Modulhandbuch

Environmental Modelling - Master's Programme

im Sommersemester 2022

erstellt am 27/02/22
mar700 - Introduction to Environmental Modelling .. 6
mar353 - Basics in Mathematical Modelling ... 8
mar354 - Advanced mathematical modelling ... 9
mar355 - Physical Oceanography .. 11
mar356 - Ocean-Climate-Environmental Physics .. 12
mar357 - Marine Chemistry and Geochemistry ... 14
mar363 - Theory of Ecological Communities ... 16
mar364 - Time Series Analysis ... 17
mar365 - Stochastical Processes .. 19
mar367 - Ocean Models .. 21
mar368 - Climate Models ... 23
mar369 - Critical States in the Earth System: Tipping Points and Resilience 25
mar374 - Nonlinear Dynamics in the Earth System ... 27
mar375 - Models in Population Dynamics .. 29
mar376 - Statistical Ecology .. 31
mar431 - Marine Climatology .. 33
mar432 - Biogeochemistry ... 35
mar438 - Marine Environmental Chemistry .. 38
mar457 - Ecology of Benthic Microorganisms .. 40
mar458 - Aquatic Ecology .. 42
mar459 - Macrobenthos communities .. 44
mar461 - Functional marine biodiversity ... 46
mar470 - Programming for Marine Sciences ... 48
mar671 - Statistics Software R: Introduction ... 50
mar672 - Soil Science, Hydrology and Ecosystem ... 52
mar673 - Hydrogeology ... 54
mar715 - Basics in Biology/Ecology ... 56
mar716 - Geochemistry ... 56
mar717 - Statistical Environmental Modelling ... 58
mar718 - Hydrodynamics ... 60
mar719 - Basics in Mathematical Modelling ... 60
mar722 - Ecology of Plants and Animals ... 62
mar723 - Biodiversity of Plants .. 64
mar732 - Computational Fluid Dynamics .. 66
mar733 - Wind Resource and its Application ... 68
mar734 - Solar Resource and its Application .. 70
mar735 - Bioenergy .. 72
mar736 - Energy Systems ... 75
mar742 - Environmental and Resource Economy ... 77
mar743 - Energy and Climate Change Economy ... 79
mar744 - Game Theory and Ecological Economics .. 81
mar754 - Modelling of Complex Systems ... 83
mar755 - Fluid Dynamics ... 85
mar756 - Hydrogeological Modelling ... 88
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>mar757</td>
<td>Fluid Dynamics II</td>
</tr>
<tr>
<td>mar768</td>
<td>Statistical Analysis</td>
</tr>
<tr>
<td>mar779</td>
<td>Computer-oriented Physics</td>
</tr>
<tr>
<td>mar780</td>
<td>Practical Seminar in Modelling</td>
</tr>
<tr>
<td>mar800</td>
<td>Contact Internship/Research Project</td>
</tr>
<tr>
<td>mar997</td>
<td>Applied Statistics in Biology and Environmental Science</td>
</tr>
<tr>
<td>mat837</td>
<td>Extreme Value Statistics and Applications</td>
</tr>
<tr>
<td>mat839</td>
<td>Time Series Models resp. State Space Models</td>
</tr>
<tr>
<td>mat843</td>
<td>Elements of Multivariate Statistics</td>
</tr>
<tr>
<td>mat847</td>
<td>Elements of Exploratory Data Analysis, Robust Statistics, and Diagnostics</td>
</tr>
<tr>
<td>mat849</td>
<td>Statistical Algorithms</td>
</tr>
<tr>
<td>wir808</td>
<td>Multivariate Statistics</td>
</tr>
<tr>
<td>inf005</td>
<td>Software Engineering I</td>
</tr>
<tr>
<td>inf006</td>
<td>Software Engineering II</td>
</tr>
<tr>
<td>inf501</td>
<td>Environmental Information Systems</td>
</tr>
<tr>
<td>inf510</td>
<td>Energy Information Systems</td>
</tr>
<tr>
<td>inf511</td>
<td>Smart Grid Management</td>
</tr>
<tr>
<td>inf535</td>
<td>Computational Intelligence I</td>
</tr>
<tr>
<td>inf536</td>
<td>Computational Intelligence II</td>
</tr>
<tr>
<td>inf651</td>
<td>Environmental Management Information Systems I</td>
</tr>
<tr>
<td>inf659</td>
<td>Environmental Management Information Systems II</td>
</tr>
<tr>
<td>inf810</td>
<td>Special Topics in Computer Science I</td>
</tr>
</tbody>
</table>
Mastermodule
mar700 - Introduction to Environmental Modelling

Module label: Introduction to Environmental Modelling
Module code: mar700
Credit points: 6.0 KP
Workload: 180 h
(Kontaktzeit: 56 h, Selbststudium: 124 h)

Applicability of the module:
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons:
- Feudel, Ulrike (Module responsibility)
- Umweltmodellierung, Lehrende (Module counselling)

Prerequisites:
- keine

Skills to be acquired in this module:
Die Studierenden besitzen grundlegende Kenntnisse der Umweltmodellierung. Sie haben einen ersten Einblick in die wesentlich am Studiengang beteiligten Arbeitsgruppen und deren aktuelle Forschungsthemen. Sie kennen zentrale Arbeitsgebiete der Umweltmodellierung aus der Sicht verschiedener Experten und die dabei genutzten Methoden. Sie haben gelernt, sich mit wissenschaftlichen Fragen selbstständig und kritisch auseinander zu setzen.

Module contents:

Ring-Vorlesung Einführung in die Umweltmodellierung

In der Ring-Vorlesung präsentieren Lehrende der beteiligten Arbeitsgruppen ggf. unter Mitwirkung von Gastwissenschaftlern Lehrinhalte aus dem Arbeitsgebiet, in dem sie forschen.

Die Studierenden wählen sich eine der Arbeitsgruppen aus, in der sie tieferen Einblick in die Forschungsthemen der gewählten Arbeitsgruppe bekommen.

In einer Hausarbeit wird unter Leitung von Lehrenden dieser Arbeitsgruppe selbständig ein wissenschaftliches Thema bearbeitet.

Reader's advisory:
Wird in den Veranstaltungen eingeführt, aktuelle Publikationen in Fachzeitschriften

Languages of instruction:
German, English

Duration (semesters):
1 Semester

Module frequency:
jährlich

Module capacity:
unlimited (Entsprechend der Zulassungszahl)

Reference text:
Vorlesung mit Diskussionsanteilen;
angeleitetes bzw. teilweise selbstständiges Arbeiten am Computer mit gängigen Software-Werkzeugen;
eigenständiger Umgang mit Literatur und computergestützter Präsentationstechnik

Modullevel / module level:
BC (Basiscurriculum / Base curriculum)

Modularität / typ of module:
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method:
- Ring-Vorlesung Einführung in die Umweltmodellierung (3 KP)
- Übung zur Einführung in die Umweltmodellierung (3KP)

Vorkenntnisse / Previous knowledge:
Für den Übungssteil: Vertrautheit im Umgang mit Rechnern, Matlab, Grundkenntnisse von Modellierungstechniken
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Nach Maßgabe der Dozentin oder des Dozenten.</td>
<td>HA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
mar353 - Basics in Mathematical Modelling

Module label	Basics in Mathematical Modelling
Module code | mar353
Credit points | 6.0 KP
Workload | 180 h

- Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden

Applicability of the module
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Marine Environmental Sciences (Master) > Mastermodule

Responsible persons
- Kohlmeier, Cora (Module responsibility)

Prerequisites
- Keine

Skills to be acquired in this module
Die Studierenden beherrschen die grundlegenden mathematischen Fähigkeiten, die sie befähigen, das interdisziplinäre Studium erfolgreich abzuschließen. Sie erlernen Modelle zu verschiedenen Fragestellungen aufzustellen und zu analysieren, die Ergebnisse darzustellen und kritisch zu hinterfragen. Sie erlernen die Vorgehensweise, Informationen aus den jeweiligen Fachdisziplinen aufzubereiten und zur Modellbildung einzusetzen.

Module contents
- Grundlagen der Analysis, Grundlagen der Programmierung in MATLAB, empirische Modelle, Differenzen- und Differentialgleichungsmodelle, Räuber-Beute-Modelle, Epidemiemodelle, Methodik zur Erstellung mathematischer Modelle am Beispiel natürlicher Systeme, numerische und analytische Lösungsansätze, räumlich ausgedehnte Systeme, zelluläre Automaten.

Reader’s advisory
Vorlesungsskript

Links
- Language of instruction: German
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Modulelevel / module level: MM (Mastermodul / Master module)
- Modulart / typ of module: Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method
- VL Grundlagen mathematischer Modellierung (2 SWS, 3 KP)
- Ü Grundlagen mathematischer Modellierung (2 SWS, 3 KP)

Vorkenntnisse / Previous knowledge

Examination
- Time of examination
- Type of examination

Final exam of module
- Klausur am Ende der Veranstaltungszeit oder fachpraktische Übung oder mündliche Prüfung nach Maßgabe der Dozentin oder des Dozenten.

Course type	Comment	SWS	Frequency	Workload of compulsory attendance
Lecture | | 2 | WiSe | 28
Exercises | | 2 | WiSe | 28

Total time of attendance for the module
56 h
mar354 - Advanced mathematical modelling

Module label: Advanced mathematical modelling
Module code: mar354
Credit points: 6.0 KP
Workload: 180 h
Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden

Applicability of the module:
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Marine Environmental Sciences (Master) > Mastermodule

Responsible persons:
Blasius, Bernd (Module responsibility)
Feenders, Christoph (Module counselling)
Ryabov, Alexey (Module counselling)

Skills to be acquired in this module:
Die Studierenden erlangen vertiefte Kenntnisse in mathematischer Modellierung mit besonderer Spezialisierung auf moderne Anwendungen in ungeordneten Systemen und Extremereignissen. Sie erlernen Modelle zu verschiedenen Fragestellungen aufzustellen und zu analysieren, die Ergebnisse darzustellen und kritisch zu hinterfragen.

Module contents:
Modelling approaches for random processes in biological, environmental, natural and social systems with a focus on modern applications:
- Introduction to random numbers and probability distributions (moments, generating functions)
- Stochastic processes and random walks
- Models of animal movement (Levy walks and flights)
- Power laws (scale-free distributions, extreme events, inequality)
- Fractals and surface growth models
- Preferential attachment (Simon model, neutral theory of biodiversity, scale free networks)
- Scaling theory (metabolic scaling, distribution networks)

Reader's advisory:
W. Feller (Wiley). An introduction to probability theory and its applications I & II.
M. Schroeder (Freeman). Fractals, chaos, power laws: Minutes from an infinite paradise.
Van Kampen (NorthHolland). Stochastic processes in physics and chemistry.

Links:
Language of instruction: English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Module level / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method:
- Wintersemester:
 - VL Advanced mathematical modelling (2 SWS, 3 KP)
 - Ü Advanced mathematical modelling (2 SWS, 3 KP)
Vorkenntnisse / Previous knowledge
Nützlich: Grundlagen der mathematischen Modellierung, Programmiererfahrung in Matlab oder verwandter Sprache

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>KL</td>
</tr>
<tr>
<td>Klausur am Ende der Veranstaltungszeit oder fachpraktische Übung oder mündliche Prüfung nach Maßgabe der Dozentin oder des Dozenten.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
mar355 - Physical Oceanography

Module label: Physical Oceanography
Module code: mar355
Credit points: 6.0 KP
Workload: 180 h
 (Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden)

Applicability of the module:
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Marine Environmental Sciences (Master) > Mastermodule

Responsible persons:
- Wolff, Jörg-Olaf (Module responsibility)
- Lettmann, Karsten (Module counselling)

Prerequisites: Keine

Skills to be acquired in this module:
Die Studierenden lernen die grundlegenden Mechanismen und Theorien der großskaligen Ozeanströmungen kennen. Sie sind in der Lage die Bedeutung einzelner physikalischer Prozesse in komplexen, geophysikalischen Strömungen zu erkennen und einzuordnen. Sie verstehen die wesentlichen Kraftgleichgewichte und Antriebe im Ozean.

Module contents:

VL Physikalische Ozeanographie
Hydrodynamische Grundgleichungen; Strömungen auf der rotierenden Erde; Geostrophie, Wellen, Gezeiten; windgetriebene Ozeanzirkulation (Ekman, Sverdrup, Stommel-Theorien); Themen der regionalen Ozeanographie (Nordsee, Ostsee, Atlantik).

Ü/SE Physikalische Ozeanographie
Vertiefung der Inhalte der zugehörigen VL sowie praktische Übungen. Seminarvorträge behandeln regionale Aspekte sowie aktuelle Forschungsergebnisse.

