: Neurosensory Science and Behaviour - Part A
Credit Points: 9.0 KP
Workload: 270 h

Contact Person
- **Module Responsibility:** Georg Martin Klump
- **Authorized Examiners:**
 - Jannis Hildebrandt
 - Georg Martin Klump
 - Ulrike Langemann
 - Henrik Mouritsen
- **Module Counseling:**
 - Ulrike Langemann
 - Jannis Hildebrandt
 - Henrik Mouritsen

Entry Requirements
- The module aims to:
 - Develop a comprehensive understanding of the principles and methods of neuroscience.
 - Enhance research skills, including data analysis and presentation.
 - Improve reading and writing abilities in scientific English.
 - Foster interdisciplinary knowledge in mathematics, statistics, and programming.

Skills to be acquired:
- Scientific English
- Social skills
- Independent research
- Expt. methods
- Sci. literature
- Interdiscipl. knowlg. Maths/Stats/Progr.
- Data present./disc.
- Ethical principles

Module Content

- **Lecture:** "Neuroethology" introduces the mechanisms underpinning animal behaviour. Topics include perception, movement control, learning, orientation, navigation, and more.
- **Lecture:** "Behavioural ecology" covers topics such as predator-prey interactions, food utilization, distribution, social relations, group formation, mating systems, reproductive strategies, parental investment, and communication.
- **Seminar:** "Current issues of Ethology" focuses on recent scientific literature.

Reader's Advisory

- **Davis NB, Krebs JR, West SA (2012)**: *An Introduction to Behavioural Ecology*. Wiley Blackwell

Links

- **Language of Instruction:** English
- **Duration (Semesters):** 1 Semester
- **Module Frequency:** Jährlich
- **Module Capacity:** 30
- **Reference Text:** Course in the second half of the semester. Regular active participation is required to pass the module.

Examination

- **Type of Program:** Lehrform / Type of program
- **Previous Knowledge:** Vorkenntnisse / Previous knowledge
- **Time of Examination:** as agreed, usually in the break after the winter term
- **Type of Examination:** 80% written exam (content of the two lecture series), 20% presentation(s)

Course Type

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload Attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
<td>SWS</td>
<td>Frequency</td>
<td>Workload attendance</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td></td>
<td></td>
<td></td>
<td>84 h</td>
</tr>
</tbody>
</table>
neu220 - Neurosensory Science and Behaviour - Part B

Module label: Neurosensory Science and Behaviour - Part B
Module code: neu220
Credit points: 6.0 KP
Workload: 180 h

Used in course of study:
- Master Biologie > Background Modules
- Master Neuroscience > Background Modules

Contact person:
- Module responsibility: Christiane Margarete Thiel
- Authorized examiners:
 - Carsten Gießing
 - Christiane Margarete Thiel
- Module counseling: Carsten Gießing

Entry requirements:

Skills to be acquired in this module:
- ++ Neurosci. knowlg. + Expt. methods Independent research + Scient. literature + Social skills
- ++ Interdiscipl. knowlg. Maths/Stats/Progr. + Data present./disc. + Scientific English Ethics

Upon successful completion of this course, students:
- know the fundamentals of neurotransmission
- know the basic neural mechanisms underlying attention, learning, emotion, language and executive functions
- understand the relationship between disturbances in neurotransmitter systems, cognitive functions and psychiatric disease
- know the principles of drug treatment for psychiatric disorders
- have in-depth knowledge in selected areas of these topics
- are able to understand, explain and critically assess neuroscientific approaches in animals and humans
- are able to understand and critically assess published work in the area of cognitive neuroscience

Module contents:
The lecture "Introduction to Cognitive Neuroscience" gives a short introduction into neuroanatomy and cognitive neuroscience methods and then covers different cognitive functions.

Lecture topics:
- History of cognitive neuroscience
- Methods of cognitive neuroscience
- Attention
- Learning
- Emotion
- Language
- Executive functions.

The supervised exercise either deepens that knowledge by exercises or discussions of recent papers/talks on the respective topic covered during that week.

The lecture "Psychopharmacology" illustrates the connection between neurotransmitters and behaviour and its links to psychiatric disease. The lecture contains several interactive parts to consolidate and critically evaluate the acquired knowledge.

Lecture topics:
- Introduction to Terms and Definitions in Drug Research
- Dopaminergic and Noradrenergic System
- Cholinergic and Serotonergic System
- GABAergic and Glutamatergic System
- Addiction
- Depression
- Schizophrenia
- Anxiety
- Alzheimer's Disease

Reader's advisory:

Links:

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: 30
| Reference text | Course in the second half of the semester
	Regular active participation is required to pass the module.			
Modullevel	---			
Modulart	je nach Studiengang Pflicht oder Wahlpflicht			
Lern-/Lehrform / Type of program				
Vorkenntnisse / Previous knowledge				
Examination	Time of examination	Type of examination		
Final exam of module	as agreed, usually in the break after the winter term	100% written exam (content of the lectures)		
Course type	Comment	SWS	Frequency	Workload attendance
Lecture	--	3.00	--	42 h
Exercises	--	1.00	--	14 h
Total time of attendance for the module	56 h			
neu240 - Computational Neuroscience - Introduction

Module label: Computational Neuroscience - Introduction
Module code: neu240
Credit points: 9.0 KP
Workload: 270 h
Used in course of study: Master Neuroscience > Background Modules

Contact person
- Module responsibility: Jutta Kretzberg
- Authorized examiners: Alle hier genannten
- Module counseling: Martin Greschner, Jannis Hildebrandt

Entry requirements: attendance in pre-meeting

Skills to be acquired in this module
- Neurosci. knowlg. Expt. methods Independent research + Scient. literature + Social skills
- Interdiscipl. knowlg. + Maths/Stats/Progr. + Data present./disc. + Scientific English Ethics
- Upon successful completion of this course, students are able to implement and apply algorithms
- have acquired good programming skills (in Matlab)
- have learned to handle scientific data independently
- have acquired theoretical and practical knowledge of advanced data analysis techniques
- know about computational model approaches on different levels of abstraction
- know how to perform model simulations for single cells and small neuronal networks
- can interpret simulation results in a neuroscientific context

Module contents
This course consists of four weeks with different topics, which are introduced in lectures, discussed in depth using selected literature in the seminar and consolidated in computer-based hands-on exercises (in Matlab). Portfolio tasks, mainly interpretation of programming results are given every day.

Week 1: Background and Matlab preparation week
- practice of programming principles (functions, scripts, if, loops, structures, cell arrays)
- revision of neuroscience backgrounds (neuron, membrane, spike)

Week 2: Spike train analysis
- response tuning, spike triggered average, receptive fields, linear-nonlinear model, spike correlation, linear reconstruction, classification

Week 3: Neuron models
- Conductance-based single cell models using differential equations (passive membrane equation, integrate and fire, Hodgkin Huxley, alpha synapses)

Week 4: Network models
- small networks (lateral inhibition, central pattern generator)
- larger networks (Integrate and fire networks, rate models, inhibition-excitation balance, learning)

Reader's advisory
Dayan / Abbott: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press (More text books will be suggested prior to the course).
Copies of scientific articles for the seminar will be provided prior to the course.

Links
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Reference text: Course in the first half of the semester
Modulelevel: MM (Mastermodul)
Modulart: Wahlpflicht
Lern-Lehrform / Type of program
Vorkenntnisse / Previous knowledge

Examination
- Time of examination: during the course
- Type of examination: Portfolio, consisting of daily short tests, programming exercises and short reports

Course type
- Lecture: 1.00
- Comment: SWS
- Frequency: 14 h
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td></td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td></td>
<td></td>
<td></td>
<td>84 h</td>
</tr>
</tbody>
</table>
neu250 - Computational Neuroscience - Statistical Learning

<table>
<thead>
<tr>
<th>Module label</th>
<th>Computational Neuroscience - Statistical Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu250</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>• Master Neuroscience > Background Modules</td>
</tr>
<tr>
<td>Contact person</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Jutta Kretzberg</td>
</tr>
<tr>
<td>Authorized examiners</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Jörn Anemüller</td>
</tr>
<tr>
<td></td>
<td>• Jutta Kretzberg</td>
</tr>
<tr>
<td></td>
<td>• Jochem Rieger</td>
</tr>
<tr>
<td>Module counseling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Jochem Rieger</td>
</tr>
<tr>
<td></td>
<td>• Jörn Anemüller</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>attendance in pre-meeting</td>
</tr>
<tr>
<td></td>
<td>Upon successful completion of this course, students</td>
</tr>
<tr>
<td></td>
<td>have refined their programming skills (in Matlab) in order to efficiently analyze large-scale experimental data</td>
</tr>
<tr>
<td></td>
<td>are able to implement a processing chain of prefiltering, statistical analysis and results visualization</td>
</tr>
<tr>
<td></td>
<td>have acquired an understanding of the theoretical underpinnings of the most common statistical analysis methods</td>
</tr>
<tr>
<td></td>
<td>have practised using existing toolbox functions for complex analysis tasks</td>
</tr>
<tr>
<td></td>
<td>know how to implement new analysis algorithms in software from a given mathematical formulation</td>
</tr>
<tr>
<td></td>
<td>can interpret analysis results in a neuroscientific context</td>
</tr>
<tr>
<td></td>
<td>have applied these techniques to both single channel and multi-channel neurophysiological data</td>
</tr>
<tr>
<td>Module contents</td>
<td>data preprocessing, e.g., artifact detection and rejection, filtering, z-scoring, epoching</td>
</tr>
<tr>
<td></td>
<td>data handling for high-volume data in matlab</td>
</tr>
<tr>
<td></td>
<td>introduction to relevant analysis toolbox software</td>
</tr>
<tr>
<td></td>
<td>theory of multi-dimensional statistical analysis approaches, such as multi-dimensional linear regression, principal component analysis, independent component analysis, logistic regression, gradient-based optimization</td>
</tr>
<tr>
<td></td>
<td>practical implementation from mathematical formulation to software code, debugging and unit testing</td>
</tr>
<tr>
<td></td>
<td>postprocessing and results visualization</td>
</tr>
<tr>
<td></td>
<td>consolidation during hands-on computer-based exercises (in Matlab)</td>
</tr>
<tr>
<td></td>
<td>introduction to selected specialized analysis approaches during the seminar</td>
</tr>
<tr>
<td></td>
<td>More text books will be suggested prior to the course.</td>
</tr>
<tr>
<td></td>
<td>Scientific articles: Copies of scientific articles for the seminar will be provided prior to the course</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>18</td>
</tr>
<tr>
<td>Reference text</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course in the first half of the semester Students without Matlab experience should take the optional Matlab course (1. week) of Computational Neuroscience - Introduction</td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td></td>
<td>during the course</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Type of examination</td>
</tr>
<tr>
<td></td>
<td>Portfolio, consisting of daily short tests, programming exercises and short reports</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
neu270 - Neurocognition & Psychophysics

Module label: Neurocognition & Psychophysics
Module code: neu270
Credit points: 15.0 KP
Workload: 450 h

Used in course of study: • Master Neuroscience > Background Modules

Contact person
Module responsibility
- Georg Martin Klump

Authorized examiners
- Alle hier genannten

Module counseling
- Christiane Margarete Thiel
- Ulrike Langemann
- Carsten Gießing

Entry requirements
Skills to be acquired in this module
- Neurosci. knowlg. Expt. methods + Independent research + Scient. literature + Social skills
- Interdiscipl. knowlg. Maths/Stats/Progr. + Data present./disc. + Scientific English Ethics

The aim of the module is the study of different aspects of psychophysics or neurocognition. Students participate in ongoing projects and gain a first insight into topical research.

Module contents
Students have the choice of two basic streams:
Stream 1: “Neurocognition” comprises (i) an exercise “Introduction to MATLAB” [2 SWS], (ii) a lecture “Functional MRI data analysis” [2 SWS], and (3) a practical course [5 SWS] and a seminar “Experiments on Neurocognition” [1 SWS] including aspects of planning, performance and analysis of functional neuro-imaging studies using MATLAB based software.
Stream 2 “Psychophysics of Hearing” comprises (i) exercise “Introduction to MATLAB”, (ii) lecture and seminar “The sense of hearing”, and (iii) a laboratory project in which psychoacoustical experiments into the function of the auditory system are performed.