Reader's advisory: Wird in den einzelnen Veranstaltungen bekanntgegeben

Links:

Languages of instruction: German, English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Module level / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method: VL Physikalische Ozeanographie (2 SWS, 3 KP)
 Ü/SE Physikalische Ozeanographie (2 SWS, 3 KP)
Vorkenntnisse / Previous knowledge: Vertrautheit im Umgang mit Rechnern, Matlab
Examination: Time of examination: Type of examination:
Final exam of module: Wird in den Veranstaltungen zu Beginn durch den Dozenten/die Dozentin bekannt gegeben. KL

Course type	Comment	SWS	Frequency	Workload of compulsory attendance
Lecture | | 2 | WiSe | 28
Seminar or exercise | | 2 | WiSe | 28
Total time of attendance for the module: 56 h
mar356 - Ocean-Climate-Environmental Physics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Ocean-Climate-Environmental Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar356</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Kontaktzeit: 56 h, Selbststudium: 124 h)</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Marine Environmental Sciences (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Zielinski, Oliver (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Feudel, Ulrike (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Lettmann, Karsten (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Ryabov, Alexey (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Wolff, Jörg-Olaf (Module counselling)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Keine</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Studierenden haben einen Überblick über die grundlegenden physikalischen Prozesse im Klimasystem insbesondere im Hinblick auf Ozean und Atmosphäre. Sie kennen die Grundlagen der Messmethoden in der Erdbeobachtung und haben Kenntnisse über die wichtigsten Klimaphänomene.</td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Einführung in das Klimasystem</td>
</tr>
<tr>
<td></td>
<td>- Messmethoden der Erdbeobachtung</td>
</tr>
<tr>
<td></td>
<td>- Strahlung und Strahlungstransport</td>
</tr>
<tr>
<td></td>
<td>- Einfache Klimamodelle</td>
</tr>
<tr>
<td></td>
<td>- Geophysikalische Fluidynamik</td>
</tr>
<tr>
<td></td>
<td>- Turbulenz in Ozean und Atmosphäre</td>
</tr>
<tr>
<td></td>
<td>- Grundlegende Klimaphänomene</td>
</tr>
<tr>
<td>Reader's advisory</td>
<td>Principles of Environmental Physics: Plants, Animals and the Atmosphere (Monteith, Unsworth) – online BIS Weitere Literatur wird in der Veranstaltungen bekanntgegeben.</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>VL/Ü Ozean-Klima-Umweltphysik (4 SWS, 6 KP)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td></td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Termin wird zu Beginn der Veranstaltungen bekannt gegeben. KL</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td></td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>Workload of compulsory attendance</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>WiSe</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
Module label: Marine Chemistry and Geochemistry
Module code: mar357
Credit points: 6.0 KP
Workload: 180 h (Kontaktzeit: 56 h, Selbststudium: 124 h)
Applicability of the module:
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Marine Environmental Sciences (Master) > Mastermodule
Responsible persons:
Pahnke-May, Katharina (Module responsibility)
Seidel, Michael (Module counselling)
Wilkes, Heinz (Module counselling)
Wurl, Oliver (Module counselling)
Prerequisites: Keine
Skills to be acquired in this module:
Studierende besitzen nach erfolgreichem Besuch des Moduls vertieftes Wissen

VL Chemische Ozeanographie
- deren Rolle für biogeochemische Prozesse und als Anzeiger im Meer.
- Grundlagen zur Gewinnung von Probenmaterial und chemischer Analyse

VL Meeresgeochemie
- über meeresgeochemische Aspekte und geochemisch bedeutsame Elementkreisläufe, insbesondere von Spurenmetallen, Sedimentgeochemie, Frühdiagenese und Hydrothermalsysteme
- über die Ablagerung, Erhaltung und Transformation von organischem Material in marinen Sedimenten

Module contents:

VL Chemische Ozeanographie
Grundlagen der Physikalischen Ozeanographie (Ozeanzirkulation), Eintrag und Verbleib von Spurenelementen, Nährstoffen und organischem Material, Stoffkreisläufe, Rolle von Spurenelementen im Meer

VL Meeresgeochemie
Die Erde als Wasser-Planet, Wasserkreislauf, Topographie und Struktur der Ozeane, Hauptionen und Gase im Meerwasser, Klassifikation von Sedimenten, Transportprozesse, Karbonatgesteine, frühdiagenetische Prozesse, submarine Hydrothermalsysteme, Mn-Knollen, Datierungsmethoden, anthropogene Aktivität.

Reader's advisory: Wird in den einzelnen Veranstaltungen bekanntgegeben

Links:
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Modullevel / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective
<table>
<thead>
<tr>
<th>Lehr-/Lernform / Teaching/Learning method</th>
<th>VL Chemische Ozeanographie (2 SWS, 3 KP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VL Meeresgeochemie (2 SWS, 3 KP)</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td></td>
<td>KL</td>
</tr>
</tbody>
</table>

Termin wird zu Beginn der Veranstaltungen bekannt gegeben.

<table>
<thead>
<tr>
<th>Course type</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar363 - Theory of Ecological Communities

Module label: Theory of Ecological Communities
Module code: mar363
Credit points: 6.0 KP
Workload: 180 h
 - Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden
Applicability of the module:
 - Master's Programme Environmental Modelling (Master) > Mastermodule
 - Master's Programme Marine Environmental Sciences (Master) > Mastermodule
Responsible persons:
 - Blasius, Bernd (Module responsibility)
Prerequisites:
 - Keine
Skills to be acquired in this module:

VL/Ü Theorie ökologischer Gemeinschaften

Vermittlung der grundlegenden Theoriegebäude zur Beschreibung von Koexistenz und Biodiversität in ökologischen Lebensgemeinschaften. Die Studierenden erlangen ein intuitives und mathematisches Verständnis der verschiedenen Koexistenzmechanismen und sind in der Lage, aufbauend auf diesen Theorien eigene Modellerweiterungen zu entwickeln und diese numerisch zu analysieren.

Module contents:

VL/Ü Theorie ökologischer Gemeinschaften

Grundlegende theoretische Modelle zur Beschreibung des Artenreichtums in ökologischen Gemeinschaften.

Reader's advisory:

Wird in den Veranstaltungen bekannt gegeben.

Links:

Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Modulelevel / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method:

VL Theorie ökologischer Gemeinschaften (2 SWS, 3 KP)
Ü Theorie ökologischer Gemeinschaften (2 SWS, 3 KP)

Vorkenntnisse / Previous knowledge:

Grundlagen in Matlab-Programmierung, Vorerfahrung in Modellierung (nicht notwendig, aber hilfreich)

Examination:

Time of examination: Type of examination
Final exam of module: KL

Klausur am Ende der Veranstaltungszeit oder fachpraktische Übung oder mündliche Prüfung nach Maßgabe der Dozentin oder des Dozenten.

Course type
<table>
<thead>
<tr>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module: 56 h
mar364 - Time Series Analysis

Module label: Time Series Analysis
Module code: mar364
Credit points: 6.0 KP
Workload: 180 h
 Präsentzeit: 56 Stunden, Selbststudium: 124 Stunden
Applicability of the module
- Master's Programme Engineering of Socio-Technical Systems (Master) > Integrated Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Systems Engineering
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Marine Environmental Sciences (Master) > Mastermodule
- Master's Programme Marine Sensors (Master) > Mastermodule

Responsible persons
Freund, Jan (Module responsibility)

Prerequisites
Keine

Skills to be acquired in this module

Module contents
Charakteristika eines stochastischen Prozesses und deren Schätzer, Komponentenmodell, Trendbereinigung, spektrale Methoden, Filterung, lineare Prozesse, und nichtlineare Prozesse, Einbettungsverfahren, Kenngrößen der nichtlinearen Zeitreihenanalyse, symbolische Dynamik

Reader's advisory
R. Schlittgen: Angewandte Zeitreihenanalyse mit R. Oldenbourg;
R. Schlittgen & B. Streitberg: Zeitreihenanalyse, Oldenbourg;

Links
Languages of instruction: German, English
Duration (semesters): 1 Semester
Module frequency: unlimited
Module capacity: unlimited
Module level / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method: Sommersemester: VL Zeitreihenanalyse (2 SWS, 3 KP), Ü Zeitreihenanalyse (2 SWS, 3 KP)

Vorkenntnisse / Previous knowledge
Nützlich: Erfahrung im Umgang mit R oder Matlab.

Examination
Time of examination: Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung oder Portfolio nach Maßgabe der Dozentin oder des Dozenten
Type of examination: KL

Final exam of module
Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung oder Portfolio nach Maßgabe der Dozentin oder des Dozenten
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
mar365 - Stochastical Processes

<table>
<thead>
<tr>
<th>Module label</th>
<th>Stochastical Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar365</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Präsentzeit: 56 Stunden, Selbststudium: 124 Stunden</td>
<td></td>
</tr>
<tr>
<td>Applicability of the module</td>
<td></td>
</tr>
<tr>
<td>Master's Programme Environmental Modelling (Master) > Mastermodule</td>
<td></td>
</tr>
<tr>
<td>Master's Programme Marine Environmental Sciences (Master) > Mastermodule</td>
<td></td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Freund, Jan (Module responsibility)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Keine</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
</tbody>
</table>

Skills to be acquired in this module

VL/Ü Stochastische Prozesse und ihre Anwendungen in der Modellierung

Module contents

VL Stochastische Prozesse und ihre Anwendungen in der Modellierung

Ü Stochastische Prozesse und ihre Anwendungen in der Modellierung

Vertiefung der Inhalte der zugehörigen VL sowie praktische Übungen

Reader's advisory

C.W. Gardiner: Handbook of stochastic methods: for physics, chemistry and the natural sciences. Springer;
N.G. van Kampen: Stochastic processes in physics and chemistry. Elsevier;
J. Honerkamp & K. Lindenberg: Stochastic dynamical systems: concepts, numerical methods, data analysis. Wiley-VCH;
H. Risken: The Fokker-Planck equation: methods of solution and applications. Springer;
L. Schimansky-Geier: Stochastic dynamics. Springer;

Links

Languages of instruction: German, English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Modullevel / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method: VL Stochastische Prozesse und ihre Anwendungen 2 (2 SWS, 3 KP) Ü Stochastische Prozesse und ihre Anwendungen 2 (2 SWS, 3 KP)
Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung oder Portfolio nach Maßgabe der Dozentin oder des Dozenten</td>
<td>KL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module

56 h
mar367 - Ocean Models

<table>
<thead>
<tr>
<th>Module label</th>
<th>Ocean Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar367</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>{</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Marine Environmental Sciences (Master) > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Marine Sensors (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wolff, Jörg-Olaf (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Lettmann, Karsten (Module counselling)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Keine</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL/Ü Ozeanmodelle</td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL Ozeanmodelle</td>
</tr>
<tr>
<td></td>
<td>Einführung in die Theorie und Bedienung komplexer Ozeanmodelle, Vermittlung mathematischer und physikalischer Grundlagen zum Verständnis der modellierten Prozesse und deren Implementierung in die Modelle, Einführung in die hydrodynamischen Gleichungen, Übersicht über horizontale und vertikale Tubulenzparametrisierungen, Bedeutung von Randbedingungen und atmosphärischen Antriebsdaten, Einübung der theoretischen Kenntnisse mit Hilfe des Ozeanmodells ROMS (Regional Ocean Modeling System).</td>
</tr>
<tr>
<td></td>
<td>Ü Ozeanmodelle</td>
</tr>
<tr>
<td></td>
<td>Vertiefung der Inhalte der zugehörigen VL sowie praktische Übungen.</td>
</tr>
<tr>
<td>Reader's advisory</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modular / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sommersemester:</td>
</tr>
<tr>
<td></td>
<td>VL Ozeanmodelle (2 SWS, 3 KP)</td>
</tr>
<tr>
<td></td>
<td>Ü Ozeanmodelle (2 SWS, 3 KP)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Vertrautheit im Umgang mit Rechnern, Matlab</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td></td>
<td>KL</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Termin wird zu Beginn der Veranstaltung bekannt</td>
</tr>
</tbody>
</table>
gegeben.

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
mar368 - Climate Models

Module label: Climate Models
Module code: mar368
Credit points: 6.0 KP
Workload: 180 h
Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden

Applicability of the module:
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Marine Environmental Sciences (Master) > Mastermodule

Responsible persons:
- Wolff, Jörg-Olaf (Module responsibility)
- Lettmann, Karsten (Module counselling)

Prerequisites:
Keine

Skills to be acquired in this module:
Im Rahmen dieser Veranstaltung werden grundlegende naturwissenschaftlich-mathematische Fachkenntnisse erworben. An einfachen Energie-Bilanzmodellen werden numerische Methoden, sowie das Algorithmerieren und Programmieren eingeübt. Durch weiteres Arbeiten mit diesen Testprogrammen wird die Fähigkeit zur eigenständigen Forschung geübt. Im Rahmen eines IPCC Abschlussprojektes, werden die Studierenden sowohl zur Teamfähigkeit als auch zum Umgang mit wissenschaftlicher Primärliteratur angeleitet. Im Rahmen der Abschlusspräsentation lernen die Studenten das Darstellen und das Diskutieren ihrer Ergebnisse.

Module contents:

VL Klimamodelle:

Ü Klimamodelle:
Vertiefung der Inhalte der zugehörigen VL sowie praktische Übungen

Reader's advisory:
K.E. Trenberth, Climate System Modelling, 1993, Cambridge University Press

Links:
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Modulelevel / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method:
VL Klimamodelle: Theorie & Praxis (2 SWS, 3 KP)
Ü Klimamodelle: Theorie & Praxis (2 SWS, 3 KP)
Vorkenntnisse / Previous knowledge:
Nützlich: Vertrautheit im Umgang mit Rechnern, Matlab, Maple
Examination:
Time of examination
Type of examination
Final exam of module:
Termin wird zu Beginn der Veranstaltungen bekannt gegeben.

Course type: SWS
Comment: KL
Frequency:
Workload of compulsory attendance: 23 / 135
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar369 - Critical States in the Earth System: Tipping Points and Resilience

<table>
<thead>
<tr>
<th>Module label</th>
<th>Critical States in the Earth System: Tipping Points and Resilience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar369</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability of the module</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
<tr>
<td>• Master's Programme Marine Environmental Sciences (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsible persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feudel, Ulrike (Module responsibility)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertrautheit im Umgang mit Rechnern, Matlab,</td>
</tr>
<tr>
<td>Kenntnisse der nichtlinearen Dynamik etwa im Umfang der Lehrveranstaltung mar374 Nichtlineare Dynamik im Erdsystem</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skills to be acquired in this module</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL/SE Kritische Zustände im System Erde</td>
</tr>
<tr>
<td>Die Studenten besitzen die Fähigkeit komplexe, theoretische Vorgehensweisen in der modernen Meeres- und Klimaforschung nachzu vollziehen und durch Selbststudium der aktuellen Literatur auch neue oder verschiedene Ansätze in der Theorie zu begreifen und einzuordnen.</td>
</tr>
<tr>
<td>Die Studierenden besitzen die Fähigkeit, aktuelle Publikationen der Fachliteratur auszuwerten Umwelt systemmodelle zu verschiedensten Fragestellungen zu analysieren und die Resultate der Untersuchungen mit Umwelt systemmodellen auf spezielle Fragestellungen anzuwenden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL/SE Kritische Zustände im System Erde</td>
</tr>
<tr>
<td>Kipp punkte: Tipping points im Klimasystem und Regime shifts in Ökosystemen, kritische Verlangsamung vor Kipp punkten als Indikator zur Früherkennung von Tipping points und Regime shifts; Klassifikation von Tipping punkten, Systeme mit unterschiedlichen Zeitskalen, Tipping in räumlichen Systemen, rausch induzierte Übergänge; räte induzierte Kippen; Resilienz konzepte</td>
</tr>
<tr>
<td>Diskussion aktueller Originalarbeiten aus der Umweltforschung, die vorrangig auf konzeptionellen Prozess Modellen basieren (z.B. El Nino, thermohaline Zirkulation, Algenblüten, Wechsel von Wetterlagen, Dansgaard- Oeschger Ereignisse, Abschmelzen der Arktis)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reader's advisory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktuelle Publikationen aus Fachzeitschriften, die in der Veranstaltung bekannt gegeben werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Languages of instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>German, English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration (semesters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>jährlich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulelevel / module level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM (Mastermodul / Master module)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modular / typ of module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflicht / Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehr-/Lernform / Teaching/Learning method</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL Kritische Zustände im System Erde (2 SWS, 3 KP)</td>
</tr>
<tr>
<td>SE Kritische Zustände im System Erde (2 SWS, 3 KP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 / 135</td>
</tr>
</tbody>
</table>

25 / 135
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module: 56 h
mar374 - Nonlinear Dynamics in the Earth System

<table>
<thead>
<tr>
<th>Module label</th>
<th>Nonlinear Dynamics in the Earth System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar374</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden)</td>
</tr>
</tbody>
</table>
| Applicability of the module | Master's Programme Environmental Modelling (Master) > Mastermodule
 Master's Programme Marine Environmental Sciences (Master) > Mastermodule |
| Responsible persons | Feudel, Ulrike (Module responsibility) |
| Prerequisites | Keine |
| Skills to be acquired in this module | VL/Ü Theorie dynamischer Systeme |
| | Die Studierenden besitzen Grundkenntnisse in der Analyse nichtlinearer dynamischer Systeme. Sie können Phänomene, die aus nichtlinearen Wechselwirkungen heraus resultieren, in Umweltsystemen erkennen und können Methoden der nichtlinearen Dynamik auf Umweltsysteme anwenden. |

Module contents

VL Nichtlineare Dynamik im Erdsystem

Einführung in die Nichtlineare Dynamik: Langzeitdynamik (Gleichgewichte, Periodizität und Chaos) und Stabilität, Charakteristika der Dynamik (Autokorrelation, Lyapunov-Exponenten, Dimensionen), Instabilitäten und dynamische Übergänge, zeitliche und räumliche Strukturbildung, kohärente Strukturen in Strömungen, gekoppelte Systeme, Synchronisation, Kontrolle nichtlinearer Systeme, Anwendungen auf Probleme aus dem Erdsystem; Spezielle Probleme der Nichtlinearen Dynamik

Ü Nichtlineare Dynamik im Erdsystem

Vertiefung der Inhalte der zugehörigen VL sowie praktische Übungen

Reader's advisory

Weitere Literatur wird in den Veranstaltungen bekannt gegeben

Links

<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
</tbody>
</table>
| Lehr-/Lernform / Teaching/Learning method | VL Nichtlineare Dynamik im Erdsystem (2 SWS, 3 KP)
 Ü Nichtlineare Dynamik im Erdsystem (2 SWS, 3 KP) |
<p>| Vorkenntnisse / Previous knowledge | Vertrautheit im Umgang mit Rechnern, Matlab, Maple |
| Examination | Final exam of module |
| Time of examination | Klausur am Ende der Veranstaltungszeit oder KL |</p>
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Total time of attendance for the module

56 h
mar375 - Models in Population Dynamics

Module label: Models in Population Dynamics
Module code: mar375
Credit points: 6.0 KP
Workload: 180 h (Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden)

Applicability of the module:
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Marine Environmental Sciences (Master) > Mastermodule

Responsible persons:
- Freund, Jan (Module responsibility)
- Feudel, Ulrike (Module counselling)

Prerequisites:
Keine

Skills to be acquired in this module:

VL/Ü Modelle in der Populationsdynamik

Die Studierenden sind in der Lage die Wachstumsdynamiken realer Populationen über trophische Ebenen hinweg mit angepassten Modellvarianten (z.B. ODEs, Abbildungen, Matrixmodellen) zu beschreiben und können aus Modellen strukturelle Erkenntnisse zu Langzeitverhalten, Stabilität/Resilienz, Multistabilität, Regimewechsel/Tipping Points, etc. ableiten. Darüber hinaus können sie Simulationen generieren, welche Realisierungen komplexer Populationsdynamiken darstellen.

Module contents:

VL Modelle in der Populationsdynamik
Modellierung von Wachstumsprozessen, Räuber-Beute-Beziehungen, Konkurrenz, Analyse der zeitlichen Dynamik der Populationen, alters- und stadienstrukturierte Modelle (Matrixmodelle), Populationen mit räumlicher Migration (Metapopulationsmodelle), adaptive Modelle

Ü Modelle in der Populationsdynamik
Vertiefung der Inhalte der zugehörigen VL sowie praktische Übungen

Reader's advisory:

A.D. Bazykin: Nonlinear dynamics of interacting populations. World Scientific;
J.D. Murray: Mathematical Biology I und II. Springer.

Weitere Literatur wird in den Veranstaltungen bekannt gegeben

Links:
- Languages of instruction: German, English
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Modullevel / module level: MM (Mastermodul / Master module)
- Modulart / typ of module: Wahlpflicht / Elective
- Lehr-/Lernform / Teaching/Learning method:
 - VL Modelle in der Populationsdynamik (2 SWS, 3 KP)
 - Ü Modelle in der Populationsdynamik (2 SWS, 3 KP)
- Vorkenntnisse / Previous knowledge: Vertrautheit im Umgang mit Rechnern, Matlab
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung nach Maßgabe der Dozentin oder des Dozenten</td>
<td>KL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
mar376 - Statistical Ecology

Module label: Statistical Ecology

Module code: mar376

Credit points: 6.0 KP

Workload: 180 h
(Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden)

Applicability of the module
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Marine Environmental Sciences (Master) > Mastermodule

Responsible persons
Freund, Jan (Module responsibility)

Prerequisites
Keine

Skills to be acquired in this module

VL/Ü Statistische Ökologie

Module contents

VL Statistische Ökologie

Schätzung von Populationsanteilen, Capture-Recapture Experimente, Transekt- und Abstandsverfahren, Erfassung von Lebensgemeinschaften, Diversitätsindizes, Vergleich von Lebensgemeinschaften

Ü Statistische Ökologie

Vertiefung der Inhalte der zugehörigen VL sowie praktische Übungen

Reader's advisory

E.C. Pielou: Mathematical ecology. Wiley;
C.J. Krebs: Ecology: the experimental analysis of distribution and abundance. Benjamin Cummings u.a.;
O. Richter & D. Söndgerath: Parameter estimation in ecology: the link between data and models. VCH.

Links

Languages of instruction: German, English

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Modulelevel / module level: MM (Mastermodul / Master module)

Modulart / typ of module: Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method
- VL Statistische Ökologie (2 SWS, 3 KP)
- Ü Statistische Ökologie (2 SWS, 3 KP)

Vorkenntnisse / Previous knowledge
Erfahrung im Umgang mit R oder Matlab.
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung oder Portfolio nach Maßgabe der Dozentin oder des Dozenten</td>
<td>KL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
mar431 - Marine Climatology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Marine Climatology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar431</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Prämzenzeit: 56 Stunden, Selbststudium: 124 Stunden</td>
<td></td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Marine Environmental Sciences (Master) > Mastermodule

Responsible persons
- Wurl, Oliver (Module responsibility)
- Pahnke-May, Katharina (Module counselling)

Prerequisites
- Keine

Skills to be acquired in this module

Students will gain a deepened understanding of the development of the oceans and climate over Earth history and general models to explain ocean-climate changes; ocean and climate archives; methods of palaeoceanography and -climatolgy, including different palaeoproxies, dating methods and sample collection; major climate events and their consequences.

Module contents

VL Paläooceanographie

- Overview of ocean and climate history of the Earth; marine and terrestrial climate archives; palaeoproxies and their use; dating of climate archives; models: plate tectonics, Milankovitch cycles, ocean circulation, atmospheric CO2 concentration, meteorite impacts, volcanism; major climate and mass extinctions; case studies.

VL Ozean- und Klimawandel

- Ocean warming; sea level rise; ocean acidification; loss of sea ice; changes in thermohaline ocean currents; statistics and models for predictions; geo-engineering as a solution?: climate protection, economy and tourism.

Reader's advisory

Information is provided during the lectures.

Links

- Language of instruction: German
- Duration (semesters): 1 Semester
- Module frequency: Jährlich
- Module capacity: Unlimited
- Module level / module level: MM (Mastermodul / Master module)
- Modulart / type of module: Wahlpflicht / Elective
- Lehr-/Lernform / Teaching/Learning method: VL Paläooceanographie und -climatolgy (2 SWS, 3 KP) VL Ozean- und Klimawandel (2 SWS, 3 KP)

Vorkenntnisse / Previous knowledge

Time of examination

Final exam of module:

- Termin wird zu Beginn der Veranstaltungen bekannt gegeben.

Type of examination

- KL

Course type

- Lecture
<table>
<thead>
<tr>
<th>SWS</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>SuSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar432 - Biogeochemistry

Module label: Biogeochemistry
Module code: mar432
Credit points: 6.0 KP

Workload: 180 h
 - Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden

Applicability of the module:
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Marine Environmental Sciences (Master) > Mastermodule

Responsible persons:
- Ehler, Claudia (Module responsibility)
- Mori, Corinna (Module counselling)
- Seidel, Michael (Module counselling)
- Wilkes, Heinz (Module counselling)

Prerequisites:
Voraussetzung für die Teilnahme am SE Praxisseminar Marine Biogeochemie ist der Besuch der VL Marine Biogeochemie.

Skills to be acquired in this module:
- VL Marine Biogeochemie

- SE Biogeochemische Stoffwechselprozesse und Stoffkreisläufe
 Studierende besitzen nach erfolgreichem Besuch des Moduls vertieftes Wissen über den organischen Kohlenstoffkreislauf und die eng mit diesem assoziierten geochemischen Kreisläufe anderer Elemente (Wasserstoff, Sauerstoff, Stickstoff, Schwefel); die an diesen Kreisläufen auf unterschiedlichen räumlichen und zeitlichen Skalen beteiligten Prozesse; die Biochemie wichtiger Stoffwechselprozesse in geologischen Systemen; die abiotische Genese mikrobieller Substrate; die Bedeutung des mikrobiellen Stoffwechsels für die Stoffflüsse in und den Stoffaustausch zwischen Atmosphäre, Hydrosphäre und Lithosphäre; die Klimarelevanz geobiologischer Stoffwechselprozesse; die Evolution des Lebens im Kontext geobiologischer Stoffwechselprozesse; geeignete Untersuchungsmethoden.