Reader's advisory

Links

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Reference text: Course in the second half of the semester
- Regular active participation is required to pass the module

Modulelevel: MM (Mastermodul)
Modulart: Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge
Examination: Time of examination: end of summer term
Type of examination: 70% report or oral exam or written exam, 30%
presentation (talk or poster)

Course type
- Lecture: 2.00
- Exercises: 2.00
- Practical: 6.00

Frequency
- 28 h
- 28 h
- 84 h

Total time of attendance for the module: 140 h
neu241 - Computational Neuroscience - Introduction

<table>
<thead>
<tr>
<th>Module label</th>
<th>Computational Neuroscience - Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu241</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>• Master Neuroscience > Background Modules</td>
</tr>
<tr>
<td>Contact person</td>
<td>Module responsibility</td>
</tr>
<tr>
<td></td>
<td>▶ Jutta Kretzberg</td>
</tr>
<tr>
<td>Authorized examiners</td>
<td>▶ Jutta Kretzberg</td>
</tr>
<tr>
<td></td>
<td>▶ Martin Greschner</td>
</tr>
<tr>
<td></td>
<td>▶ Jannis Hildebrandt</td>
</tr>
<tr>
<td></td>
<td>▶ Go Ashida</td>
</tr>
<tr>
<td>Entry requirements</td>
<td></td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Reader's advisory</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>18</td>
</tr>
<tr>
<td>Modullevel</td>
<td>---</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Time of examination</td>
<td></td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
<tr>
<td>Course type</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Workload attendance</td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>0.00 WiSe</td>
</tr>
<tr>
<td>Seminar</td>
<td>0.00 WiSe</td>
</tr>
<tr>
<td>Exercises</td>
<td>0.00 WiSe</td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td>0 h</td>
</tr>
</tbody>
</table>
neu280 - Research Techniques in Neuroscience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Research Techniques in Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu280</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (2 SWS Lecture: 35 h contact / 45 h background reading / 10 h exam preparation 2 SWS Practical: 50 h contact / 30 h protocol preparation / 10 h exam preparation)</td>
</tr>
</tbody>
</table>

Contact person

- Module responsibility
- **Anna-Maria Hartmann**
- **Hans Gerd Nothwang**
- **Christiane Margarete Thiel**
- **John Neidhardt**
- **Martin Greschner**
- **Carsten Bantel**

Entry requirements

- **Skills to be acquired in this module**
 1. have basic knowledge of different techniques (see content of the module) used in neurosciences
 2. have basic knowledge of realizing clinical studies, generating questionnaires and their biostatistical data analyses
 3. have acquired practical skills in whole brain imaging (fMRI) and molecular techniques
 4. have acquired practical skills in performing clinical studies

Module contents

Lecture topics:
1. Whole brain imaging (CT, MRI, fMRI, PET, EEG, MEG)
2. Animal Behaviour
3. Microscopy and Visualizing nervous system structure
4. Electrophysiology
5. Identifying Gene of Interest and Gene delivery strategies
6. Molecular Cloning, generation of transgenic organism, manipulating endogenous genes
7. Cell culture techniques
8. Biochemical assays and intracellular signalling
9. Clinical studies
10. questionnaire and biostatistics
11. judicial basics of scientific work

Laboratory course
1. molecular methods (site directed mutagenesis, PCR, midi preparation, sequencing, bioinformatics)
2. fMRI
3. clinical studies

Reader's advisory

- Guide to Research Techniques in Neuroscience, 2nd Edition
- Author(s): Carter & Shieh
- Print Book ISBN : 9780128005118
- eBook ISBN : 9780128005972

Links

- **Language of instruction** English
- **Duration (semesters)** 1 Semester
- **Module frequency** summer term / annually
- **Module capacity** 20 (Registration procedure / selection criteria: StudIP)

Modullevel

Modulart

je nach Studiengang Pflicht oder Wahlpflicht
<table>
<thead>
<tr>
<th>Lern-/Lehrform / Type of program</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
<td>end of semester</td>
<td>written exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Course type</td>
<td>Comment</td>
<td>SWS</td>
</tr>
<tr>
<td>Lecture</td>
<td>2.00</td>
<td>SuSe</td>
</tr>
<tr>
<td>Practical</td>
<td>2.00</td>
<td>SuSe</td>
</tr>
</tbody>
</table>

| Total time of attendance for the module | 56 h |

| Workload attendance | 28 h | 28 h |
neu290 - Biophysics of Sensory Reception

<table>
<thead>
<tr>
<th>Module label</th>
<th>Biophysics of Sensory Reception</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu290</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td></td>
</tr>
</tbody>
</table>
 - Master Biologie > Background Modules
 - Master Neuroscience > Background Modules |

Contact person
- Module responsibility
 - Michael Winkhofer
- Authorized examiners
 - Michael Winkhofer

Entry requirements

Skills to be acquired in this module

Module contents

Reader's advisory

Links

Language of instruction
- English

Duration (semesters)
- 1 Semester

Module frequency
- ---

Module capacity
- 20

Modulart
- je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2.00</td>
<td>SuSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td>SuSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module
- 56 h
neu300 - Functional MRI data analysis

Module label: Functional MRI data analysis
Module code: neu300
Credit points: 12.0 KP
Workload: 360 h

Used in course of study:
- Master Biologie > Background Modules
- Master Neuroscience > Background Modules

Contact person:
Module responsibility:
- Carsten Gießing
Authorized examiners:
- Carsten Gießing
- Christiane Margarete Thiel

Entry requirements:

Skills to be acquired in this module:

Reader's advisory:

Links:

Language of instruction: English

Duration (semesters): 1 Semester

Module frequency:

Module capacity: 12 (in total with bio640)

Modulart: je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program:

Vorkenntnisse / Previous knowledge:

Examination:

<table>
<thead>
<tr>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
</tbody>
</table>

Course type: Comment	SWS	Frequency	Workload attendance
Practical | 5.00 | SuSe | 70 h
Seminar | 1.00 | SuSe | 14 h
Lecture | 2.00 | SuSe | 28 h

Total time of attendance for the module: 112 h
neu305 - Essentials of fMRI Data Analysis with SPM and FSL

Module label
Essentials of fMRI Data Analysis with SPM and FSL

Module code
neu305

Credit points
6.0 KP

Workload
180 h
(1 SWS Seminar (SE) fMRI: Experimental Design, Data Collection and Analysis Total workload 45h: 14h contact / 31h literature work 3 SWS Supervised exercise (UE) Statistical Analysis of fMRI Data with SPM and FSL Total workload 135h: 42h contact / 93h practice with sample fMRI data sets)

Used in course of study
• Master Neuroscience > Background Modules

Contact person
Module responsibility
- Riklef Weerda
- Peter Sörös

Authorized examiners
- Riklef Weerda
- Peter Sörös

Entry requirements
Skills to be acquired in this module
- Neurosci. knowlg.
++ Expt. Methods
- Independent research
- Scient. Literature
- Social skills
- Interdiscipl. knowlg.
++ Maths/Stats/Progr.
- Data present./disc.
- Scientific English
- Ethics

This module offers a concise introduction to the basic principles of functional magnetic resonance imaging (fMRI). Students will gain essential knowledge about experimental design, data collection and analysis. Special emphasis will be laid on the statistical background of fMRI data analysis and a hands-on introduction to SPM and FSL, two widely-used and free software packages for fMRI data analysis and results visualisation.

Module contents
1. Methodological basics of functional magnetic resonance imaging (fMRI)
2. Basic principles of fMRI experimental design and data collection
3. Statistical background of fMRI data analysis
4. Hands-on training in fMRI data analysis and results visualisation with SPM and FSL

Reader's advisory
Recommended textbook(s) or other literature:

Links
Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
annually, winter term, first half

Module capacity
40

Modullevel

Modulart
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program
Vorkenntnisse / Previous knowledge
Recommended previous knowledge / skills: statistics, MATLAB

Examination
Time of examination
Type of examination
Final exam of module
December
witten exam (multiple choice) In addition, mandatory but ungraded: continuous active participation

Course type
Comment
SWS
Frequency
Workload attendance
Seminar
0.00
WiSe
0 h
Exercises
0.00
WiSe
0 h

Total time of attendance for the module
0 h
neu310 - Psychophysics of Hearing

Module label: Psychophysics of Hearing
Module code: neu310
Credit points: 12.0 KP
Workload: 360 h

Used in course of study:
- Master Biologie > Background Modules
- Master Neuroscience > Background Modules

Contact person:
- Module responsibility: Georg Martin Klump
- Authorized examiners: Georg Martin Klump, Ulrike Langemann

Entry requirements

Skills to be acquired in this module

Module contents

Reader's advisory

Language of instruction: English

Duration (semesters): 1 Semester

Module frequency:

Module capacity: 6 (in total with bio640)

Module level:

Modulart: je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td></td>
<td>1.00</td>
<td>SuSe</td>
<td>14 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td>SuSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td>5.00</td>
<td>SuSe</td>
<td>70 h</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
<td>0.00</td>
<td>SuSe</td>
<td>0 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module: 112 h
neu320 - Introduction to Neurophysics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Introduction to Neurophysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu320</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>(2 SWS Lecture total workload 90h: 28h contact / 62h background reading/exam preparation 2 SWS Supervised exercise total workload 90h: 28h contact / 62h self-conducted exercise work/literature reading)</td>
<td></td>
</tr>
<tr>
<td>Used in course of study</td>
<td>• Master Neuroscience > Background Modules</td>
</tr>
<tr>
<td>Contact person</td>
<td>Module responsibility</td>
</tr>
<tr>
<td></td>
<td>• Jörn Anemüller</td>
</tr>
<tr>
<td></td>
<td>Authorized examiners</td>
</tr>
<tr>
<td></td>
<td>• Jörn Anemüller</td>
</tr>
<tr>
<td>Entry requirements</td>
<td>recommended in semester: 3 (with Matlab prereq.: 1)</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>++ Neurosci. knowlg.</td>
</tr>
<tr>
<td></td>
<td>+ Independent research</td>
</tr>
<tr>
<td></td>
<td>+ Scient. Literature</td>
</tr>
<tr>
<td></td>
<td>++ Interdiscipl. knowlg.</td>
</tr>
<tr>
<td></td>
<td>++ Maths/Stats/Progr.</td>
</tr>
<tr>
<td></td>
<td>+ Data present./disc.</td>
</tr>
</tbody>
</table>

Students will learn to recognize the dynamics in neuronal networks as the result of an interplay of physical, chemical and biological processes. Overview over major physical measurement procedures for the quantification of structure and function in neuronal systems. Using the language of mathematics as a fundamental tool for the description of underlying biophysical processes with stochastics, linear algebra, differential equations. Information as represented on different length- and timescales: From microscopic processes to macroscopic functional models. Learning and adaptation as adjustment of a biophysical system to its environment.

Module contents

- Biophysics of synaptic and neuronal transmission
- Single neuron models: Hodgkin Huxley model, integrate and fire model, firing rate model
- Biophysics of sensory systems in the auditory, visual and mechano-sensory modality
- Description of neuronal dynamics: Theory of dynamical systems, from microscopic to macroscopic activity - Principles of neuronal activity measurements: from single-cell recordings to EEG, MEG and fMRI
- Functional description of small neuronal networks: Receptive fields and their description with linear and non-linear models - The neuronal code: Spikes, spike trains, population coding, time- vs. rate-code - Decoding neuronal activity and its applications
- Simulation of artificial neural networks as a functional model, Hopfield network, Boltzmann machine, Perceptron and deep networks - Informationtheoretic approaches, stimulus statistics, entropy, mutual information
- Learning and plasticity, conditioning and reinforcement learning, Hebbian learning, long-term potentiation and long-term depression

Reader’s advisory

- Chow, Gutkin, Hansel, Meinier, Dalibard (Eds.): Methods and Models in Neurophysics (2003)
- Galizia, Lledo (Eds.): Neurosciences, from molecule to behavuior (2013)
- Gerstner, Kistler, Naud, Paninski: Neuronal Dynamics - From single neurons to networks and models of Cognition (2014)

Links

- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: winter term / annually
- Module capacity: 30 (Registration procedure / selection criteria: StudIP)
Reference text
Recommended in combination with: 5.04.4012 Informationsverarbeitung und Kommunikation (phy350)
Will also be offered in “M.Sc. Physik, Technik, Medizin”

Module level

Modulart
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program
Master of Science: Neuroscience

Vorkenntnisse / Previous knowledge
Computer programming (preferably Matlab), basic mathematics (statistics, analysis, linear algebra)

Examination
Time of examination
Type of examination
Final exam of module
end of winter term
80% oral exam or written exam, 20% exercise work and presentation

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>0.00</td>
<td>WiSe</td>
<td>0 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>0.00</td>
<td>WiSe</td>
<td>0 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>0.00</td>
<td>WiSe</td>
<td>0 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module
0 h
bio605 - Molecular Genetics and Cell Biology

Module label: Molecular Genetics and Cell Biology
Module code: bio605
Credit points: 12.0 KP
Workload: 360 h

Used in course of study:
- Master Biologie > Background Modules
- Master Neuroscience > Background Modules

Contact person:
- Module responsibility: John Neidhardt
- Authorized examiners:
 - John Neidhardt
 - Karl-Wilhelm Koch
 - Kathrin Thedieck
- Module counseling:
 - Karl-Wilhelm Koch
 - Kathrin Thedieck

Entry requirements:
- Skills to be acquired in this module:
 ++ deepened biological expertise
 ++ deepened knowledge of biological working methods
 + data analysis skills
 ++ interdisciplinary thinking
 + critical and analytical thinking
 + independent searching and knowledge of scientific literature
 + data presentation and discussion in German and English (written and spoken)
 + teamwork
 + ethics and professional behaviour
 + project and time management

Addressing students with an emphasis on molecular biology, molecular genetics, cell biology, and neurobiology

Module contents:
Lecture: To improve knowledge in molecular genetics, molecular biology and cell biology in correlation with human diseases.
Exercise: Learn to transfer the theoretical knowledge to experiments. Gaining methodological knowledge in molecular genetics, cell biology and therapeutic approaches. Initial training on how to perform research projects.
Subjects of the lecture and seminar: Molecular bases of neurodegenerative diseases, structure and function of DNA/RNA/proteins/membranes, cytoskeleton, cell cycle, programmed cell death, cells in the social structure.
Exercises: Learning current methods of molecular biology and human genetics; high throughput technologies, introduction to cell cultivation techniques.

Reader's advisory:
Textbooks of Cell Biology

Links:
http://www.uni-oldenburg.de/humangenetik/

Language of instruction: English
Duration (semesters): 1 Semester

Module frequency:
- Module capacity: 15
- Reference text: associated with bio900
- Modullevel: MM (Mastermodul / Master module)
- Modulart: Wahlpflicht / Elective

Lern-/Lehrform / Type of program:

Vorkenntnisse / Previous knowledge:

Examination:
Time of examination:
Type of examination:
written examination (70 %); paper(s) presentation 30 %; not graded: signed lab protocols, regular active participation is required for the module to be passed.

Course type:
Comment: SWS: Frequency: Workload attendance:
Lecture: 2.00: WiSe: 28 h
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td>WiSe</td>
<td>14 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>5.00</td>
<td>WiSe</td>
<td>70 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 112 h
Biochemical concepts in signal transduction

Module label: Biochemical concepts in signal transduction

Module code: bio695

Credit points: 12.0 KP

Workload: 360 h

Used in course of study:
- Master Biologie > Background Modules
- Master Neuroscience > Background Modules

Contact person:
- Module responsibility: Karl-Wilhelm Koch
- Authorized examiners:
 - Karl-Wilhelm Koch
 - Alexander Scholten
- Module counseling:
 - Alexander Scholten

Entry requirements:
- ++ deepened biological expertise
- ++ deepened knowledge of biological working methods
- ++ data analysis skills
- + interdisciplinary thinking
- ++ critical and analytical thinking
- + independent searching and knowledge of scientific literature
- ++ data presentation and discussion in German and English (written and spoken)
- + teamwork
- + project and time management

Module contents:
- Lecture: Molecular fundamentals of cellular signal processes
- Seminar: Signal transduction
- Exercises: Experiments on cellular signal transduction and enzymology

Mechanisms of biochemical signal transduction are imparted theoretically and experimentally.

Reader's advisory:
- Textbooks of cell biology and biochemistry. Current literature on topics of signal transduction (as announced in the preparatory meeting).

Links:
- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency
- Module capacity: 20
- Modullevel: ---
- Modulart: je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program
- Vorkenntnisse / Previous knowledge

Examination
- Time of examination: 90 minutes written exam
- Type of examination: written examination (50%) protocols (50%)

Course type
- Comment
- SWS
- Frequency
- Workload attendance
 - Lecture: 1.00 WiSe 14 h
 - Seminar: 1.00 WiSe 14 h
 - Exercises: 6.00 WiSe 84 h

Total time of attendance for the module: 112 h
bio845 - Introduction to Development and Evolution

<table>
<thead>
<tr>
<th>Module label</th>
<th>Introduction to Development and Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>bio845</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>• Master Biologie > Background Modules</td>
</tr>
<tr>
<td></td>
<td>• Master Neuroscience > Background Modules</td>
</tr>
</tbody>
</table>

Contact person

- Module responsibility
 - Ulrike Sienknecht
- Authorized examiners
 - Ulrike Sienknecht
 - Maike Claußen
- Module counseling
 - Maike Claußen

Entry requirements

Skills to be acquired in this module

- Upon successful completion of this course, students
- know the fundamental problems organisms share in development
- know the common basic steps of ontogenesis after comparing the life cycles of different species (both vertebrates and invertebrates)
- know the fundamentals of the genetic control of cell fate specification, morphogenesis, and organogenesis
- know the principles of gene regulatory networks in development and are able to explain examples
- are able to explain and discuss mechanisms of development across taxonomic groups and questions about the evolution of developmental mechanisms
- have in-depth knowledge of the development of animal nervous systems, including cellular and net-work properties

Module contents

- Lectures on the fundamentals and concepts of developmental biology, including evolutionary aspects. Parallel seminars matching the topics of the lectures and emphasizing discussion.
- Lecture topics:
 - Introduction to Developmental Biology
 - Cell-Cell Communication
 - Differential Gene Expression (I and II)
 - Early Development of Vertebrates, Gastrulation
 - Neurulation
 - Brain Development
 - Axonal Growth, Target Selection, Synaptogenesis and Refinement
 - Neural Crest
 - Mesoderm Development
 - Limb Development
 - Developmental Mechanisms of Evolutionary Change
 - Model Organisms in Developmental Biology
 - Transgenic Mice
 - Medical Implications of Developmental Biology

Reader's advisory

- Literature:

Links

- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency
- Module capacity: 20 (selection criteria: sequence of registration)
<table>
<thead>
<tr>
<th>Reference text</th>
<th>associated with bio846 (previously neu120) (Lab Exercises in Development and Evolution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>organismic biology, developmental biology, evolutionary biology, neurobiology, genetics, molecular biology</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>2.00</td>
</tr>
<tr>
<td>Seminar</td>
<td>2.00</td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td></td>
</tr>
</tbody>
</table>
bio846 - Lab Exercises in Development and Evolution

Module label: Lab Exercises in Development and Evolution
Module code: bio846
Credit points: 6.0 KP
Workload: 180 h
Used in course of study:
- Master Biologie > Background Modules
- Master Neuroscience > Background Modules

Contact person
- Module responsibility
 - Ulrike Sienknecht
- Authorized examiners
 - Ulrike Sienknecht
 - Hans Gerd Nothwang
- Module counseling
 - Hans Gerd Nothwang

Entry requirements

Skills to be acquired in this module:
Upon successful completion of this course, students have skills in methods of developmental biology:
- are capable of performing live embryo husbandry
- are able to carry out in-ovo stainings
- are familiar with the use of embryonic stage discrimination standards for model organisms
- document the observed embryonic stages by drawings with anatomical labelling
- are familiar with embryo handling, tissue preparation (including cryosectioning), dissection of inner ears, and the use of different histological staining methods
- microscopy, data analysis, and photographic data documentation
- know the standards of proper documentation of research data and the universal format of a lab note-book
- know how to carry out formal laboratory reports (and the anatomy of a scientific paper)
and in addition, have basic knowledge in the field of auditory system development:
- have basic knowledge of the organisation of the auditory system across vertebrate groups
- have basic knowledge of the development of the middle and inner ear, as well as selected auditory brain centres
- are able to summarize current hypotheses about the evolution of the auditory system in vertebrates

Skills:
- ++ deepened biological expertise
- ++ deepened knowledge of biological working methods
- ++ data analysis skills
- ++ critical and analytical thinking
- ++ independent searching and knowledge of scientific literature
- ++ ability to perform independent biological research
- ++ data presentation and discussion in German and English (written and spoken)
- ++ teamwork
- ++ ethics and professional behaviour
- ++ project and time management

Module contents
Lab exercises in comparative developmental biology on chicken and mouse embryos.
Practical introduction to methods, such as in-ovo live observation; developmental stage discrimination and description, tissue preparation for histology, sectioning, staining, and microscopy, including data analyses.

Lectures in the field of auditory system development, such as:
- Development of the Inner Ear
- Development of the Middle Ear
- Evolution of the Central and Peripheral Auditory System
- Development and Layout of the Central Auditory System

Reader's advisory

Links

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency:
Module capacity: 6 (selection criteria: sequence of registration)
Reference text
Associated with bio845 (previously neu110) (Introduction to Development and Evolution)

Module level
MM (Mastermodul / Master module)

Modulart
Wahlpflicht / Elective

Lern-Lehrform / Type of program

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
<th>Larval biology, evolutionary biology, neurobiology, genetics, molecular biology, experience with lab work</th>
</tr>
</thead>
</table>

Examination
<table>
<thead>
<tr>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>same winter term</td>
<td>report (50%) and presentation (50%)</td>
</tr>
</tbody>
</table>

Final exam of module

<table>
<thead>
<tr>
<th>Course type</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>0.50</td>
<td>WiSe</td>
<td>7 h</td>
</tr>
<tr>
<td>Seminar</td>
<td>0.50</td>
<td>WiSe</td>
<td>7 h</td>
</tr>
<tr>
<td>Exercises</td>
<td>3.00</td>
<td>WiSe</td>
<td>42 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module

<table>
<thead>
<tr>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
</tr>
</tbody>
</table>
neu141 - Visual Neuroscience - Physiology and Anatomy

Module label: Visual Neuroscience - Physiology and Anatomy
Module code: neu141
Credit points: 12.0 KP
Workload: 360 h
Used in course of study:
- Master Biologie > Background Modules
- Master Neuroscience > Background Modules

Contact person
Module responsibility
- Martin Greschner
Authorized examiners
- Martin Greschner
- Karin Dedek
- Ulrike Janssen-Bienhold
- Christian Puller

Entry requirements

Skills to be acquired in this module

Module contents

Reader's advisory

Links

Language of instruction: English
Duration (semesters): 1 Semester

Module frequency

Module capacity: 12 - with Visual Neuroscience: Anatomy

Modullevel: ---

Modulart: je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

Type of examination
Final exam of module

Time of examination
PF

Course type
Comment
SWS
Frequency
Workload attendance
Lecture
2.00
SuSe or WiSe
28 h
Seminar
2.00
SuSe or WiSe
28 h
Exercises
2.00
SuSe or WiSe
28 h

Total time of attendance for the module
84 h
neu340 - Invertebrate Neuroscience

Module label: Invertebrate Neuroscience
Module code: neu340
Credit points: 6.0 KP
Workload: 180 h (1 SWS Seminar (SE) Total workload 45h: 15h contact / 30h background literature reading, preparation for short tests and results presentation 3 SWS Supervised exercise (UE) Total workload 135h: 70h contact / 65h data analysis and preparation of portfolio assignments)