- SE Praxisseminar Marine Biogeochemie
 Dieses SE wird als Alternative zum SE Biogeochemische Stoffwechselprozesse und Stoffkreisläufe semesterbegleitend angeboten.
 Studierende besitzen nach erfolgreichem Besuch des SE vertieftes Wissen über die biogeochemischen Stoffkreisläufe mariner Systeme sowie in der Konzipierung und Durchführung biogeochemischer Forschungsprojekte in einem interdisziplinär aufgestellten Forscherteam.
 Im Detail umfasst dies Kompetenzen in:
 - Formulierung und Bearbeitung spezifischer Forschungsfragen auf Basis aktueller Literatur
 - Aufbau und Durchführung eines laborbasierten Inkubationsversuchs (Mikrokosmos)
 - Beprobung des Inkubationsversuchs für Haupt und Spurenelemente, Nährstoffe und organisches Material
 - Analyse der entsprechenden Parameter
 - Aufarbeitung und Darstellung der erhobenen Daten
 - Einordnung der eigenen Ergebnisse in die aktuelle Forschung
- Wissenschaftliche Präsentation und Diskussion der Forschungsergebnisse

Module contents

VL Marine Biogeochemie

Meerwasserchemie (Zusammensetzung von Meerwasser, Zusammenhang mit Ozeanströmungen); Spurenmetall- und Nährstoffverteilung (Spurenmetall-, Stickstoff-, Silizium- und Phosphor-Kreisläufe); Globaler Kohlenstoffkreislauf (Kohlenstoff-Flüsse und Reservoire, Kohlenstoff-Sequestrierung, Änderungen des Kohlenstoff-Kreislaufs); Gelöstes organisches Material (DOM - dissolved organic matter, Zusammensetzung, Produktion und Senken, DOM Verteilung im Ozean, DOM Reaktivitätskontinuum, Langzeitskalibabilität); biogeochemische Methoden (Isolation von DOM, Analyse von Gesamtparametern, chemische Marker-Verbindungen, ultrahochauflösende Massenspektrometrie, optische DOM Messungen); Biogeochemie von Küstenregionen und Ästuaren (Fallstudien zu Flüssen und Ästuaren in Europa, Prozessstudien an Mississippi, Kongo, Amazonas und Amazons-Fahne); Biogeochemische Quellen undSenken im Ozean, Sedimente und Grundwasser (marine Sedimente, Redoxionierung, küstennahe Grundwasser, submariner Grundwasseraustrag, subterrane Ästuare, Fallstudien Nordsee: Strand, Sandbank, Nährstoffdynamik in der Wassersäule); Biominalisation; Anthropogene Biogeochemie (natürliche und künstliche Eisendüngung); Öl im Meer (Herkunft, Zusammensetzung, Erdöl-Austritte, Erdöl-Verwitterung, Ölschmutzung – Deep Water Horizon Fallstudie)

SE Biogeochemische Stoffwechselprozesse und Stoffkreisläufe

Organischer Kohlenstoffkreislauf und die eng mit diesem assoziierten geochemischen Kreisläufe anderer Elemente (Wasserstoff, Sauerstoff, Stickstoff, Schwefel); die an diesen Kreisläufen auf unterschiedlichen räumlichen und zeitlichen Skalen beteiligten Prozesse; die Biochemie wichtiger Stoffwechselprozesse in geologischen Systemen; die abiotische Genese mikrobieller Substrate; die Bedeutung des mikrobiellen Stoffwechsels für die Stoffflüsse in und den Stoffaustausch zwischen Atmosphäre, Hydrosphäre und Lithosphäre; die Klimarelevanz geobiologischer Stoffwechselprozesse; die Evolution des Lebens im Kontext geobiologischer Stoffwechselprozesse; geeignete Untersuchungsmethoden.

SE Praxisseminar Marine Biogeochemie

Reader's advisory

Wird in den Veranstaltungen bekannt gegeben

Links

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency

Module capacity
12 (Teilnehmerbegrenzung gilt nur für das SE Praxisseminar Marine Biogeochemie)

Module level / module level
MM (Mastermodul / Master module)

Modulart / typ of module
Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method
Sommersemester:
VL Marine Biogeochemie (2 SWS, 3 KP)
SE Biogeochemische Stoffwechselprozesse und Stoffkreisläufe (2 SWS, 3 KP)
oder
SE Praxisseminar Marine Biogeochemie (2 SWS, 3 KP)
(Neu ab SoSe 2022)

Vorkenntnisse / Previous knowledge

Examination
Time of examination
Type of examination

Final exam of module
KL
Wird in den Veranstaltungen zu Beginn durch den Dozenten/die Dozentin bekannt gegeben.
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
mar438 - Marine Environmental Chemistry

<table>
<thead>
<tr>
<th>Module label</th>
<th>Marine Environmental Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar438</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>{ Präsenzzeit: 60 Stunden, Selbststudium: 120 Stunden }</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Marine Environmental Sciences (Master) > Mastermodule

Responsible persons
- Scholz-Böttcher, Barbara (Module responsibility)
- Köster, Jürgen (Module counselling)
- Wilkes, Heinz (Module counselling)

Prerequisites
- Keine

Skills to be acquired in this module

Module contents
VL Anthropogene Schadstoffe in der marinen Umwelt

Die Vorlesung behandelt grundlegende Aspekte zu Verbleib, Wechselwirkungen sowie abiotischem und biotischem Abbauverhalten von anthropogen in die Meere eingetragenen Stoffen in der marinen Umwelt. An ausgewählten Beispielen werden ihr Verhalten und die daraus erwachsenen Konsequenzen erörtert.

Zentrale Themen sind hierbei die zunehmende Vermüllung der Meere, der Eintrag verschiedenster Xenobiotika (Pestizide, Medikamente, technische Hilfsmittel u.a.) in die finale Senke „Ozean“ und umfassende Aspekte zu Erdöl im Meer.

Hierbei stehen Quellen und Senken, das Abbauverhalten, die Abgabe bzw. die Aufnahme von Schadstoffen sowie die vielfältigen Wechselwirkungen mit der Bio- und Geosphäre sowie daraus erwachsene Konsequenzen im Vordergrund. In diesem Zusammenhang werden Aspekte zur Analyse, zur Beurteilung und Problemlösung diskutiert. Es werden ebenfalls Entstehung, Eigenschaften, Verfügbarkeit und Gewinnung und Transport von Erdöl und Erdgas behandelt und deren Bedeutung für die ereignisgesteuerte und chronische Ausbreitung in der Umwelt thematisiert.

SE Marine Umweltchemie

Direkt thematisch mit den jeweiligen Vorlesungseinheiten verknüpft werden mit Hilfe von aktueller Literatur die angesprochenen Aspekte vertieft, hinterfragt und diskutiert. Hierzu werden verschiedene Präsentationstechniken (Vortrag, Poster, Ausstellung u.a.) erarbeitet und erprobt.

Reader's advisory
Wird in den Veranstaltungen bekannt gegeben

Links
- Language of instruction: German
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited
- Modullevel / module level: MM (Mastermodul / Master module)
- Modulart / typ of module: Wahlpflicht / Elective
- Lehr-/Lernform / Teaching/Learning method: VL Anthropogene Schadstoffe in der marinen Umwelt (2 SWS, 3 KP) SE Marine Umweltchemie (2 SWS, 3 KP)
- Vorkenntnisse / Previous knowledge: Grundlegende chemische Kenntnisse sind wünschenswert

Examination
- Time of examination: Am Ende des Sommersemesters
- Type of examination: KL

Course type
- Comment: SWS
- Frequency: Workload of compulsory attendance
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module

56 h
mar457 - Ecology of Benthic Microorganisms

Module label: Ecology of Benthic Microorganisms
Module code: mar457
Credit points: 6.0 KP
Workload: 180 h
Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden

Applicability of the module:
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Marine Environmental Sciences (Master) > Mastermodule

Responsible persons:
- Engelen, Bert (Module responsibility)
- Könneke, Martin (Module counselling)
- Köster, Jürgen (Module counselling)
- Pohler, Marion (Module counselling)
- Schupp, Peter (Module counselling)

Prerequisites:
Keine

Skills to be acquired in this module:
They know the basics of microbial ecology and the biogeochemistry of important microbial habitats. They gain knowledge about occurrence, life and activities of microorganisms in these environments with special focus on marine sediments.

Module contents:

VL Microbial Ecology:
Principles of marine microbial ecology (Resources and Growth, Competition; Predator-prey Relations; Biodiversity and Ecosystem Functioning), microbial habitats (Limnic, marine, terrestrial habitats; anthropogenic habitats; microbes and humans), microbe – invertebrate interactions (biofouling; microbes as producers of secondary metabolites; sponge microbial associations; role of bacteria during invertebrate settlement).

VL Sediment Microbiology
Introduction into sediment microbiology including anaerobic processes, energy metabolism, cultivation of sediment bacteria, adaptation to environmental conditions, molecular biological methods, quantification of microorganisms and sampling at sea.

Reader's advisory:
Wird in den Veranstaltungen bekannt gegeben

Languages of instruction:
German, English

Duration (semesters):
1 Semester

Module capacity:
unlimited

Module level / module level:
MM (Mastermodul / Master module)

Modulart / typ of module:
VL Microbial Ecology (2 SWS, 3 KP) (SoSe)
VL Sediment Microbiology (2 SWS, 3 KP) (SoSe)

Vorkenntnisse / Previous knowledge:

Examination:
Time of examination

Final exam of module:
Klausur am Ende der Veranstaltungszeit oder mündliche Prüfung nach Maßgabe der Dozentin oder des Dozenten.

Type of examination:
1 benotete Prüfungsleistung
Klausur oder mündliche Prüfung nach Vorgabe der Dozenten

Aktive Teilnahme
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktive Teilnahme umfasst z.B. die regelmäßige Abgabe von Übungen, Lösungen zu Übungsaufgaben, die Protokollierung der jeweils durchgeführten Versuche, die Diskussion von Seminarbeiträgen oder Aufgaben und Inhalten in der Lehrveranstaltung in Form von Kurzberichten oder Kurzreferaten. Die Festlegung hierzu erfolgt durch den Lehrenden zu Beginn des Semesters oder der Veranstaltung.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SuSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar458 - Aquatic Ecology

Module label: Aquatic Ecology
Module code: mar458
Credit points: 6.0 KP
Workload: 180 h
 - Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden

Applicability of the module:
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Landscape Ecology (Master) > Basismodule
- Master's Programme Marine Environmental Sciences (Master) > Mastermodule

Responsible persons:
- Simon, Meinhard (Module responsibility)
- Brinkhoff, Thorsten Henning (Module counselling)

Prerequisites:
Keine

Skills to be acquired in this module:
Studierende können nach erfolgreichem Besuch der Veranstaltungen die Bedeutung von Schwebstoffen für die Ökologie und Biogeochemie und die Gefährdung von Gewässern einschätzen und beurteilen, da sie sich vertieftes Wissen über folgende Gebiete angeeignet haben:

VL Grundlagen des Gewässerschutzes:
Störungen und Gefährdung natürlicher Gewässer,
Eutrophierung, Phosphor- und Stickstoffbelastung natürlicher Gewässer, Saprobiensysteme, Gewässerversauerung, hygienische Belastung, Trinkwasseraufbereitung, Abwasserklärung, hormonell wirksame Substanzen

VL Biologische Bedeutung von Schwebstoffen

Module contents:

VL Grundlagen des Gewässerschutzes
Allgemeine Grundlagen zum Verständnis von Gewässern (Seen, Flüsse, Grundwasser, Ästuare, Küstenmeere) für deren Gefährdungspotenzial.
Eutrophierung und Sanierung von Gewässern, Bedeutung von Phosphor- und Stickstoffverbindungen für die Nährstoffbelastung von Gewässern, chemische und biologische Charakterisierung und Klassifizierung von Gewässern, Ursachen und Folgen der Gewässerversauerung, hygienische Belastung, Trinkwasserversorgung und -aufbereitung, mechanische, biologische und chemische Abwasserklärung, hormonell wirksame Substanzen

VL Biologische Bedeutung von Schwebstoffen

Reader's advisory:

VL Grundlagen des Gewässerschutzes
Skript vorhanden, wird auf Stud.IP hochgeladen.

Gunkel, G., Renaturierung kleiner Fließgewässer, Gustav Fischer Verlag, Jena 1996.
Lozan, J.L. et al., Warnsignale aus der Nordsee, Paul Parey Verlag, Hamburg 1990.
Lozan, J.L. et al., Warnsignale aus der Ostsee, Paul Parey Verlag, Hamburg 1996.
Schulze, E., Hygienisch-mikrobiologische Wasseruntersuchungen, Gustav Fischer Verlag, Jena 1996.

VL Biologische Bedeutung von Schwebstoffen

Skript vorhanden, wird auf Stud.IP hochgeladen.
Weitere Literatur wird zu Beginn der VL bereitgestellt.

Links

<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modul level/module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Lehr-/Lernform/Teaching/Learning method</td>
<td>Wintersemester: VL Grundlagen des Gewässerschutzes (2 SWS, 3 KP)</td>
</tr>
<tr>
<td></td>
<td>Sommersemester: VL Biologische Bedeutung von Schwebstoffen (2 SWS, 3 KP)</td>
</tr>
<tr>
<td>Vorkenntnisse/Previous knowledge</td>
<td>Nützlich: Allgemeine Biologie, Geochemie, Chemie</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Nach Ende der Vorlesungszeit</td>
</tr>
<tr>
<td>Course type</td>
<td>Lecture</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar459 - Macrobenthos communities

<table>
<thead>
<tr>
<th>Module label</th>
<th>Macrobenthos communities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar459</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Marine Environmental Sciences (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Schupp, Peter (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Rohde, Sven (Module counselling)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Keine / none</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Dangerous marine animals</td>
</tr>
<tr>
<td></td>
<td>Ecology of Macrobenthos Communities</td>
</tr>
<tr>
<td></td>
<td>Dangerous marine animals: Biology, ecology and first aid</td>
</tr>
<tr>
<td></td>
<td>The following topics are covered in the lectures and seminars: biology of the major groups of dangerous marine animals; traumatic injuries; toxicity by contact or ingestion; toxin chemistry and function; accident prevention; first aid; students present case studies and first aid procedures during the seminars.</td>
</tr>
<tr>
<td></td>
<td>Ecology of Macrobenthos communities</td>
</tr>
<tr>
<td></td>
<td>Es werden aktuelle ökologische Konzepte und interspezifische Interaktionen diskutiert</td>
</tr>
<tr>
<td>Module contents</td>
<td>Dangerous marine animals: Biology, ecology and first aid</td>
</tr>
<tr>
<td></td>
<td>The following topics are covered in the lectures and seminars: biology of the major groups of dangerous marine animals; traumatic injuries; toxicity by contact or ingestion; toxin chemistry and function; accident prevention; first aid; students present case studies and first aid procedures during the seminars.</td>
</tr>
<tr>
<td></td>
<td>Ecology of Macrobenthos communities</td>
</tr>
<tr>
<td></td>
<td>Es werden aktuelle ökologische Konzepte und interspezifische Interaktionen diskutiert</td>
</tr>
</tbody>
</table>

Reader's advisory

Links

Language of instruction

Duration (semesters)

Module frequency

Module capacity

Module level / module level

Modulart / typ of module

Learnt-Lernform / Teaching/Learning method

Sommersemester

VL Dangerous marine animals (2 SWS, 3 KP)

Wintersemester

SE Ecology of Macrobenthos Communities (2 SWS, 3 KP)

Vorkenntnisse / Previous knowledge

Examination

Time of examination

Type of examination

Final exam of module

Wird in den Veranstaltungen zu Beginn durch den Dozenten/die Dozentin bekannt gegeben.

KL

Course type

Comment

SWS

Frequency

Workload of compulsory attendance

Lecture

2

SuSe

28
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
mar461 - Functional marine biodiversity

<table>
<thead>
<tr>
<th>Module label</th>
<th>Functional marine biodiversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar461</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Marine Environmental Sciences (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Hillebrand, Helmut (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Moorthi, Stefanie (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Striebel, Maren (Module counselling)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Keine</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Die Studierenden verstehen die funktionelle Rolle der biologischen Vielfalt im Ökosystem basierend auf dem fortgeschrittenen Verständnis von Gemeinschaftsökologie. Die Studierenden präsentieren eigene Forschungsergebnisse.</td>
</tr>
<tr>
<td>Module contents</td>
<td></td>
</tr>
<tr>
<td>Blockveranstaltung:</td>
<td>SE Functional marine biodiversity</td>
</tr>
<tr>
<td>Reader's advisory</td>
<td>Wird in den Veranstaltungen bekannt gegeben</td>
</tr>
<tr>
<td>Links</td>
<td>Informationen werden in Stud.IP bereitgestellt</td>
</tr>
<tr>
<td>Language of instruction</td>
<td>English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>16 (Auswahl nach Anmeldedatum)</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>VL Marine community ecology (2 SWS, 3 KP)</td>
</tr>
<tr>
<td></td>
<td>Blockveranstaltung: SE Functional marine biodiversity (2 SWS, 3 KP)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Nützlich Grundlegende Kenntnisse der Ökologie</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Nach dem Ende des Blockseminars</td>
</tr>
<tr>
<td>Comment</td>
<td>SWS</td>
</tr>
<tr>
<td>Course type</td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>Workload of compulsory attendance</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
mar470 - Programming for Marine Sciences

Module label: Programming for Marine Sciences
Module code: mar470
Credit points: 6.0 KP
Workload: 180 h (Präsenzzeit: 70 Stunden, Selbststudium: 110 Stunden)

Applicability of the module:
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Marine Environmental Sciences (Master) > Mastermodule

Responsible persons:
Feenders, Christoph (Module responsibility)

Prerequisites:
keine

Skills to be acquired in this module:
Den TeilnehmerInnen werden grundlegende Programmiertechniken vermittelt, um Datenanalyse betreiben und numerische Probleme lösen zu können.

Module contents:
In den Übungen werden den Studierenden Hilfestellungen zu den selbständig zu bearbeitenden Aufgaben gegeben.

Reader's advisory:

Links:
Languages of instruction: German, English
Duration (semesters): 1 Semester
Module frequency:
Module capacity: 30 (Verfahren siehe StudIP)
Module level / module level: MM (Mastermodul / Master module)
Moduleart / typ of module: Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method:
Wintersemester Blockveranstaltung VL/Ü Grundkurs Programmierung (4 SWS, 6 KP) Untertitel: Datenanalyse und Simulation in MATLAB
Vorkenntnisse / Previous knowledge:
Nützlich: Vertrautheit im Umgang mit Rechnern
Examination:
Type of examination:
Final exam of module:
KL
Klausur oder fachpraktische Übung am Ende der Veranstaltungszeit nach Maßgabe der Dozentin oder des Dozenten.
Course type:
Lecture and tutorial
SWS: 4
<table>
<thead>
<tr>
<th>Frequency</th>
<th>WiSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar671 - Statistics Software R: Introduction

<table>
<thead>
<tr>
<th>Module label</th>
<th>Statistics Software R: Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar671</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>Kontaktzeit: 56 h, Selbststudium: 124 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Ruckdeschel, Peter (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Werner, Tino (Module counselling)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>keine</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Die Studenten sind in der Lage Daten zu laden, zu visualisieren und statistische Analysen durchzuführen. Darüber hinaus können sie maßgeschneiderte Modell-Programmierlösungen selbständig erstellen.</td>
</tr>
<tr>
<td>Module contents</td>
<td>Vorbereitung und Installation von R; Interaktion mit R: die GUI, R-Studio, Pakete, Dokumentation & Hilfe; eine Beispielsession; Objekte inspizieren, erzeugen, speichern, laden; Datenimport; Grundelementen: Vektor, Listen, Matrizen, Datensätze; Indizierung; Funktionen: Aufbau und Aufruf; Explorative Datenanalyse und Tests in R; Simulationen in R; Graphik; Regression in R; Programmierstrukturen</td>
</tr>
<tr>
<td>Reader's advisory</td>
<td>Ligges, U. Programmieren mit R. Springer</td>
</tr>
<tr>
<td></td>
<td>Chambers, John. Software for data analysis: programming with R. Springer.</td>
</tr>
<tr>
<td></td>
<td>Dalgaard, Peter. Introductory statistics with R. Springer.</td>
</tr>
<tr>
<td></td>
<td>Venables, William, and Brian D. Ripley. S programming. Springer.</td>
</tr>
<tr>
<td></td>
<td>Wickham, Hadley. ggplot2: elegant graphics for data analysis. Springer.</td>
</tr>
<tr>
<td>Links</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>VL R-Kurs /Einführung und Fortgeschrittene (3 KP)</td>
</tr>
<tr>
<td></td>
<td>Ü R-Kurs /Einführung und Fortgeschrittene (3 KP)</td>
</tr>
<tr>
<td></td>
<td>(als Teil des Moduls "Statistisches Praktikum" i. d. Mathematik)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Vertrautheit im Umgang mit Rechnern, Matlab</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td></td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Klausur am Ende der Veranstaltungszeit, fachpraktische Übungen oder mündliche Prüfung nach Maßgabe der Dozentin oder des Dozenten</td>
</tr>
<tr>
<td></td>
<td>KL</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Frequency</td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td>Workload of compulsory attendance</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
mar672 - Soil Science, Hydrology and Ecosystem

<table>
<thead>
<tr>
<th>Module label</th>
<th>Soil Science, Hydrology and Ecosystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar672</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Kontaktzeit: 56 h, Selbststudium: 124 h)</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons
- Massmann, Gudrun (Module responsibility)
- Kleyer, Michael (Module counselling)
- Pollmann, Thomas (Module counselling)

Prerequisites
- Studierende besitzen nach erfolgreichem Besuch des Moduls
 1. Grundlagenwissen über den Bereich der Bodenkunde
 2. Grundlagenwissen im Bereich der Hydrologie
 3. Grundlagenwissen der ökosystemaren Zusammenhänge im Bereich der Vegetationsökologie
 4. vertiefte Fähigkeit zur Auswertung und Darstellung bodenkundlich-hydrologisch-vegetationskundlicher Untersuchungen
 5. Fähigkeiten zum eigenständigen Erschließen bodenkundlich-hydrologisch-vegetationskundlicher Literatur bzw. Informationen

Module contents

Hydrologie:

Bodenkunde:
- Eigenschaften von Böden, Nährstoffe und Schadstoffe, Bodengefährdungen und Bodenschutz.
- Messmethoden und -berechnungen.

Einführung in den Stoffhaushalt von Pflanzenbeständen Mitteleuropas:
- Eigenschaften von Ökosystemen hinsichtlich ihrer Produktivität
- Phosphorhaushalt, Stickstoffhaushalt, Kohlenstoffhaushalt Wasserhaushalt
- Stoffflüsse, Stofftransporte
- Zusammenhänge zwischen Nährstoffeinträgen in Ökosysteme und Biodiversität

Reader's advisory
- Bodenkundliche Kartieranleitung (KA 5)
- Schulze, Beck, Müller-Hohenstein: Pflanzenökologie. Spektrum Verlag 2004
<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Wintersemester</td>
</tr>
<tr>
<td></td>
<td>VL Bodenkunde (1,5 KP, 1 SWS)</td>
</tr>
<tr>
<td></td>
<td>VL Hydrologie (3 KP, 2 SWS)</td>
</tr>
<tr>
<td></td>
<td>VL Einführung in den Stoffhaushalt von Pflanzenbeständen Mitteleuropas (1,5 KP, 1 SWS)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>keine</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Time of examination</td>
<td>Klausur am Ende der Veranstaltungszeit, alle anderen Prüfungsleistungen nach Maßgabe der Dozentin oder des Dozenten.</td>
</tr>
<tr>
<td>Type of examination</td>
<td>KL</td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
<tr>
<td>Course type</td>
<td>Lecture</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar673 - Hydrogeology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Hydrogeology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar673</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>{ Kontaktzeit: 56 h, Selbststudium: 124 h }</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Massmann, Gudrun (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Greskowiak, Janek (Module counselling)</td>
</tr>
</tbody>
</table>

Prerequisites

Skills to be acquired in this module

Studierende besitzen nach erfolgreichem Besuch des Moduls:

(i) auf dem Aufbaumodul (mar070) aufbauende vertiefte theoretische Kenntnisse der Hydrologie und Hydrogeologie

(ii) auf dem Aufbaumodul (mar070) aufbauende Kenntnisse über praktische hydrogeologische Methoden in Feld und Labor

(iii) vertiefte Fähigkeiten zur Auswertung und Darstellung hydrogeologischer Untersuchungsergebnisse

(iv) Wissen/Erfahrungen über Techniken des hydrogeologischen Arbeitsens im Team

(v) Fähigkeit zur selbständigen Bearbeitung hydrogeologischer Fragestellungen

(vi) Wissen/Erfahrungen über die Kommunikation hydrogeologischer Sachverhalte und Ergebnisse eigener Arbeit.

Im Modul werden vertiefte Kenntnisse über theoretische und praktische hydrogeologische Kompetenzen im terrestrischen (landschaftsökologischen) Bereich vermittelt.