Used in course of study:
- Master Biologie > Background Modules
- Master Neuroscience > Background Modules

Contact person:
- Module responsibility: Jutta Kretzberg
- Authorized examiners: Jutta Kretzberg

Entry requirements:
- attendance in pre-meeting

Skills to be acquired in this module:
++ Neurosci. knowlg.
++ Exp. Methods
+ Scient. Literature
+ Social skills
+ Maths/Stats/Progr.
+ Data present./disc.
+ Scientific English
+ Ethics

Upon successful completion of this course, students:
- have knowledge on invertebrate neuronal systems in comparison to vertebrate systems
- have discussed an overview of experimental and theoretical methods of invertebrate neuroscience
- have acquired first practical skills in intracellular recordings from invertebrate neurons
- have acquired basic skills in data analysis
- have acquired an intuitive understanding of membrane potential and action potential generation based on computer simulations

Module contents:
The background module Neurophysiology consists of three weeks of seminar and hands-on lab exercises on intracellular recordings from leech neurons, as well as computer simulations to study the basis of membrane potential and action potential generation. The seminar covers the following topics:
- Invertebrate neuronal systems in comparison to vertebrate systems
- Ion channels, membrane potential and action potential generation
- Introduction to electrophysiological methods
- Introduction to data analysis methods
In the practical exercises, portfolio assignments will be performed on:
- Qualitative electrophysiological classification of different cell types in the leech nervous system
- Quantitative analysis (stimulus - response relationship) of at least one cell type
- Action potential generation: Comparison of model simulations and experiments

Reader's advisory:
Course scripts and mandatory scientific literature (3 review articles) discussed in the seminar will be available in Stud.IP
Background and seminar literature will be available in Stud.IP

Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: annually, summer term, second half
Module capacity: 12 (this module provides the background for neu345 “Neural Computation in invertebrate systems”)

Modullevel: ---
Modulart: je nach Studiengang Pflicht oder Wahlpflicht

Vorkenntnisse / Previous knowledge: basic knowledge of neurobiology, basic MATLAB programming skills

Examination:
- Time of examination: during the course (summer term, second half)
- Type of examination: Portfolio consisting of short tests and short reports
- In addition, mandatory but ungraded: seminar presentation

Course type:
- Comment: SWS
- Frequency: Workload attendance

Links:
- Course scripts and mandatory scientific literature (3 review articles) discussed in the seminar will be available in Stud.IP
- Background and seminar literature will be available in Stud.IP
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td>SuSe or WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2.00</td>
<td>SuSe or WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
neu345 - Neural Computation in Invertebrate Systems

Module label: Neural Computation in Invertebrate Systems
Module code: neu345
Credit points: 6.0 KP
Workload: 180 h

Used in course of study:
- Master Neuroscience > Background Modules

Contact person:
- Module responsibility
 - Jutta Kretzberg
- Authorized examiners
 - Jutta Kretzberg

Entry requirements

Skills to be acquired in this module

Module contents

Reader's advisory

Language of instruction: English

Duration (semesters): 1 Semester

Module frequency: ---

Module capacity: 12 (but only 6 for experimental projects)

Modullevel: ---

Modulart: je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>PF</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td>SuSe or WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2.00</td>
<td>SuSe or WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module: 56 h
neu350 - Biological Foundations of Neuroscience

Module label: Biological Foundations of Neuroscience
Module code: neu350
Credit points: 6.0 KP
Workload: 180 h

Used in course of study:
- Master Neuroscience > Background Modules

Contact person:
- Module responsibility
 - Christian Puller
- Authorized examiners
 - Christian Puller
 - John Neidhardt
 - Karl-Wilhelm Koch
 - Anna-Maria Hartmann
 - Martin Greschner
 - Georg Martin Klump
 - Marta Owczarek-Lipska

Entry requirements

Skills to be acquired in this module

Module contents

Reader's advisory

Links

Languages of instruction

Duration (semesters): 1 Semester
Module frequency: unlimited
Module capacity: unlimited
Modullevel: ---
Modulart: je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>KL</td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2.00</td>
<td>SuSe or WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td>2.00</td>
<td>SuSe or WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module: 56 h

- 37 / 72
neu360 - Auditory Neuroscience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Auditory Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu360</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Used in course of study | • Master Biologie > Background Modules
• Master Neuroscience > Background Modules |

Contact person
- Module responsibility
 - Christine Köppl
- Authorized examiners
 - Georg Martin Klump
 - Christine Köppl

Entry requirements

Skills to be acquired in this module

Reader's advisory

Language of instruction
- English

Duration (semesters)
- 1 Semester

Module frequency

Module capacity
- 15

Modullevel
- ---

Modulart
- je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>HA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2.00</td>
<td>SuSe</td>
<td>28 h</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td>2.00</td>
<td>SuSe</td>
<td>28 h</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>2.00</td>
<td>SuSe</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>

Total time of attendance for the module
- 84 h
Research Modules

neu410 - Auditory Neuroscience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Auditory Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu410</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master Neuroscience > Research Modules</td>
</tr>
</tbody>
</table>

Contact person
- Module responsibility
 - Christine Köppl
- Authorized examiners
 - Alle hier genannten
- Module counseling
 - Georg Martin Klump
 - Jannis Hildebrandt

Entry requirements

Skills to be acquired in this module
- + Neurosci. knowlg. Expt. methods
- + Independent research
- + Scient. literature
- + Social skills
- + Interdiscipl. knowlg.
- + Maths/Stats/Progr.
- + Data present./disc.
- + Scientific English
- + Ethics

Introduction to independent, experimental research in auditory sensory physiology. May serve as preparation for a Master thesis.

Upon successful completion of this course, students
- • have profound knowledge on auditory sensory processing, including cochlear transduction mechanisms, central auditory processing and auditory psychophysics
- • have basic knowledge of the large range of techniques used in auditory research
- • are able to read and critically report to others on an original research paper in auditory neuroscience
- • have in-depth knowledge on a specific research question in auditory neuroscience
- • are able to discuss current hypotheses and controversies regarding their research question
- • are able to perform experiments addressing their research topic and can describe the principles and the pros and cons of the experimental technique used
- • are able to critically evaluate and discuss experimental results

Module contents

One week introductory block course "Fundamentals of Auditory Physiology", comprised of a lecture series and matching seminar that emphasizes discussion.

Topics:
- Hair cells: structure, transduction mechanism, receptor potential, synaptic transmission
- Basilar papilla / cochlea: structure, micromechanics, amplification; otoacoustic emissions
- Auditory nerve: phase locking, rate coding. Excitation patterns
- Ascending auditory pathways: wiring, principles of excitation/inhibition, examples of cellular/molecular specialisations
- Sound localisation in birds and mammals
- Central auditory processing: imaging techniques, auditory streams, cortex, primates
- Relation between psychophysics and neurophysiology

The introductory course is followed by 6 weeks of small-group laboratory-based projects, participating in the supervisor’s ongoing research. This includes experimental work, data analysis, literature study, participation in the group seminar and in a poster presentation of concurrent Research Modules.

There are three options for the lab projects:
- Option 1: Cochlea and auditory brainstem (Köppl)
- Option 2: Auditory cortex (Hildebrandt)
- Option 3: Central auditory mechanisms (Klump)

Reader's advisory

About 20 selected original papers (selection varies)

Links

Language of instruction
- English

Duration (semesters)
- 1 Semester

Module frequency
- jährlich

Module capacity
- unlimited

Reference text

Introductory block course will be held in the first week of winter term, lab component is flexible and subject to individual arrangement. Participation in a joint poster presentation of concurrent research modules is required to pass the module.

Modullevel
- MM (Mastermodul)
<table>
<thead>
<tr>
<th>Modulart</th>
<th>Wahlpflicht</th>
</tr>
</thead>
</table>

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>within 2 months after completion of experimental work</td>
<td>Internship report</td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th></th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1.00</td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Projektorientiertes Modul</td>
<td></td>
<td>8.00</td>
<td></td>
<td>WiSe 112 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module

140 h
neu440 - Visual Neuroscience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Visual Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu440</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master Neuroscience > Research Modules</td>
</tr>
</tbody>
</table>

Contact person

- Module responsibility
 - Ulrike Janssen-Bienhold
- Authorized examiners
 - Alle hier genannten
- Module counseling
 - Karin Dedek
 - Martin Greschner

Entry requirements

- attendance in pre-meeting, priority is given to students who attended neu140 BM Neurophysiology and / or neu150 BM Neuroanatomy

Skills to be acquired in this module

- During the module the students acquire advanced theoretical knowledge of the molecular and cellular characteristics of retinal circuits and physiology.
- Students learn to plan and perform a research project independently (includes: literature research and usage of data banks (PUBMED, Gene Bank, Expasy etc.)
- Students are introduced to scientific writing / have to write a scientific report.
- Students acquire advanced skills in data analysis (including statistics, computational neuroscience, image analysis)
- The module can serve the purpose of preparing for a Master's thesis.

Module contents

1. Independent performance of an individual research project in small groups. Dates are individually arranged with the respective supervisor. Available project topics will be presented in the pre-meeting. Methods include:
 - Option 1: Molecular Neuroscience
 - Option 2: Neuroanatomy
 - Option 3: Neurophysiology
2. Participation in the "Journal club" seminar, including presentation of the project and the results obtained.

Reader's advisory

- http://webvision.med.utah.edu/ (H. Holb et al. (2016) The organization of the retina and visual system)
- 20 to 30 selected original papers on vision research (depending on individual project)

Links

Language of instruction

- English

Duration (semesters)

- 1 Semester

Module frequency

- halbjährlich

Module capacity

- unlimited

Reference text

- Regular active participation and presentation(s) within the scope of the seminar are required to pass the module. Furthermore, participation in a joint poster presentation of concurrent research modules is required to pass the module.

Module level

- MM (Mastermodul)

Modulart

- Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>flexible, after individual project</td>
<td>Internship report</td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Seminar</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.00</td>
<td></td>
<td>28 h</td>
</tr>
</tbody>
</table>

| Projektorientiertes Modul | 8.00 | WiSe | 112 h |

Total time of attendance for the module

- 140 h
neu470 - Molecular Sensory Neuroscience

Module Information

Module label: Molecular Sensory Neuroscience
Module code: neu470
Credit points: 15.0 KP
Workload: 450 h
Used in course of study:
- Master Neuroscience > Research Modules

Contact person

- Module responsibility
 - Karl-Wilhelm Koch
- Authorized examiners
 - Alle hier genannten
- Module counseling
 - Hans Gerd Nothwang
 - Kathrin Thedieck
 - John Neidhardt
 - Anna-Maria Hartmann

Entry requirements

Skills to be acquired in this module
- Neurosci. knowlg. Expt. methods
- Independent research
- Scient. literature
- Social skills
- Interdiscipl. knowlg. Maths/Stats/Progr. Data present./disc.
- Scientific English
- Ethics

For students putting emphasis on cell biological, molecular biological, genetic, biochemical and/or neurobiological fields. The module can serve the purpose of preparing for a Master’s thesis.
Upon successful completion of this course, students
- have an advanced knowledge in molecular cell biology
- have acquired methodological and experimental skills in molecular cell biology
- have an advanced knowledge of how to perform research projects

Module contents

Theory and practice of topics related to issues in molecular sensory neuroscience; independent treatment of an individual project; acquiring an advanced theoretical knowledge in selected fields of the molecular biology of the cell (points of emphasis: genetics, biochemistry, cell biology; topics depending on working groups).

- Protein function in neurosensory signaling (Koch)
- Heterologous expression in cell cultures of a protein involved in visual transduction or magnetoreception
- Neurosensory genetics (Nothwang)
- Metabolic signalling networks (Thedieck)
- Human genetics: mutation identification, pathogenic processes and therapy development (Neidhardt)

Reader's advisory

Specific literature of the topics indicated above; original papers related to the current research question; will be different for every student and every year.

Textbooks of Cell Biology, Biochemistry, Genetics:
- Alberts et al. Molecular Biology of the Cell (5th Edition or later); Stryer Biochemistry (7th Edition or later); Lehninger Biochemistry (4th Edition or later). These textbooks are updated almost every 3 or 4 years.

Links

Languages of instruction: German, English

Duration (semesters): 1 Semester

Module frequency: halbjährlich

Module capacity: unlimited

Reference text: Time is flexible and subject to individual arrangement. An accepted internship report and participation in a joint poster presentation of concurrent research modules are required to pass the module.

Modullevel: MM (Mastermodul)

Modulart: Wahlpflicht

Modultype / Type of program

Vorkenntnisse / Previous knowledge

Examination

Final exam of module

as agreed; usually within 2 months of the conclusion of lab work

oral exam of 30 min. in Cell Biology, Genetics or Biochemistry, depending on the chosen option

Participation in seminar,
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Signed project report</td>
</tr>
<tr>
<td>Course type</td>
<td>Projektorientiertes Modul</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>10.00</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload attendance</td>
<td>140 h</td>
<td></td>
</tr>
</tbody>
</table>
neu510 - Computation in Sensory Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Computation in Sensory Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu510</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master Neuroscience > Research Modules</td>
</tr>
</tbody>
</table>
| Contact person | Module responsibility

> Jutta Kretzberg
Authorized examiners

> Alle hier genannten
Module counseling

> Martin Greschner
> Jannis Hildebrandt
> Jochem Rieger |
| Entry requirements | attendance in pre-meeting, priority is given to students who attended BM Computational Neuroscience |
| Skills to be acquired in this module | + Neurosci. knowlw. Expt. methods Independent research Scient. literature + Social skills
+ Interdiscipl. knowlw. + Maths/Stats/Progr. Data present./disc. + Scientific English + Ethics
Students perform individual research projects to learn:

- planning, performing and analyzing experiments and / or simulations
- working with scientific background literature on the specific context of the project
- oral presentation and discussion of backgrounds and results in the lab seminar
- write a scientific report
- prepare and present a scientific poster
Module can serve as preparation for a Master's thesis. |
| Module contents | Students can choose between five options (explained in more detail during the pre-meeting):

1. invertebrate somatosensory system (Kretzberg)

2. vertebrate visual system (Greschner)

3. vertebrate auditory system (Hildebrandt)

4. human perception-action cycle (Rieger)

5. advanced analysis of physiological data (Anemüller)

In options 1-4, depending on the student's interests and background, projects can be focussed on

- experiments (neurophysiology / behavior)

- simulation

- data analysis or

- combinations of these approaches

In all systems, project can be focussed on experiments (neurophysiology / behavior), simulation, data analysis or combinations of these approaches. |
| Reader's advisory | Will be given to the students depending on the project |
| Links | Language of instruction: English

Duration (semesters): 1 Semester

Module frequency: halbjährlich

Module capacity: unlimited

Reference text: The timing of individual projects can be discussed with the supervisor. Projects can also be scheduled during semester breaks, part-time options (lasting more than 7 weeks) are available.

- priority for admission to the module is given to students who passed computational neuroscience background modules (neu240 / neu250)

- Participation in a joint poster presentation of concurrent research modules is highly recommended. |
<p>| Module level | MM (Mastermodul) |</p>
<table>
<thead>
<tr>
<th>Modulart</th>
<th>Wahlpflicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>flexible, 6 weeks after individual project</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Seminar</td>
<td>1.00</td>
</tr>
<tr>
<td>Projektorientiertes Modul</td>
<td>9.00</td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td></td>
</tr>
</tbody>
</table>
neu540 - Neural Basis of Perception

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neural Basis of Perception</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu540</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>• Master Neuroscience > Research Modules</td>
</tr>
</tbody>
</table>

Contact person
- Module responsibility
 - Jutta Kretzberg
- Authorized examiners
 - Alle hier genannten
- Module counseling
 - Georg Martin Klump
 - Henrik Mouritsen
 - Michael Winkhofer

Entry requirements
- Attendance in pre-meeting, priority is given to students who attended at least one of the background modules listed as "recommended in combination with"

Skills to be acquired in this module
- Neurosci. knowlg.
- Expt. methods
- Independent research
- Scient. literature
- Social skills
- Interdiscipl. knowlg.
- Maths/Stats/Progr.
- Data present./disc.
- Scientific English
- Ethics

Students perform individual research projects to learn:

- Planning, performing and analyzing experiments and/or simulations
- Working with scientific background literature on the specific context of the project
- Oral presentation and discussion of backgrounds and results in the lab seminar
- Writing a scientific report
- Prepare and present a scientific poster

Module can serve as preparation for a Master's thesis.

Module contents
- Introductory lecture and seminar (either blocked or parallel to lab work) plus 6 weeks of small-group lab projects, participating in the supervisor's ongoing research, and in the respective group seminar. There are four options for the lab projects:
 - Option 1: Navigation mechanisms in nocturnal bird migration (Mouritsen) comprises (i) lecture "Bird migration", (ii) participation in group seminar, and (iii) a laboratory project "Navigation mechanisms in nocturnal bird migration" (flexible timing); including participation in investigations of navigation mechanisms in migratory birds (project focusing on behavioural biology, molecular biology or neuroanatomy).
 - Option 2: Invertebrate somatosensory system (Kretzberg), includes participation in group seminar, journal club and laboratory project (all flexible timing).
 - Option 3: Central auditory mechanisms (Klump), includes introductory block course "Fundamentals of Auditory Physiology" (one week at start of winter semester), participation in group seminar and a laboratory project (flexible timing).
 - Option 4: Magnetic field perception (Winkhofer), includes participation in group seminar, journal club and laboratory project (all flexible timing).

Reader's advisory

Links
- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited

Reference text
- Please note that different options have mandatory course components at different times.
- Priority for admission is given to students who attended at least one of the background modules listed as

 "recommended in combination with"
- Participation in a joint poster presentation of concurrent research modules is highly recommended.

<table>
<thead>
<tr>
<th>Modullevel</th>
<th>MM (Mastermodul)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart</td>
<td>Wahlpflicht</td>
</tr>
</tbody>
</table>

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>within 2 months after completion of experimental work</td>
<td>Internship report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>1.00</td>
<td></td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Seminar</td>
<td>1.00</td>
<td></td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Projektorientiertes Modul</td>
<td>8.00</td>
<td>WiSe</td>
<td></td>
<td>112 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 140 h
neu570 - Development and Evolution of the Auditory System

Module label: Development and Evolution of the Auditory System
Module code: neu570
Credit points: 15.0 KP
Workload: 450 h

Used in course of study: Master Neuroscience > Research Modules

Contact person:
- Module responsibility: Ulrike Sienknecht
- Authorized examiners: Alle hier genannten
- Module counseling: Hans Gerd Nothwang, Christine Köppl

Entry requirements:
Skills to be acquired in this module:
- Neurosci. knowlg. Expt. methods Independent research Scient. literature + Social skills
- Interdiscipl. knowlg. Maths/Stats/Progr. Data present./disc. + Scientific English + Ethics
- Introduction to experimental research in the field of development and evolution of the auditory system.

Module contents:
Two-week introductory course into current research questions and techniques of the field; followed by 5 weeks of small-group lab projects, participating in the supervisor’s ongoing research, and in the group seminar. There are several options for the lab projects, in the broad categories of:
1. Molecular development and evolution of the peripheral auditory system (Sienknecht)
2. Molecular development and evolution of the central auditory system (Nothwang)
3. Comparative studies of the peripheral or central auditory system (Köppl)
4. Regenerative medicine of the auditory system (Löwenheim, Müller)

Reader’s advisory:
Springer Handbook of Auditory Research (SHAR); Sanes et al. eds. Development of the Nervous System, Academic Press; and research papers (original papers and reviews)

Links:
- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited

Reference text:
Course in the second half of the semester usually in winter term; lab component is flexible and subject to individual arrangement. Participation in a joint poster presentation of concurrent research modules is required to pass the module.

Modulelevel: MM (Mastermodul)
Modulart: Wahlpflicht

Lern-/Lehrform / Type of program:
Vorkenntnisse / Previous knowledge:

Examination:
- Time of examination: within 2 months after completion of experimental work
- Type of examination: Portfolio: 60% presentation, 40% internship report (paper or poster format)

Course type:
- Lecture: 1.00 SWS, 14 h
- Seminar: 1.00 SWS, 14 h
- Projektorientiertes Modul: 9.00 SWS, WiSe, 126 h

Total time of attendance for the module: 154 h
neu610 - External Research Project

Module label: External Research Project
Module code: neu610
Credit points: 15.0 KP
Workload: 450 h
(260 h contact / 40 h background reading / 90 h written report / 60 h talk and poster preparation)

Used in course of study:
- Master Neuroscience > Research Modules

Contact person:
- Module responsibility
 - Christine Köppl
 - Authorized examiners
 - Lehrende der Neuroscience

Entry requirements:
- project and supervisor(s) need to be approved by the exam board prior to the start of lab work

Skills to be acquired in this module:
- Neurosci. knowlg.
- ++ Expt. methods
- ++ Independent research
- ++ Scient. literature
- Social skills
- Interdiscipl. knowlg.
- ++ Data present./disc.
- Scientific English

Students are introduced to independent research in a specific area of neuroscience by a scientifically working group outside of the regular Neuroscience faculty at the University of Oldenburg (usually a university, research institute, clinics or scientifically working company in Germany or abroad).

Students perform individual research projects to learn:
- planning and organization of a research project in a group outside of University of Oldenburg
- formulate a scientific hypothesis
- planning, performing and analyzing experiments and / or simulations
- working with scientific background literature on the specific context of the project
- oral presentation and discussion of backgrounds and results in the lab seminar
- write a scientific report in publication format
- prepare and present a scientific poster

Module contents:
The External Research Module is carried out under the guidance and supervision of an experienced researcher who is not part of the regular Neuroscience faculty at the University of Oldenburg. It comprises approximately 7 (minimum 5) weeks of experimental or theoretical work, individually or in small groups, and, usually, participation in a regular group seminar during that time. After completion of the lab work, students will continue to be advised during the writing phase of the project report by the external supervisor and / or by a local Neuroscience faculty member.

Reader's advisory:
- Provided by external and / or local supervisor, depending on the project

Links:
- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: every semester
- Module capacity: unlimited (Module can be taken multiple times, if project options are sufficiently different (decision of the examination board needed)

Supervision of individual projects is limited to 15 ECTS for the same combination of student and supervisor (1 research module + Master thesis OR up to 3 research modules, including external research module)

Reference text:
- all members of the regular Neuroscience faculty at the University of Oldenburg can act as local supervisor, students should contact appropriate supervisors individually
- prior to project start, external and local supervisors must fill the learning agreement form
- the supervisor at the host institution is invited to submit a short written statement of assessment,
final grading is done by the local supervisor

- participation in a joint poster presentation of concurrent research modules is highly recommended.