Module contents

Hydrogeologie:

Vertiefende theoretische Grundlagen der Hydrogeologie: Hydraulik, Hydrochemie, Wasser/Gesteins-Wechselwirkungen, Stofftransport im Grundwasser, Isotopenhydrogeologie, Grundwasserkontamination, Gewässer- und Grundwasserschutz

Hydrogeologische Übungen:

Erlernen und Anwendung der wichtigsten hydrogeologischen Darstellung- und Auswertemethoden auf Basis der Vorlesungen Hydrologie und Hydrogeologie

Reader's advisory

Appelo & Postma (2005): Geochemistry, Groundwater and Pollution. A.A. Balkema

Links

Language of instruction German
<table>
<thead>
<tr>
<th>Duration (semesters)</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / type of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Teaching/Learning method</td>
<td>VL Vorlesung Hydrogeologie (3 KP, 1 SWS + Zusatzaufgaben) Ü Hydrogeologische Übungen (3 KP, 2 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Previous knowledge</th>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Final exam of module</td>
<td>Klausur am Ende der Veranstaltungszeit, alle anderen Prüfungsleistungen nach Maßgabe der Dozentin oder des Dozenten</td>
<td>KL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Total time of attendance for the module: 56 h
mar715 - Basics in Biology/Ecology

<table>
<thead>
<tr>
<th>Module label</th>
<th>Basics in Biology/Ecology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar715</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>{ Kontaktzeit: 56h, Selbststudium: 124h }</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons
- Simon, Meinhard (Module responsibility)
- Giebel, Helge-Ansgar (Module counselling)
- Hillebrand, Helmut (Module counselling)

Prerequisites
- keine

Skills to be acquired in this module

Biologische Meereskunde (VL)
- Die Teilnehmer besitzen grundlegende Kenntnisse der biologischen Meereskunde. Sie kennen die wichtigsten abiotischen Parameter sowie die pelagischen und benthischen Lebensgemeinschaften. Sie verstehen die Rolle der Mikroorganismen für die biogeochemischen Kreisläufe und an verschiedenen Standorten. Sie wissen wie man diese untersuchen kann.

Allgemeine Ökologie (VL)
- Die Studierenden besitzen Kenntnisse über die theoretischen Grundlagen der verschiedenen Disziplinen der Ökologie und können sie in der Praxis anwenden. Sie können Ergebnisse aus der ökologischen Literatur und aus eigenen Untersuchungen auswerten, darstellen und kritisch interpretieren.

Module contents

Biologische Meereskunde (VL)
- Abiotische Umweltbedingungen der Meere: Lichtklima,
- Microbial Loop, Sinkstofffluss, C- und N-Kreislauf, Nektion (Fische, Meeressäuger, Cephalopoden, Vögel), Fischerei, ElNino. Benthische Lebensgemeinschaften (Fels, Sand, Schlick, Salzmarschen, Mangroven), Ästuare.

Allgemeine Ökologie (VL)
- Organismus und Umwelt, Populationsökologie, Bi-Systeme, Aufbau u. Struktur von Ökosystemen, biotische /abiotische Faktoren, Arten- u. Biotopschutz

Reader's advisory

Biologische Meereskunde (VL)

Allgemeine Ökologie (VL)
Wittig u. Streit: Ökologie,
Townsend, Harper, Begon: Ökologie,
Wilson, Bossert: Populationsökologie,
Mühlenberg: Freilandökologie,
Krebs: Ecological Methodology
Larcher: Ökophysiologie der Pflanzen;
Steubing & Schwantes: Ökologische Botanik;
Ellenberg: Vegetation Mitteleuropas mit den Alpen.
Kratochwil u. Schwabe: Ökologie der Lebensgemeinschaften; Schaefer: Wörterbuch der Ökologie;

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
<tr>
<td>Modullevel / module level</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
</tr>
</tbody>
</table>
| **Lehr-/Lernform / Teaching/Learning method** | VL Biologische Meereskunde (3 KP)
| | VL Allgemeine Ökologie (3 KP) |

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination</td>
</tr>
<tr>
<td>Final exam of module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoSe oder WiSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
</tr>
</tbody>
</table>
mar716 - Geochemistry

Module label: Geochemistry
Module code: mar716
Credit points: 6.0 KP
Workload: 180 h
Kontaktzeit: 56 h, Selbststudium: 124 h

Applicability of the module:
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons:
Köster, Jürgen (Module responsibility)
Pahnke-May, Katharina (Module counselling)

Prerequisites:
keine

Skills to be acquired in this module:
- Einführung in die Organische Geochemie (VL) / Anorganische Geochemie (VL)

 Studierende besitzen nach erfolgreichem Besuch des Moduls:
 (i) Grundlagenwissen über die organisch-geochemischen Aspekte der Umweltwissenschaften.
 (ii) Grundlagenwissen über die anorganisch-geochemischen Aspekte der Umweltwissenschaften.
 (iii) Grundlagenwissen über die geochemisch bedeutsamen Kreislaufprozesse des Kohlenstoffs auf unserer Erde.
 (iv) Grundlagenwissen über die geochemisch bedeutsamen Elementkreisläufe
 (v) Verständnis umweltwissenschaftlich relevanter geochemischer Prozesse in der Geosphäre und deren Beziehungen zu Atmo-, Bio- und Hydrosphäre
 (vi) Fähigkeiten zum eigenständigen Erschließen geochemischer Literatur bzw. Informationen.

Module contents:
- Einführung in die Organische Geochemie (VL):

- Anorganische Geochemie (VL):

Reader's advisory:
Schwarzbauer, J. & Jovancicevic, B. 2016:
Fossil Matter in the Geosphere, Springer,
ISBN-10: 3319361848
Schwarzbauer, J. & Jovancicevic, B. 2016:
From Biomolecules to Chemofossils,
Links
Languages of instruction German, English
Duration (semesters) 1 Semester
Module frequency
Module capacity unlimited
Module level / module level MM (Mastermodul / Master module)
Modulart / type of module Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method Wintersemester
VL Einführung in die Organische Geochemie (3 KP, 2 SWS)
VL Anorganische Geochemie (3 KP, 2 SWS)
Vorkenntnisse / Previous knowledge Nützliche Vorkenntnisse: Grundkenntnisse in Geowissenschaften und organischer Chemie
Examination Time of examination Type of examination
Final exam of module Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung nach Maßgabe der Dozentin oder des Dozenten KL
Course type Lecture
SWS 4
Frequency SoSe oder WiSe
Workload attendance 56 h
mar717 - Statistical Environmental Modelling

<table>
<thead>
<tr>
<th>Module label</th>
<th>Statistical Environmental Modelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar717</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>{Kontaktzeit: 56 h, Selbststudium: 124 h}</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>• Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Blasius, Bernd (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Feenders, Christoph (Module counselling)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>keine</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Vermittlung vertiefter Kenntnisse mit besonderer Spezialisierung auf Umwelt- und Ökosystemmodelle.</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können einfache Modelle zur Modellierung räumlicher Prozesse erstellen, sowie aktuelle Arbeiten zu speziellen Umweltmodellen analysieren.</td>
</tr>
<tr>
<td>Module contents</td>
<td>Gekoppelte Systeme, Synchronisierung; Einführung in die Chaostheorie; Modellierungsansätze für räumlich ausgedehnte Systeme, Partielle Differentialgleichungen, Reaktions-Diffusions-Systeme, Ausbreitung von Fronten, räumliche Strukturbildung, Reaktions-Diffusions-Systeme, orientiert an Fallstudien mit fachwissenschaftlichem Kontext.</td>
</tr>
<tr>
<td>Reader's advisory</td>
<td>Wird in den Veranstaltungen bekannt gegeben.</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>VL Mathematische Modellierung III (2 SWS, 3KP)</td>
<td></td>
</tr>
<tr>
<td>Ü Mathematische Modellierung III (2 SWS, 3KP)</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Nützlich: Vertrautheit im Umgang mit Rechnern, Matlab</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Type of examination</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td></td>
</tr>
</tbody>
</table>
mar718 - Hydrodynamics

Module label: Hydrodynamics
Module code: mar718
Credit points: 6.0 KP
Workload: 180 h
(Kontaktzeit: 56 h, Selbststudium: 124 h)

Applicability of the module
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons
- Wolff, Jörg-Olaf (Module responsibility)
- Lettmann, Karsten (Module counselling)

Prerequisites
- keine

Skills to be acquired in this module

Module contents
Skalare und Vektoren, Gradient, Divergenz, Rotation, Gauss’scher Satz, Stokes’scher Satz, Kontinuumshypothese, Kontinuitätsgleichung, Navier-Stokes-Gleichung, Diffusionsgleichung, Strom- und Bahnlinien, Euler und Bernoulli-Gleichung, Hydrostatik, Auftrieb, Kinematik, Dynamik, turbulente Strömungen, Anwendungen in der Meeresforschung

Reader's advisory
Schade & Kunz, Strömungslehre, 3. Auflage Juli 2007
Aktuelle Literaturliste unter Stud.IP

Links
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Module level / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method: VL Hydrodynamik (3 KP), Ü Hydrodynamik (3 KP)
Vorkenntnisse / Previous knowledge: Vertrautheit im Umgang mit Rechnern, Matlab
Examination: Time of examination: Type of examination: KL
Final exam of module: Klausur am Ende der Veranstaltungszeit, nach Bekanntgabe durch die Dozenten.

Course type	Comment	SWS	Frequency	Workload of compulsory attendance
Lecture | | 2 | SoSe oder WiSe | 28
Exercises | | 2 | SoSe oder WiSe | 28
Total time of attendance for the module | | | | 56 h
mar719 - Basics in Mathematical Modelling

<table>
<thead>
<tr>
<th>Module label</th>
<th>Basics in Mathematical Modelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar719</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>{Kontaktzeit: 56 h, Selbststudium: 124 h}</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>• Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Blasius, Bernd (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Feenders, Christoph (Module counselling)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>keine</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Das mathematische Wissen zur Beschreibung und Analyse von Modellen erwerben, Modelle selbständig aufstellen und die grundlegenden Techniken zur analytischen und numerischen Lösung von Differentialgleichungen erlernen.</td>
</tr>
<tr>
<td>Module contents</td>
<td>Grundlagen der Analysis, Grundlagen der Programmierung in MatLab</td>
</tr>
<tr>
<td></td>
<td>Empirische Modelle, Differenzen- und Differentialgleichungsmodelle,</td>
</tr>
<tr>
<td></td>
<td>Räuber-Beute-Modelle, Epidemie modelle</td>
</tr>
<tr>
<td></td>
<td>Methodik zur Erstellung mathematischer Modelle am Beispiel natürlicher Systeme</td>
</tr>
<tr>
<td></td>
<td>Numerische und analytische Lösungsansätze</td>
</tr>
<tr>
<td></td>
<td>Räumlich ausgedehnte Systeme, zelluläre Automaten</td>
</tr>
<tr>
<td>Reader's advisory</td>
<td>Skript wird über StudIP bereitgestellt</td>
</tr>
<tr>
<td></td>
<td>Imboden, D.M. & Koch, S. Systemanalyse - Einführung in die mathematische Modellierung</td>
</tr>
<tr>
<td></td>
<td>natürlicher Systeme, Springer-Verlag</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Language of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Wintersemester</td>
</tr>
<tr>
<td></td>
<td>VL Mathematische Modellierung I (3 KP)</td>
</tr>
<tr>
<td></td>
<td>Ü Mathematische Modellierung I (3 KP)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Vertrautheit im Umgang mit Rechnern, Matlab</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Klausur am Ende der Veranstaltungszeit, fachpraktische Übungen oder mündliche Prüfung nach Maßgabe der Dozentin oder des Dozenten</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>Lecture</td>
<td>SWS</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
<td>Workload of compulsory attendance</td>
</tr>
<tr>
<td></td>
<td>Lecture</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
mar722 - Ecology of Plants and Animals

<table>
<thead>
<tr>
<th>Module label</th>
<th>Ecology of Plants and Animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar722</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>Kontaktzeit: 84 h, Selbststudium: 96 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Kleyer, Michael (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Kiel, Ellen (Module counselling)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>keine</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>- vertieftes Wissen über die Umweltbedingungen und die biologischen Mechanismen, die zum Überleben von Pflanzenarten in Landschaften führen.</td>
</tr>
<tr>
<td></td>
<td>- vertieftes Wissen über die regionale Differenzierung hydrologischer Prozesse in verschiedenen Landschaften</td>
</tr>
<tr>
<td></td>
<td>- vertieftes Wissen über den Stoffhaushalt von Pflanzen in Landschaften</td>
</tr>
<tr>
<td></td>
<td>- vertieftes Wissen über die biologisch-ökologischen Prozesse, die das Auftreten von Tiere in der Landschaft steuern, ihre Habitatbindung und Populationsdynamik beeinflussen, ihre Migration und Ausbreitung bedingen oder Überlebensstrategien darstellen.</td>
</tr>
</tbody>
</table>

Module contents

VI. Ökologie der Pflanzen in Landschaften

Nischentheorie, Habitatmodelle, Beziehungen zwischen biologischen Merkmalen und Umweltbedingungen, Populationsbiologie, Sukzessionen, Ausbreitung.