<table>
<thead>
<tr>
<th>Modullevel</th>
<th>---</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
</tbody>
</table>

Lern-/Lehrform / Type of program

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>within 2 months after conclusion of lab work</td>
<td>internship report</td>
</tr>
</tbody>
</table>

Course type

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>10.00</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>140 h</td>
</tr>
</tbody>
</table>
neu600 - Neuroscience Research Project

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neuroscience Research Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu600</td>
</tr>
<tr>
<td>Credit points</td>
<td>15.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>450 h</td>
</tr>
<tr>
<td>Used in course of study</td>
<td>Master Neuroscience > Research Modules</td>
</tr>
</tbody>
</table>

Contact person
- Module responsibility
 - Jutta Kretzberg
- Authorized examiners
 - Lehrende der Neuroscience

Entry requirements

Skills to be acquired in this module

Module contents

Reader's advisory

Links

Languages of instruction

Duration (semesters)
1 Semester

Module frequency

Module capacity
unlimited

Modulelevel

Modular
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination

<table>
<thead>
<tr>
<th>Final exam of module</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PR</td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projektpraktikum</td>
<td></td>
<td>4.00</td>
<td>SuSe or WiSe</td>
<td>56 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td>SuSe or WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module
84 h
Skills Modules

neu710 - Neuroscientific Data Analysis in Matlab

<table>
<thead>
<tr>
<th>Module label</th>
<th>Neuroscientific Data Analysis in Matlab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu710</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(1 SWS Lecture (VO) Total workload 45h: 10h contact / 20h background reading / 15h exam preparation 1 SWS Seminar (SE) Total workload 45h: 10h contact / 20 h background reading / 15h preparation of presentation 2 SWS Supervised exercise (UE) Total workload 90h: 20h contact / 70h home work)</td>
</tr>
</tbody>
</table>

Used in course of study
- Master Neuroscience > Skills Modules

Contact person
- Module responsibility
 - Jannis Hildebrandt
- Authorized examiners
 - Jannis Hildebrandt

Entry requirements
- Neurosci. knowlg.
- Social skills
- Interdiscipl. knowlg.
- Maths/Stats/Progr.
- Scientific English

Upon successful completion of this course, students
- * understand basic programming concepts.
- * have good knowledge about the most important aspects of the programming language Matlab.
- * are able to use the programming environment for Matlab.
- * are able to write their own programs in Matlab.
- * know how to use Matlab to specifically analyze neuroscientific data, including:
 - > electrophysiological data (continuous and spike trains)
 - > basic image processing
 - > basic statistical testing.

Module contents
- Lecture topics:
 - Basic programming concepts: data types, variables, loops, scripts, functions, linear and object-oriented programming
 - Good practice: documenting your own code, back-up and version control
 - Introduction to the programming environment Matlab including the documentation
 - Introduction to the programming language Matlab
 - Efficient programming: memory use
 - Working with continuous data: basic time series analysis (i.e. LFP and EEG data)
 - Fourier transformation
 - Short introduction of spike-extraction and spike-sorting
 - Representation and processing of spike train data
 - Basic image and image series processing for imaging data (i.e. Ca+ imaging, fMRI)
 - Statistical testing with Matlab
 - Plotting and visualization.

During the seminar, we will discuss strategies for analysis and coding for specific relevant examples of neuroscientific data. The examples are prepared and presented by the students. Students will also present some of the work they did during the exercises. If students bring their own data or plan experiments for a research module or their thesis project, there will be the opportunity to discuss both analysis strategies and possible implementation in Matlab.

Exercise:
- Students will get coding exercises, where they will use the knowledge gained from the lecture. The exercises are a mix of short exercises and longer projects. Projects will be done in small groups (2-3 students).
- The students are encouraged to bring examples of data from experiments they have been involved in or are planning to do.

Reader's advisory
- Pascal Wallisch: MATLAB for Neuroscientists, Elsevier, Oxford

Links
- Language of instruction: English
- Duration (semesters): 1 Semester
- Module frequency: annually, summer term
- Module capacity: 24
- Reference text:
 - shared course components with (cannot be credited twice): pb150 Einführung in die Datenanalyse mit MATLAB

Modulart
- je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program
- basic knowledge of math and statistics

Examination
- Time of examination: during the course
- Type of examination: practical exercise - hand in code each week
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>In addition, mandatory but ungraded: presentation during the seminar</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
<td>SWS</td>
</tr>
<tr>
<td>Lecture</td>
<td>1.00</td>
<td>14 h</td>
</tr>
<tr>
<td>Exercises</td>
<td>2.00</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td>1.00</td>
<td>14 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
neu720 - Statistical programming in R

Module label: Statistical programming in R
Module code: neu720
Credit points: 6.0 KP
Workload: 180 h
(1.5 SWS Lecture (VO) Total workload 68h: 28h contact / 20h background reading / 20h exam preparation 2.5 SWS Supervised exercise (UE): Total workload 113h: 28h contact / 20h background reading / 65h exercise solving)

Used in course of study:
- Master Biologie > Skills Modules
- Master Neuroscience > Skills Modules

Contact person:
Module responsibility
- Fabian Otto-Sobotka
Authorized examiners
- Fabian Otto-Sobotka

Entry requirements
Skills to be acquired in this module:
+ Social skills
+ Interdiscipl. knowlg.
++ Maths/Stats/Progr.
+ Scientific English

- students learn the use of the software R in application scenarios
- students learn to actively "speak" the programming language R
- students practice statistical data analysis with R

Module contents:
The lecture gives an intuitive introduction into the use of the statistics software R. We start by introducing the basic handling of R and the syntax of its programming language. We use those to obtain the first statistical analyses from R. The next important step is to create informative graphics to represent the statistical results. Finally, we look into programming concepts that allow for more complex statistical analyses.

Reader's advisory:
R Core Team - R: A language and environment for statistical computing (Reference Manual)

Links:
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: annually, summer term
Module capacity: 24
Reference text:
Recommended previous knowledge / skills: basic statistical knowledge including regression analysis

Modullevel:

Moduleart:
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program:
Vorkenntnisse / Previous knowledge:
basic statistical knowledge including regression analysis

Examination:
Time of examination: after the course
Type of examination: practical exercise

Final exam of module:
Course type: Lecture
Comment: 2.00
SWS: 2.00
Frequency: SuSe
Workload attendance: 28 h

Course type: Exercises
Comment: 2.00
SWS: 2.00
Frequency: SuSe
Workload attendance: 28 h

Total time of attendance for the module: 56 h
neu730 - Biosciences in the Public Eye and in our Laws

Module label: Biosciences in the Public Eye and in our Laws
Module code: neu730
Credit points: 6.0 KP
Workload: 180 h
- (3.5 SWS Supervised exercise (UE) Total workload 158h: 48h contact / 40h preparation of presentation / 70h term paper 0.5 SWS Lecture (VO) Total workload 23h: 10h contact / 13 h background research)

Used in course of study

- Fach-Bachelor Betriebswirtschaftslehre für Leistungssportlerinnen und Leistungssportler > Fachnahe Angebote Biologie
- Fach-Bachelor Betriebswirtschaftslehre mit juristischem Schwerpunkt > Fachnahe Angebote Biologie
- Fach-Bachelor Biologie > Fachnahe Angebote Biologie
- Fach-Bachelor Business Administration in mittelständischen Unternehmen > Fachnahe Angebote Biologie
- Fach-Bachelor Chemie > Fachnahe Angebote Biologie
- Fach-Bachelor Comparative and European Law > Fachnahe Angebote Biologie
- Fach-Bachelor Engineering Physics > Fachnahe Angebote Biologie
- Fach-Bachelor Informatik > Fachnahe Angebote Biologie
- Fach-Bachelor Interkulturelle Bildung und Beratung > Fachnahe Angebote Biologie
- Fach-Bachelor Mathematik > Fachnahe Angebote Biologie
- Fach-Bachelor Nachhaltigkeitsökonomik > Fachnahe Angebote Biologie
- Fach-Bachelor Pädagogik > Fachnahe Angebote Biologie
- Fach-Bachelor Pädagogisches Handeln in der Migrationsgesellschaft > Fachnahe Angebote Biologie
- Fach-Bachelor Physik > Fachnahe Angebote Biologie
- Fach-Bachelor Physik, Technik und Medizin > Fachnahe Angebote Biologie
- Fach-Bachelor Sozialwissenschaften > Fachnahe Angebote Biologie
- Fach-Bachelor Umweltwissenschaften > Fachnahe Angebote Biologie
- Fach-Bachelor Wirtschaftswissenschaften > Fachnahe Angebote Biologie
- Master Biologie > Skills Modules
- Master Neuroscience > Skills Modules
- Zwei-Fächer-Bachelor Anglistik > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Biologie > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Chemie > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Elementarmathematik > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Ev. Theologie und Religionspädagogik > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Gender Studies > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Interdisziplinäre Sachbildung > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Kunst und Medien > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Materielle Kultur: Textil > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Mathematik > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Musik > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Niederlandistik > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Ökonomische Bildung > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Pädagogik > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Philosophie / Werte u. Normen > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Politik-Kommunikation > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Politik-Wirtschaft > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Slavistik > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Sonderpädagogik > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Sozialwissenschaften > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Sportwissenschaft > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Technik > Fachnahe Angebote Biologie
- Zwei-Fächer-Bachelor Wirtschaftswissenschaften > Fachnahe Angebote Biologie

Contact person
- Module responsibility
 - Christine Köppl
- Authorized examiners
 - Christine Köppl
 - Ulrike Sienknecht
- Module counseling
 - Ulrike Sienknecht

Entry requirements
- Skills to be acquired in this module
 - + Scient. Literature
 - ++ Social skills
Upon completion of this course, students

- have basic knowledge of non-biological aspects of professional life (e.g., law, management, languages)
- know the basic safety and environmental concerns in bioscientific workplaces
- are able to critically define and discuss ethical conflicts in biological research, e.g., in the context of stem cell research or data manipulation
- have the ability to communicate scientific concepts, both orally and in writing
- are able to prepare and give a coherent presentation in a team
- have practised to lead a group discussion

Module contents

Lectures introduce the legal framework and the application procedures for experimental work with animals, humans and genetically modified organisms.

In supervised exercises, students research the ethical aspects and controversial issues of about 10 particular topics in the biosciences. They take turns in summarizing and presenting each topic in small teams, and leading a critical discussion of each topic. Problem-based, independent research of the scientific background by the students is an integral part of this module.

Example topics:
- Good scientific practise and fraud
- Neuroenhancement
- Artificial intelligence
- Animal welfare, Animal experiments
- Overfishing, Nature conservation
- State-of-the-art genetic tools and their implications
- Genetically modified organisms, e.g., in food production, chimeras
- Stem cells
- Humans as experimental subjects

A bonus can be obtained through active participation during the semester. Active participation requires regular oral contributions to the group discussions, that go beyond giving your own talks. A bonus improves the exam mark by one step (0.3 or 0.4). The bonus is optional, an exam mark of 1.0 is achievable without a bonus. A bonus cannot be applied to pass a failed exam.

Reader's advisory

Current law and interpretative commentaries, e.g., by the German Research Council (DFG) or the German Ethics Panel

Introductory papers aimed at lay persons, e.g. from “The Scientist” or widely respected newspapers

Problem-based, independent search for relevant scientific literature is an integral part of this module

Links

Languages of instruction

German, English

Duration (semesters)

1 Semester

Module frequency

annually, summer term

Module capacity

18

Lern-/Lehrform / Type of program

je nach Studiengang Pflicht oder Wahlpflicht

Vorkenntnisse / Previous knowledge

Fundamentals of genetics, physiology, ecology and biological systematics

Examination

Time of examination: within a few weeks of summer term lecture period
Type of examination: Term paper

In addition, mandatory but ungraded: Regular participation during the semester is required (max 3 days of absence)

Course type

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2.00</td>
<td>SuSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar und Übung</td>
<td></td>
<td>2.00</td>
<td>SuSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module

56 h
neu740 - Molecular Mechanisms of Ageing

<table>
<thead>
<tr>
<th>Module label</th>
<th>Molecular Mechanisms of Ageing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu740</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

(4 SWS Supervised exercise (UE) Total workload 180h: 26h contact / 50h group work / 50h prep. of thesis, presentations / 54h recap. literature)