VI. Stoffhaushalte der Pflanzen in Landschaften

Ökophysiologie von Pflanzen, vor allem in Bezug auf Umweltstress

VI. Ökologie der Tiere

Reader's advisory

Auf aktuelle Publikationen wird in den Veranstaltungen hingewiesen

<table>
<thead>
<tr>
<th>Links</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Module type / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>VL Ökologie der Pflanzen (2 KP)</td>
</tr>
<tr>
<td></td>
<td>VL Stoffhaushalte der Pflanzen (2 KP)</td>
</tr>
<tr>
<td></td>
<td>VL Ökologie der Tiere (2 KP)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Nützlich: Vegetationskundliche, tierökologische und ökologische Kenntnisse, vergleichbar mit den entsprechenden Modulen im Bachelor Umweltwissenschaften</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Time of examination</td>
<td>Klausur am Ende der Veranstaltungszeit</td>
</tr>
<tr>
<td>Type of examination</td>
<td>KL</td>
</tr>
<tr>
<td>Course type</td>
<td>Lecture</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar723 - Biodiversity of Plants

<table>
<thead>
<tr>
<th>Module label</th>
<th>Biodiversity of Plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar723</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>{</td>
</tr>
<tr>
<td></td>
<td>Kontaktzeit: 56 h, Selbststudium: 124 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Albach, Dirk Carl (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>von Hagen, Klaus Bernhard (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Zotz, Gerhard (Module counselling)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>keine</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Biodiversität der Pflanzen (VL)</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden haben ein vertieftes Wissen über die Verteilung von Biodiversität und die Ursachen und Konsequenzen ihrer Veränderung. Dabei wird neben ökologischen Parametern insbesondere die phylogenetische Geschichte der Pflanzen betont.</td>
</tr>
<tr>
<td></td>
<td>Interactions of plants with environmental parameters (SE)</td>
</tr>
<tr>
<td></td>
<td>Communication deeper knowledge in ecology, Communicating scale- and method-overarching thinking</td>
</tr>
<tr>
<td></td>
<td>Communicating deeper theoretic concepts of:</td>
</tr>
<tr>
<td></td>
<td>- deepened knowledge of biological working methods</td>
</tr>
<tr>
<td></td>
<td>- critical and analytical thinking</td>
</tr>
<tr>
<td></td>
<td>- independent searching and knowledge of scientific literature</td>
</tr>
<tr>
<td></td>
<td>- data presentation and discussion in German and English (written and spoken)</td>
</tr>
<tr>
<td></td>
<td>- ethics and professional behaviour</td>
</tr>
<tr>
<td>Module contents</td>
<td>VL, Biodiversität der Pflanzen</td>
</tr>
<tr>
<td></td>
<td>Quantifizierung von Artenzahlen, Ausbreitung, Gradienten, Biogeographie, Biome, Funktionelle Diversität, Bestäubungssysteme, Life history, Seltenheit, Koexistenz, Invasive Pflanzen, Global Change, Artenschutz</td>
</tr>
<tr>
<td>Reader's advisory</td>
<td>Biodiversität der Pflanzen</td>
</tr>
<tr>
<td>Links</td>
<td>Languages of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Wintersemester</td>
</tr>
<tr>
<td></td>
<td>VL, Biodiversität der Pflanzen</td>
</tr>
</tbody>
</table>
Vorkenntnisse / Previous knowledge

Vegetationskundliche, tierökologische und ökologische Kenntnisse, vergleichbar mit den entsprechenden Modulen im Bachelor Umweltwissenschaften

Examination

<table>
<thead>
<tr>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung oder Portfolio nach Maßgabe der Dozentin oder des Dozenten</td>
<td>KL</td>
</tr>
</tbody>
</table>

Course type

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module

56 h
mar732 - Computational Fluid Dynamics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Computational Fluid Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar732</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
</tbody>
</table>

Workload

- 180 h
 - Kontaktzeit: 56 h, Selbststudium: 124 h

Applicability of the module

- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons

- Lukassen, Laura (Module responsibility)
- Stoevesandt, Bernhard (Module counselling)

Prerequisites

- none

Skills to be acquired in this module

- Provide basic knowledge in physical flow modeling and turbulence
- Mathematical realizations, i.e., numerical methods
- Overview of numerical techniques of practical relevance, capability of selecting a model for specific applications (strengths and weaknesses of various model classes)
- Practice with state-of-the-art models

Module contents

- Navier-Stokes equations
- Filtering/averaging of Navier-Stokes equations
- Introduction to numerical methods
- Finite-differences, finite-volumes methods
- Linear equation systems, NS-solvers, RANS, URANS, LES, DNS
- Turbulent flow, incompressible & compressible flow
- Efficiency and accuracy
- Application of OpenFOAM and PALM models

Reader's advisory

Links

Languages of instruction

- German, English

Duration (semesters)

- 1 Semester

Module frequency

- unlimited

Modullevel / module level

- MM (Mastermodul / Master module)

Modulart / typ of module

- Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

- Sommersemester
 - VL/Ü Computational Fluid Dynamics I (3 KP)
 - VL/Ü Computational Fluid Dynamics II (3 KP)
 - (jede dieser Veranstaltungen nimmt nur ein halbes Semester ein)

Vorkenntnisse / Previous knowledge

- Nützliche Vorkenntnisse: Basic knowledge in mathematics & physics Fluiddynamik I + II

Examination

- Time of examination
- Type of examination
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung oder Hausarbeit oder Referat nach Maßgabe der Dozentin oder des Dozenten</td>
<td>KL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Lecture and tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar733 - Wind Resource and its Application

<table>
<thead>
<tr>
<th>Module label</th>
<th>Wind Resource and its Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar733</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>Kontaktzeit: 56 h, Selbststudium: 124 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master’s Programme Environmental Modelling (Master) > Mastermodule

Responsible persons
- Heinemann, Detlev (Module responsibility)
- Hölling, Michael (Module counselling)
- Waldl, Hans-Peter (Module counselling)

Prerequisites
- none

Skills to be acquired in this module

The students acquire an advanced knowledge in the field of wind energy applications. Special emphasis is on connecting physical and technical skills with the know-how in the fields of logistics, management, environment, finances, and economy. Practice-oriented examples enable the students to assess and classify real wind energy projects. Special situations such as offshore wind farms and wind farms in non-European foreign countries are included to give the students an insight into the crucial aspects of wind energy also relating to non-trivial realizations as well as to operating wind farm projects.

Module contents

Basics of Wind Energy
- Physical properties of fluids
- Wind characterization and measurements
- Aerodynamics of wind energy conversion
- Dimensional analysis (pi-theorem)
- Wind turbine performance
- Design of wind turbines
- Electrical components of wind energy systems

Selected Topics in Energy Meteorology

Das Seminar behandelt jeweils semesterweise Themenblöcke aus dem Bereich der meteorologischen Randbedingungen der Wind- und Solarenergie.

Windenergie relevante Beispiele sind: Offshore-spezifische Windbedingungen und deren Einfluss auf Windparks; Strömungsmodelle für Windfelder innerhalb und im Nachlauf von Windparks; großräumige meteorologische Einflüsse auf die Netzaufnahme von Windenergie; numerische Methoden der windenergie-spezifischen Strömungsmodellierung.

Advanced Wind Energy Meteorology
- Dynamics of horizontal flow (forces, equation of motion, geostrophic wind, frictional effects, general circulation)
- Atmospheric boundary layer (turbulence, vertical structure, special boundary layer effects)
- Atmospheric flow modeling: Linear models, RANS & LES models
- Wind farm modeling
- Offshore-specific conditions
- Resource assessment & wind power forecasting
- Wind measurements & statistics

Wind Energy Application - From Wind Resources to Wind Farm Operation

- Nachlaufeffekte und Windparks (Wiederherstellung des ursprünglichen Windfeldes in der Nachlaufströmung von Windturbinen, Grundlagen des Risø Models, Effizienz von Windturbinen in Windparks, Effekte von Windparks)

Windpark Betrieb (Einflüsse auf den Energieertrag von Windparks)

Reader's advisory

Advanced Wind Energy Meteorology:

Further literature will be presented during the classes.

Links

<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>VL Basics of Wind Energy (3 KP, Pflicht) (WiSe)</td>
</tr>
<tr>
<td></td>
<td>S Selected Topics in Energy Meteorology (3 KP, WP) (WiSe)</td>
</tr>
<tr>
<td></td>
<td>VL Advanced Wind Energy Meteorology (3 KP, WP) (SoSe)</td>
</tr>
<tr>
<td></td>
<td>VL Wind Energy Application - From Wind Resources to Wind Farm Operation (3 KP, WP) (SoSe)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Basic knowledge in mathematics & physics</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>KL</td>
</tr>
</tbody>
</table>

Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung oder Portfolio nach Maßgabe der Dozentin oder des Dozenten

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>• 1 Vorlesung und 1 Seminar oder 2 Vorlesungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
mar734 - Solar Resource and its Application

<table>
<thead>
<tr>
<th>Module label</th>
<th>Solar Resource and its Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar734</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>Kontaktzeit: 56 h, Selbststudium: 124 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons
- Heinemann, Detlev (Module responsibility)
- Knecht, Robin (Module counselling)

Prerequisites
- none

Skills to be acquired in this module

Photovoltaic Systems:
- Explain the concepts of physical processes governing the surface solar irradiance available for solar energy applications
- Categorize and feature different PV systems (PV on-grid, PV off-grid, PV pumping, PV-hybrid)
- Explain concepts behind PV system design
- Explain the operation principles of PV systems

Selected Topics on Energy Meteorology:
- Planning and giving an oral presentation of a scientific topic out of Energy Meteorology
- Developing presentation & communication skills
- Task based learning by focusing on a selected topic

Advanced Solar Energy Meteorology:
- Providing a solid understanding of physical processes governing the surface solar irradiance available for solar energy applications
- Developing skills in solar radiation modeling, i.e., expertise in application, adaptation and development of models
- Solid knowledge in state-of-the-art-methods in satellite-based irradiance estimation and solar power forecasting

Detailed understanding of the influence of meteorological/climatological aspects on the performance of solar energy systems

Module contents

Photovoltaic Systems
This course extends the topics on the design of photovoltaic systems introduced in module. Students will obtain an overview of a range of on-grid PV applications (e.g. home based rooftop systems, industrial roof-top systems and PV power plants) as well as off-grid applications (e.g. Solar Home System, Micro Grid System, Hybrid System, Photovoltaic Pumping System) and system integration aspects.

The course covers system design methods for on- and off-grid PV systems and provides students with both theoretical principles and practical experiences.

Selected Topics in Energy Meteorology
Advanced Solar Energy Meteorology

- Physics of radiative processes in the atmosphere
- Physical modeling of atmospheric radiative transfer (incl. computing tools)
- Solar irradiance modeling for solar energy applications
- Solar spectral irradiance: Theory & relevance for solar energy systems
- Satellite-based estimation of solar irradiance
- Solar irradiance & solar power forecasting

Solar radiation measurements: Basics & setup of a high-quality measurement system

Reader's advisory

Photovoltaic Systems:

Advanced Solar Energy Meteorology:

Further literature will be presented during the classes.

Links

Languages of instruction German, English

Duration (semesters) 2 Semester

Module frequency

Module capacity unlimited

Module level / module level MM (Mastermodul / Master module)

Modulart / typ of module Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method VL Photovoltaics (3 KP, Pflicht) (WiSe) SE Selected Topics in Energy Meteorology (3 KP, WP) (WiSe) VL Advanced Solar Energy Meteorology (3 KP, WP) (SoSe)

Vorkenntnisse / Previous knowledge Basic knowledge in mathematics & physics

Examination Time of examination Type of examination

Final exam of module Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung oder Portfolio nach Maßgabe der Dozentin oder des Dozenten KL

Course type Comment SWS Frequency Workload of compulsory attendance

Lecture 1 Vorlesung und 1 Seminar 2 SoSe oder WiSe 28
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>oder 2 Vorlesungen</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module

56 h
mar735 - Bioenergy

<table>
<thead>
<tr>
<th>Module label</th>
<th>Bioenergy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar735</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>(Kontaktzeit: 56 h, Selbststudium: 124 h)</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons
- Pehlken, Alexandra (Module responsibility)
- Buchwald, Rainer (Module counselling)
- Wark, Michael (Module counselling)

Prerequisites
- none

Skills to be acquired in this module
- Biomass Energy
 - The students gain competencies with critical discourse of competitive uses of biomass between human consumption, animal feed, raw material and fuel. The students are taught the issues concerning biomass transportation as well as the economic and ecological criteria involving its planning and use. They develop criteria, in order to address the complex relation between the future and a sustainable energy supply. The students gain competence to better the living conditions of rural inhabitants in developing countries through improved applications of biomass for daily energy needs.

Perspectives of Bioenergy
- Das Modul soll die Studierenden befähigen, sich mit verschiedenen Formen der Bioenergie und ihren aktuellen Perspektiven auseinander zu setzen. Hierbei erlangen sie Kompetenzen sowohl in den naturwissenschaftlichen Basalfächern Physik, Chemie und Biologie als auch in Hinsicht auf die energetischen, technischen, ökologischen und ökonomischen Aspekte, die zur synoptischen Bewertung verschiedener Formen der Bioenergie berücksichtigt werden müssen.