Used in course of study

- Fach-Bachelor Betriebswirtschaftslehre für Leistungssportlerinnen und Leistungssportler > Fachnahe Angebote Biologie
- Fach-Bachelor Betriebswirtschaftslehre mit juristischem Schwerpunkt > Fachnahe Angebote Biologie
- Fach-Bachelor Biologie > Fachnahe Angebote Biologie
- Fach-Bachelor Business Administration in mittelständischen Unternehmen > Fachnahe Angebote Biologie
- Fach-Bachelor Chemie > Fachnahe Angebote Biologie more...
- Fach-Bachelor Comparative and European Law > Fachnahe Angebote Biologie
- Fach-Bachelor Engineering Physics > Fachnahe Angebote Biologie
- Fach-Bachelor Informatik > Fachnahe Angebote Biologie
- Fach-Bachelor Interkulturelle Bildung und Beratung > Fachnahe Angebote Biologie
- Fach-Bachelor Mathematik > Fachnahe Angebote Biologie
- Fach-Bachelor Nachhaltigkeitsökonomik > Fachnahe Angebote Biologie
- Fach-Bachelor Pädagogik > Fachnahe Angebote Biologie
- Fach-Bachelor Pädagogisches Handeln in der Migrationsgesellschaft > Fachnahe Angebote Biologie
- Fach-Bachelor Physik > Fachnahe Angebote Biologie
- Fach-Bachelor Physik, Technik und Medizin > Fachnahe Angebote Biologie
- Fach-Bachelor Sozialwissenschaften > Fachnahe Angebote Biologie
- Fach-Bachelor Umweltwissenschaften > Fachnahe Angebote Biologie
- Fach-Bachelor Wirtschaftswissenschaften > Fachnahe Angebote Biologie
- Master Biologie > Skills Modules
- Master Neuroscience > Skills Modules
- Zwei-Fächers Bachelor Anglistik > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Biologie > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Chemie > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Elementarmathematik > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Ev. Theologie und Religionspädagogik > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Gender Studies > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Germanistik > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Geschichte > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Informatik > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Interdisziplinäre Sachbildung > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Kunst und Medien > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Materielle Kultur: Textil > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Mathematik > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Musik > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Niederlandistik > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Ökonomische Bildung > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Pädagogik > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Philosophie / Werte u. Normen > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Physik > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Politik-Wirtschaft > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Slavistik > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Sonderpädagogik > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Sozialwissenschaften > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Sportwissenschaft > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Technik > Fachnahe Angebote Biologie
- Zwei-Fächers Bachelor Wirtschaftswissenschaften > Fachnahe Angebote Biologie

Contact person

- Module responsibility
 - Kathrin Thedieck
 - Lena Ebbers

Authorized examiners

- Kathrin Thedieck

Entry requirements

Skills to be acquired in this module

- + Neurosci. knowlg.
- + Exp. methods
- ++ Scient. literature
- ++ Social skills
- + Interdiscipl. knowlg.
In this module the participants gain an overview of arguments and experimental strategies in ageing research. We will focus on the fields of medicine/epidemiology, biochemistry/cell biology, physiology, and genetics. In addition, the main ageing theories will be covered. The participants work throughout the semester in project groups and present their results at a conference at the end of the course. Ethicists and philosophers from Germany and The Netherlands accompany the course, and chair at the conference a session on ethical aspects of ageing research. Under their moderation, the participants derive joint standpoints and policy recommendations.

At the end of this course the participants can

- understand, analyse, and present scientific articles from ageing research
- present the results of their studies and analyses using different presentation techniques
- apply the learned contents in novel contexts (ethics in ageing research)

Topics

Major ageing theories

arguments and experimental strategies in the fields of medicine/epidemiology, biochemistry/cell biology, physiology, genetics in ageing research

application of the learned contents in novel contexts (ethics in ageing research)

understanding, analysing, and presentation of scientific articles

presentation of results with different presentation techniques

Module contents

Lecture: major ageing theories and methods in ageing research are presented and discussed

Exercise: project work

1) Students: Choice of research focus
2) Independent work on the chosen research paper
3) Writing a 1 page thesis paper
4) Presentation in own expert group
5) Expert groups: research strategies, approaches, methods in chosen focus area
6) Development of a group presentation and group poster
7) Presentation at 1 day conference
8) Dutch and German ethics experts present bioethics and lobby work in German and Dutch political gremia
9) The students develop a comparative view on medical ethics in different countries and derive own standpoints and policy recommendations for the ethical assessment of metabolic and ageing research. The project work runs independently in the different expert groups throughout the semester and is organised via StudIP. The students and groups receive regular feedback and guidance in presence meetings.

The days for presence meetings and final conference are determined with the participants during the first meeting. The students organize their own work in groups according to the jigsaw concept. Their work is structured by a weekly schedule, tasks to be handed in at fixed deadlines across the semester, lectures and presence meetings.

Reader’s advisory

Primary and secondary literature will be provided and introduced at the first meeting

Recommended textbook(s) or other literature:
Roger B. McDonald, Biology of aging, Garland Science

Altern : Zelluläre und molekulare Grundlagen, körperliche Veränderungen und Erkrankungen, Therapieansätze
Ludger Rensing ; Volkhard Rippe

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
annually, summer term

Module capacity
16

Modulart
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination
Time of examination
Type of examination

Final exam of module
end of semester
portfolio: thesis paper, oral presentation, poster
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>presentation In addition, mandatory but ungraded: questionnaire on ageing theories, meeting protocols</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2.00</td>
<td>SuSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>4.00</td>
<td>SuSe</td>
<td>56 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module

84 h
neu750 - Laboratory Animal Science

Module label Laboratory Animal Science
Module code neu750
Credit points 6.0 KP
Workload 180 h
Used in course of study • Master Neuroscience > Skills Modules

Contact person
Module responsibility
 • Christine Köppl
Authorized examiners
 • Alle hier genannten
Module counseling
 • Ulrike Langemann
 • Georg Martin Klump
 • Arne Nolte
 • Gabriele Gerlach

Entry requirements
Skills to be acquired in this module
 • Neurosci. knowlg. Expt. methods + Independent research + Scient. literature Social skills
 • Interdiscipl. knowlg. Maths/Stats/Progr. Data present./disc. + Scientific English Ethics
 • Upon successful completion of this course, students
 • know the relevant EU legislation governing animal welfare and are able to explain its meaning in
 common language
 • understand and are able to critically discuss salient ethical concepts in animal experimentation, such as
 the three Rs and humane endpoint.
 • have basic knowledge of the biology and husbandry of laboratory animal species held at the University
 of Oldenburg (rodents and birds)
 • are able to critically assess the needs and welfare of animals without compromising scientific integrity of
 the investigation
 • have practical skills in handling small rodents and birds
 • have profound knowledge of anaesthesia, analgesia and basic principles of surgery.
 • have practised invasive procedures and euthanasia.

NOTE: These objectives aim to satisfy the requirements for EU directive A „Persons carrying out
animal experiments“ and EU directive D „Persons killing animals“ for rodents, birds and fish. We
aim to obtain accreditation by the Federation of European Laboratory Animal Science
Associations (FeLaSa) by mid-2017.

Module contents
Background knowledge on:
 • Legislation, ethics and the 3Rs
 • Scientific integrity
 • Data collection
 • Basic biology of rodents, birds and fish
 • Husbandry, and nutrition of rodents, birds and fish
 • Animal Welfare
 • Health monitoring
 • Pain and distress
 • Euthanasia

Practical procedures will first be demonstrated, important aspects will then be practiced under supervision by every participant:

 • Handling and external examination of mouse, gerbil, zebra finch, chicken, zebra fish
 • Administration of substances, blood sampling
 • Euthanasia and dissection
 • Transcardial perfusion
 • Anaesthesia and surgery

Reader's advisory
“LAS interactive” internet-based learning platform

Links

Language of instruction English
Duration (semesters)
1 Semester

Module frequency
halbjährlich

Module capacity
unlimited

Reference text
Course in the semester break
In addition to the exam, completion of an assignment is required to pass the module.
GV-SOLAS accreditation aimed for in 2016, FELASA in 2017

Modullevel
MM (Mastermodul)

Modulart
Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination
Time of examination: within 2 months of completing the course
Type of examination: Written exam of 90 min.

Final exam of module
Type of examination: Written exam of 90 min.

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2.00</td>
<td></td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Exercises</td>
<td>3.00</td>
<td></td>
<td></td>
<td>42 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module
70 h
neu760 - Scientific English

Module label: Scientific English
Module code: neu760
Credit points: 6.0 KP
Workload: 180 h
(0.5 SWS Lecture (VO) Total workload 23h: 8h contact / 15h research for term paper 3.5 SWS Supervised exercise (UE) Total workload 158h: 46h contact / 46h preparation of texts and presentations / 66h term paper)

Used in course of study:
- Master Biologie > Skills Modules
- Master Neuroscience > Skills Modules

Contact person:
- Module responsibility: Jannis Hildebrandt
- Authorized examiners: Jannis Hildebrandt

Entry requirements:
- non-native speakers

Skills to be acquired in this module:
- + Neurosci. knowlg.
- ++ Social skills
- ++ Data present./disc.
- ++ Scientific English

Upon completion of this course, students have increased their proficiency in different forms of scientific presentation and communication in English, with special emphasis on neuroscience.

are able to express themselves with correct sentence structure and grammar, correct use of idioms and correct pronunciation.

are proficient in different contexts of scientific communication (e.g., paper, poster and informal exchange by email or phone).

are able to recognize and avoid common errors of non-native speakers.

Module contents:
Lectures cover:
- characteristics of the different forms of scientific presentations
- sentence structure using the passive voice
- scientific vocabulary and terminology as contrasted to common speech
- appropriate language for communication with scientific editors and referees

Students read neuroscience texts of an advanced level and practice explaining and presenting these in both written and oral form. They also practice different contexts of scientific communication (e.g., paper, poster and informal exchange by email or phone). Emphasis is placed on individual problems in pronunciation and language use errors.

Reader's advisory:
http://users.wpi.edu/~nab/sci_eng/ScientificEnglish.pdf

Links:
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: annually, semester break
Module capacity: 12
Reference text:
Usually held in the break before summer term
Additional teachers in the module: outsourced to STELS-OL (Scientific and Technical English Language Service, Oldenburg); native English speaker with in-depth neuroscience knowledge

Module level: ---
<table>
<thead>
<tr>
<th>Modulart</th>
<th>je nach Studiengang Pflicht oder Wahlpflicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>English level B2 according to Common European Framework of Reference for Languages (CEFR)</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>within 2 months of completing the course</td>
</tr>
<tr>
<td>Portfolio: 50% presentation, 50% assignment; bonus for active participation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1.00</td>
<td>WiSe</td>
<td>14 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>3.00</td>
<td>WiSe</td>
<td>42 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
neu770 - Basics of Statistical Data Analysis

Module label: Basics of Statistical Data Analysis
Module code: neu770
Credit points: 6.0 KP
Workload: 180 h
(1,5 SWS Lecture (VO) Total workload 68h: 28h contact / 20h background reading / 20h exam preparation 2,5 SWS Seminar (SE) Total workload 113h: 28h contact / 20h background reading / 65h exercise solving)

Used in course of study:
- Fach-Bachelor Physik, Technik und Medizin > Aufbaumodule
- Master Biologie > Skills Modules
- Master Neuroscience > Skills Modules

Contact person:
- Module responsibility
 - Fabian Otto-Sobotka
- Authorized examiners
 - Fabian Otto-Sobotka

Entry requirements:
Skills to be acquired in this module:
+ Social skills
+ Interdiscipl. knowl.
++ Maths/Stats/Progr.
+ Scientific English

Upon successful completion of this course, students:
- have basic statistical competencies for understanding data
- understand the main statistical methods and their practical use through application
- can evaluate statistical methods regarding the qualities and their limits

Module contents:
- populations and samples; exploratory data analysis through describing statistics
- elementary probabilities and random variables
- important discrete and continuous distributions
- estimating parameters through the method of maximum likelihood
- confidence intervals and classical significance testing
- pairs of random variables; distribution and dependence
- classical regression analysis
- basic use of the software R to apply those methods

Reader's advisory:
Will be available in Stud.IP

Links:
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: annually, winter term
Module capacity: unlimited
Modulart: je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program:
Vorkenntnisse / Previous knowledge: basic mathematical knowledge; une of probabilities recommended in combination with neu720 Statistical programming with R

Examination:
- Final exam of module: after the course
 - Time of examination: written exam, 2h

Course type:
- Lecture: 2.00
- Seminar: 2.00

Workload attendance:
- Lecture: 28 h
- Seminar: 28 h
- Total time of attendance for the module: 56 h
neu780 - Introduction to Data Analysis with Python

Module label
Introduction to Data Analysis with Python

Module code
neu780

Credit points
6.0 KP

Workload
180 h
(2 SWS Lecture total workload 90h: 30h contact / 60h individual reading 2 SWS Supervised exercise total workload 90h: 45h contact / 45h solving programming exercises)

Used in course of study
- Master Biologie > Skills Modules
- Master Neuroscience > Skills Modules

Contact person
Module responsibility
- Michael Winkhofer

Authorized examiners
- Michael Winkhofer

Entry requirements

Skills to be acquired in this module
- Neurosci. knowlg.
-++ Maths/Stats/Progr.
- Data present./disc.

The objective of the module is the acquisition of programming skills with focus on analysis of neurobiological datasets, using the programming language python. Python is available for any computer platform (PC, Mac, Linux) and is open source (for free), see https://www.python.org/.

Students will learn how to write effective scripts for data processing and visualisation, making use of pre-existing program libraries for various generic purposes (maths, statistics, plotting, image analysis).

Typical applications will be analysis of time series (e.g., electrophysiological recordings, movement data), images (e.g. immunohistochemical images, MRI slices), and spatio-temporal correlations in volume data. Students will also learn how to produce synthetica data from various noise models to assess signal-to-noise ratio in instrumental datasets.

Module contents
Data types and data structures, control structures, functions, modules, file input/output Standard libraries and SciPy libraries (Matplotlib, NumPy,...), scikit-image, VPython, ...

Reader's advisory
open access
http://www.swaroopch.com/notes/python/
http://docs.python.org/3/tutorial/index.html

Links

Language of instruction
English

Duration (semesters)
1 Semester

Module frequency
semester break, annually

Module capacity
20

Reference text
Shared course components with (cannot be credited twice): pb328 "Einführung in Datenanalyse mit Python" (Professionalisierungsmodul im Bachelorstudium Biologie)

Modullevel

Modulart
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program

Vorkenntnisse / Previous knowledge
No prior knowledge in programming required, but useful.

Examination
Time of examination
Final exam of module
term break, immediately after the course (2 weeks in February) assignment of programming exercises, 4 out of 5 exercises to be assessed

Type of examination

Course type
Comment
SWS
Frequency
Workload attendance
Lecture
2.00
WiSe
28 h
Exercises
2.00
WiSe
28 h

Total time of attendance for the module
56 h
neu751 - Laboratory Animal Science

Module label: Laboratory Animal Science
Module code: neu751
Credit points: 3.0 KP
Workload: 90 h
(one week full-time in semester break + flexible time for studying and exam preparation 1 SWS Lecture total workload 45h: 2h contact / 20h background reading / 23h exam preparation 1 SWS Supervised exercise total workload 45h: 35h contact / 10h background reading)

Used in course of study
- Master Biologie > Skills Modules
- Master Neuroscience > Skills Modules

Contact person
Module responsibility
- Christine Köppl

Authorized examiners
- Christine Köppl
- Georg Martin Klump
- Ulrike Langemann
- Arne Nolte

Entry requirements
Skills to be acquired in this module
++ Expt. Methods
+ Independent research
+ Scient. Literature
++ Social skills
++ Interdiscipl. knowl.
+ Scientific English
++ Ethics

Upon successful completion of this course, students
- know the relevant EU legislation governing animal welfare and are able to explain its meaning in common language
- understand and are able to critically discuss salient ethical concepts in animal experimentation, such as the three Rs and humane endpoint.
- have basic knowledge of the biology and husbandry of laboratory animal species held at the University of Oldenburg (rodents or birds or fish)
- are able to critically assess the needs and welfare of animals without compromising scientific integrity of the investigation
- have practical skills in handling small rodents or birds or fish
- have profound knowledge of anaesthesia, analgesia and basic principles of surgery.
- have practised invasive procedures and euthanasia.

NOTE: These objectives aim to satisfy the requirements for EU directive A „Persons carrying out animal experiments” and EU directive D „Persons killing animals”. We aim to obtain accreditation by the Federation of European Laboratory Animal Science Associations (FeLaSa) by 2018.

Module contents
Background knowledge is taught using the third-party online platform "LAS Interactive" which concludes with a written exam that has to be passed before the practical part. Topics covered are:
- Legislation, ethics and the 3Rs
- Scientific integrity
- Data collection
- Basic biology of rodents, birds and fish
- Husbandry, and nutrition of rodents, birds and fish
- Animal Welfare
- Health monitoring
- Pain and distress
- Euthanasia Practical procedures will first be demonstrated, important aspects will then be practiced under supervision by every participant, on an animal model of their choice (rodents, birds or fish):
- Handling and external examination
- Administration of substances, blood sampling
- Euthanasia and dissection
- Transcardial perfusion
- Anaesthesia and surgery

Reader's advisory
"LAS interactive" internet-based learning platform
Wiley-Blackwell

Links
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: semester break, every semester
Module capacity: 15
Registration procedure / selection criteria: StudIP, sequence of registration

Modullevel: ---
Modulart: je nach Studiengang Pflicht oder Wahlpflicht
Lern-/Lehrform / Type of program:
Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>immediately before the practical part</td>
<td>written exam of 90 minutes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>1.00</td>
<td>SuSe and WiSe</td>
<td>14 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1.00</td>
<td>SuSe and WiSe</td>
<td>14 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module: 28 h
neu790 - Communicating Neuroscience

Module label: Communicating Neuroscience
Module code: neu790
Credit points: 3.0 KP
Workload: 90 h (28 h contact / 62 h individual reading and preparing discussion questions)

Used in course of study:
- Master Biologie > Skills Modules
- Master Neuroscience > Skills Modules

Contact person:
Module responsibility:
- Jutta Kretzberg

Authorized examiners:
- Jutta Kretzberg
- Jannis Hildebrandt
- Christine Köppl

Entry requirements:

Skills to be acquired in this module:
- Neurosci. knowlg.
- Independent research
- ++ Scient. Literature
- ++ Social skills
- Interdiscipl. knowlg.
- ++ Data present./disc.
- ++ Ethics

Upon successful completion of this course, students will have thought about and discussed in depth scientific, social and ethical aspects of neuroscience.

Critical reading of neuroscience literature:
- identify article type and audience
- summarize scientific contents
- identify strengths and weaknesses of methods, conclusions etc.
- put into scientific context
- discuss manuscript style
- discuss social and ethical context and implications of the study

Critical discussion of own studies:
- present own results in a way that is appropriate for the target audience
- put own studies into the context of scientific literature
- acquire additional knowledge about a broader field of research

Module contents:
The overall goal of critical discussion of neuroscientific results in a scientific, social and ethical context can be achieved by different options:

- Option 1: Seminar 'Neuroscience Journal Club': All students read and discuss 12 published papers (one each week). Different fields of neuroscience (e.g. molecular, cellular, behavioral, computational) will be covered with one classical and one recent paper each. Papers and questions about each paper will be provided prior to the start of the seminar. Students prepare answers to these questions independently and discuss their answers during the seminar. The module is passed when a student actively participated in the discussion of at least 10 papers.
- Option 2: Written report on a neuroscientific topic of the student's choice, based on scientific literature, e.g. in the context of an independent student study group. The report should discuss scientific results in a scientific and a social / ethical context.
- Option 3: Active participation in a scientific conference, workshop, summer school etc: Participation in a scientific conference, workshop, summer school etc. lasting a minimum of 3 full days can be credited with 3 ECTS, if the student presents own scientific results (poster, talk) obtained, e.g., in a research module or Master thesis.
- Option 4: Participation in at least 20 scientific presentations (e.g. IBU / DfN colloquium, Hanse lecture neuroscience) and submission of a short (1 page) written summary of each talk.

For other individual options (e.g. teaching in neuroscience) ask the module organizer.

Reader's advisory:
Option 1 (seminar): List of 12 published papers will be provided prior to the course. All students are required to read at least 10 of those.
Other options: dependent on the scientific topic
Background neuroscience textbooks, e.g.:
Galizia, Lledo ‘Neuroscience – From Molecule to Behavior’, 2013, Springer
Nicholls et al. ‘From Neuron to Brain’, 5th edition 2012, Sinauer

<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>every semester (seminar during winter semester, other option any time)</td>
</tr>
<tr>
<td>Module capacity</td>
<td>20 (for option 1)</td>
</tr>
<tr>
<td>Registration procedure / selection criteria: StudIP</td>
<td></td>
</tr>
<tr>
<td>Module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Module type</td>
<td>Wahlpflicht / Elective</td>
</tr>
</tbody>
</table>

Lern-Lehrform / Type of program

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>none (only pass / fail) depend on the option chosen (see Module content)</td>
</tr>
</tbody>
</table>

Course type

| SWS | 2.00 |

Frequency

| SuSe and WiSe |

Workload attendance

| 28 h |
neu800 - Introduction to Matlab

<table>
<thead>
<tr>
<th>Module label</th>
<th>Introduction to Matlab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>neu800</td>
</tr>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
<tr>
<td></td>
<td>(2 SWS Supervised exercise (UE) "Introduction to MATLAB" Total workload 90h: 28h contact / 62h practising learned programming skills)</td>
</tr>
</tbody>
</table>

Used in course of study
- Master Biologie > Skills Modules
- Master Neuroscience > Skills Modules

Contact person
- Module responsibility
 - Carsten Gießing
- Authorized examiners
 - Carsten Gießing

Entry requirements

Skills to be acquired in this module
- ++ Expt. Methods
- + Social skills
- + Interdiscipl. knowlg.
- ++ Maths/Stats/Progr.
- + Data present./disc.
- + Scientific English

Within this introductory course students will learn the basics of MATLAB programming. Participants will be introduced in fundamental programming concepts.

Module contents
The modul comprises an introduction to data structures, flow control, loops, graphics, basic data analyses with MATLAB, scripts and functions.

Reader's advisory

Links

Language of instruction
- English

Duration (semesters)
- 1 Semester

Module frequency
- annually, summer term, second half

Module capacity
- 12 (in total with bio640) (shared course components with (cannot be credited twice): bio640)

Module level
- MM (Mastermodul / Master module)

Moduleart
- Wahlpflicht / Elective

Lern-Lehrform / Type of program

Vorkenntnisse / Previous knowledge

Examination
- Time of examination: end of summer term
- Type of examination: Working on exercises Regular active participation

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>0.00</td>
<td>SuSe</td>
<td>0 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>0.00</td>
<td>SuSe</td>
<td>0 h</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2.00</td>
<td>SuSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Total time of attendance for the module
- 28 h
neu810 - International Meeting Contribution

Module label: International Meeting Contribution
Module code: neu810
Credit points: 3.0 KP
Workload: 90 h

Used in course of study:
- Master Biologie > Skills Modules
- Master Neuroscience > Skills Modules

Contact person:
Module responsibility:
- Jutta Kretzberg
Authorized examiners:
- Jutta Kretzberg
- Christine Köppl
- Jannis Hildebrandt

Entry requirements:
Skills to be acquired in this module:
- Neurosci. knowlg.
 - Independent research
 - Scient. Literature
 - Social skills
 - Interdiscip. knowlg.
 - Data present./disc.
 - Scientific English
 - Ethics

Presentation and critical discussion of own studies in front of an international audience:
- Participate in an international meeting
- Prepare a poster or talk for an international meeting
- Present own results in a way that is appropriate for the target audience
- Put own studies into the context of scientific literature
- Acquire additional knowledge about a broader field of research

Module contents:
Active participation in a scientific conference, workshop, summer school etc, lasting a minimum of 3 full days. Student must be the presenter (poster or talk) and an author of the presented work, typically carried out in the context of a research module or the Master thesis.

Reader’s advisory:
Dependent on the scientific topic

Links:
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: every semester, flexible
Module capacity: unlimited (please contact module organizer individually)

Modullevel: MM (Mastermodul / Master module)
Modulart: Wahlpflicht / Elective

Lern-/Lehrform / Type of program:
Vorkenntnisse / Previous knowledge:

Examination:
Time of examination: none (only pass/fail)

Course type: Seminar

SWS: 0.00
Frequency: SuSe and WiSe
Workload attendance: 0 h