Module contents
- Sustainable Biomass Use
- Soil fertility, decrease and destruction of natural fertility
- Soil ecology
- Growth and diversity of biomass
- Roll of the microorganism in the metabolic cycle

Perspectives of Bioenergy
- The guiding theme are the principles of traditional and modern energetic use of biomass, the constraints and efficiencies for food preparation, transport, and thermal and electrical energy production
- Biomass cookers, Improved Cook Stoves
- Wood gasification
- Biogas equipment
- Biodiesel production
- Ethanol production from sugarcane
- Methanol production

Reader's advisory
- Will be presented during the classes.

Links
<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>English, German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Wintersemester VL Biomass Energy (3 KP) VL Perspectives of Bioenergy (3 KP)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>none</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
<tr>
<td>Course type</td>
<td>Lecture</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar736 - Energy Systems

Module label: Energy Systems
Module code: mar736
Credit points: 6.0 KP
Workload: 180 h (Kontaktzeit: 56 h, Selbststudium: 124 h)

Applicability of the module
- Master’s Programme Environmental Modelling (Master) > Mastermodule

Responsible persons
- Knipper, Martin (Module responsibility)
- Agert, Carsten (Module counselling)
- Torio, Herena (Module counselling)

Prerequisites
- none

Skills to be acquired in this module
- Energy Systems
 - characterise the global energy system and its structure and constraints
 - analyse the potential for improving the global energy system based on energy and exergy efficiencies
 - understand the basic relationship between global energy supply and climate change
 - understand recent and future changes of electricity supply due to increasing fluctuating renewables and “smart” technologies

Future Power Supply Systems
- explain the management, modelling and power balancing within future electricity grid configurations with high shares of fluctuating and distributed generation
- appraise the main components (incl. chemical storage options) involved in future AC-grid concepts
- categorise different grid-designs, including mini- and micro-grids

explain the technical principles and resulting limiting factors within “Smart City”, “Smart Grid”, “Smart Home” concepts

Module contents
- Energy Systems
 - Definitions, resources & reserves
 - Global resources & potentials: fossil energies, renewable energies
 - Energy system analysis: Efficiencies at various levels of the energy chain; Exergy analysis
 - Energy scenarios
 - Climate Change
 - Advanced conventional (power plant) technologies
 - Electric power systems with large shares of renewables

Future Power Supply Systems
- Fundamentals, structure, technologies and operation of electricity grids (incl. balancing power, voltage management, etc.)
- Distributed generation of fluctuating power
- Transmission and distribution grids, storage, vehicle-to-grid-concepts, smart inverters, heat pumps/CHP
- Different electricity markets (Futures Market, Day-Ahead-Market, Intraday-Market, Balancing Power Market, Self-Consumption)
- “Smart City”, “Smart Grid”, “Smart Home”, Mini- and Micro-Grids
- Chemical energy carriers: power-to-gas (e.g. methane) and power-to-liquids (e.g. methanol)

<table>
<thead>
<tr>
<th>Reader's advisory</th>
<th>Will be presented during the classes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Winter- und Sommersemester</td>
</tr>
<tr>
<td></td>
<td>VL Energy Systems (3 KP) (WiSe)</td>
</tr>
<tr>
<td></td>
<td>VL Future Power Supply Systems (3 KP) (SoSe)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Basic knowledge in mathematics & physics</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung oder Portfolio nach Maßgabe der Dozentin oder des Dozenten</td>
</tr>
<tr>
<td>Course type</td>
<td>Lecture</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar742 - Environmental and Resource Economy

<table>
<thead>
<tr>
<th>Module label</th>
<th>Environmental and Resource Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar742</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>{Kontaktzeit: 56 h, Selbststudium: 124 h}</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons
- Helm, Carsten (Module responsibility)
- Huse, Cristian (Module counselling)

Prerequisites
- keine

Skills to be acquired in this module
- Umweltökonomie, Umweltpolitik

Studierende können die ökonomischen Strukturen, die hinter vielen Problemen im Umweltbereich stecken, herausarbeiten und Lösungsmöglichkeiten entwickeln. Dabei sind sie in der Lage, Anreize, wie sie sich verschiedenen Akteuren bieten, zu berücksichtigen und offen zu legen. Ausgehend von aktuellen Problemlagen verfügen die Studierenden über
- Verständnis der grundlegenden Problemstellungen und Zusammenhänge,
- Verständnis der relevanten Konzepte,
- Verständnis des Verhaltens typischer Akteure,
- Beherrschung der üblichen Modellbildung,
- Fähigkeit zur Einschätzung umweltökonomischer Probleme.

Ressourcenökonomik, Energieökonomik

Studierende erwerben ein Verständnis der normativen Probleme der Nutzung natürlicher Ressourcen, ihrer effizienten und optimalen Nutzung sowie des Funktionierens realer Ressourcenmärkte (insbesondere Energiemärkte) und ihrer Regulierung. Ausgehend von aktuellen Problemlagen verfügen die Studierenden über
- Verständnis der grundlegenden Problemstellungen,
- Verständnis der relevanten Konzepte,
- Beherrschung der Analysemethoden,
- Grundkenntnisse der jeweiligen Märkte, insbesondere Energiemärkte,
- Verständnis der Begründungen und Instrumente für die Regulierung von Energiemärkten.

Module contents
<table>
<thead>
<tr>
<th>Umweltökonomie</th>
</tr>
</thead>
</table>

Die Veranstaltung behandelt die ökonomische Theorie der Umwelt. Sie untersucht Umweltprobleme und Umweltpolitik mit den Methoden der Mikroökonomie und Wohlfahrtsökonomie. Folgende Inhalte werden behandelt:
- Grundlagen des Nachhaltigkeitsproblems
- Normative und ethische Grundlagen
- Nachhaltigkeitsbegriffe
- Wohlfahrtsökonomie und Umwelt
- Ziele der Umweltpolitik
- Instrumente der Umweltpolitik
- Umweltpolitik bei Unsicherheit
- Umweltwertung und Entscheidungsfindung
This course deals with the economic theory of natural resource utilization from a normative and a positive perspective. The following issues are covered:

- Basic Concepts and Methods of Resource Economics
- The Basic Model of Natural Resource Utilization
- Non-Renewable Resources
- Renewable Resources/Fishery
- Forest Resources
- "Green" Accounting

Teaching language: English

Reader's advisory

Umweltökonomie / Umweltpolitik

Resource Economics / Energy Economics

Steven Stoft, Power System Economics: Designing Markets for Electricity, New York 2002;
IEA: World energy outlook, annual.

Links

<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Winter- und Sommersemester</td>
</tr>
<tr>
<td></td>
<td>VL Umweltökonomie (3 KP) (WiSe)</td>
</tr>
<tr>
<td></td>
<td>VL Resource Economics (3 KP) (SoSe)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Mikroökonomie</td>
</tr>
<tr>
<td>Examination Time of examination</td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Klausur am Ende der Veranstaltungszeit oder alle anderen möglichen Prüfungsleistungen nach Maßgabe der Dozentin oder des Dozenten</td>
</tr>
<tr>
<td>Course type</td>
<td>Lecture</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar743 - Energy and Climate Change Economy

Module label: Energy and Climate Change Economy
Module code: mar743
Credit points: 6.0 KP
Workload: 180 h
Kontaktzeit: 56 h, Selbststudium: 124 h

Applicability of the module: Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons:
- Böhringer, Christoph (Module counselling)
- Asane-Otoo, Emmanuel (Module counselling)
- Helm, Carsten (Module responsibility)

Prerequisites: keine

Skills to be acquired in this module:
- Energy Economics
 - Understanding the (normative) problems of resource use
 - Rationales and instruments for policy intervention into (energy) markets
 - Command of analytical methods (incl. role of analytical and numerical models in policy analysis)
 - Ability to judge energy policy issues based on sound economic analysis (theory)
 - Ability to quantify the relevance of arguments (empirics).

Economics of Climate Change:
Studierende erwerben die Fähigkeit, vor dem Hintergrund der naturwissenschaftlichen Grundlagen die ökonomischen Antriebskräfte des Klimawandels zu analysieren und regulatorisch-politische Lösungsansätze zu verstehen und zu bewerten. Sie verfügen über
- Verständnis der grundlegenden Problemstellungen,
- Verständnis der relevanten Konzepte,
- Beherrschung der Analysemethoden,
- Verständnis der intertemporalen und internationalen Anreizprobleme,
- Verständnis der Instrumente der Klimapolitik für die Regulierung von Energiemärkten.

Module contents:
- Energy Economics
 This course deals with the economic analysis of energy markets and their regulation. The following issues are covered:
 - Fundamentals of Energy Analysis
 - Energy Resources
 - The Coal Market – Perfect Competition
 - The Oil Market – OPEC Cartel
 - The Gas Market – Oligopoly
- Introduction to Electricity Markets
- Market Power in Electricity Markets
- Investment in Reliability
- Regulation of Electricity Markets

Teaching language: English

Economics of Climate Change:
This course deals with economic causes of climate change and approaches, problems and impacts of climate change policy. The following issues are covered:
- The Science of Climate Change
- Why Climate Policy – Market Failure
- Cost-Benefit and Inter-temporal Problems
- International Cooperation
- Instruments of Climate Policy
- Climate Policy in Practice

Teaching language: English

Reader's advisory

Energy Economics and Economics of Climate Change

Wird in den Veranstaltungen bekannt gegeben
Will be announced in StudIP

Links

<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Reference text</td>
<td>Das Modul mar743 wird ab dem WiSe 2022/23 durch das Modul wir890 ersetzt.</td>
</tr>
<tr>
<td>Modulelevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Wintersemester VL Energy Economics (3 KP) (SoSe) (VL Energy Economics wird nicht mehr angeboten, VL kann durch die Übung zu Economics of Climate Change (WiSe) ersetzt werden) VL Economics of Climate Change (3 KP) (WiSe)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Mikroökonomie</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Klausur am Ende der Veranstaltungszeit oder alle anderen möglichen nach Maßgabe der Dozentin oder des Dozenten</td>
</tr>
<tr>
<td>Type of examination</td>
<td>KL</td>
</tr>
<tr>
<td>Course type</td>
<td>Lecture</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar744 - Game Theory and Ecological Economics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Game Theory and Ecological Economics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar744</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>Kontaktzeit: 56 h, Selbststudium: 124 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons
- Helm, Carsten (Module responsibility)
- Siebenhüner, Bernd (Module counselling)
- Sievers-Glotzbach, Stefanie (Module counselling)

Prerequisites
- keine

Skills to be acquired in this module

Game Theory
- Students
 - understand the importance of incentive systems for economic processes;
 - have a firm knowledge in game theory;
 - are able to apply methods from game theory largely independently to the analysis of situations in which agents interact strategically;
 - are able to design incentive schemes – on their own and in teams – to acquire knowledge on their own for this purpose and to present their results.

Ecological Economics
The aim of the module “Ecological Economics” is to introduce students to core concepts and policy implications from the field of Ecological Economics. The module is structured into three parts. First, students will be introduced to the topic by two lectures on the specific vision and paradigms of Ecological Economics as distinguished from environmental & resource economics and on the history of Ecological Economics. Second, the students work out and discuss the core analytical concepts (ecological footprint, ecosystem services, social-ecological resilience, substitutability of natural capital, time) as well as the core normative concepts (justice, human behaviour) in Ecological Economics. Third, the students will discuss and reflect certain policy implications following from Ecological Economics – specifically the economics of degrowth and the measurement of welfare. The basis for discussion will be classical and current scientific papers.

Module contents

Game Theory
The first part of the module covers game theory. Game theory is an important method in economics to analyze strategic interactions of agents, e.g., on markets, in organizations or in bargaining situations.

Ecological Economics
Ecological Economics is concerned with integrating the study and management of “nature's household” (ecology) and “humankind's household” (economics). This integration is central to many of humanity's current problems and to governing economic activity in a way that promotes human well-being, sustainability, and justice.

Reader's advisory

Game Theory

Ecological Economics
Depending on the topic and content of each seminar

<table>
<thead>
<tr>
<th>Links</th>
<th>Languages of instruction</th>
<th>German, English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>2 Semester</td>
<td></td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
<td></td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
<td></td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
<td></td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>VL Game Theory (3 KP) (WiSe) (Dies ist der 1. Teil der Vorlesung “Advanced Microeconomics” (wir874))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL Ecological Economics (3KP) (SoSe)</td>
<td></td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Mikroökonomie</td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Klausur am Ende der Veranstaltungszeit.</td>
<td>KL</td>
</tr>
<tr>
<td>Course type</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
<td></td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
<td></td>
</tr>
</tbody>
</table>
mar754 - Modelling of Complex Systems

<table>
<thead>
<tr>
<th>Module label</th>
<th>Modelling of Complex Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar754</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>{ Kontaktzeit: 56 h, Selbststudium: 124 h }</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Feudel, Ulrike (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Gross, Thilo (Module counselling)</td>
</tr>
<tr>
<td></td>
<td>Torio, Herena (Module counselling)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>keine</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Die Studierenden besitzen Grundkenntnisse in modernen Methoden der Prozess- und Systemorientierten Modellierung. Sie können Umweltsysteme mit Hilfe dieser Methoden analysieren. Sie können neue methodische Zugänge aus Originalpublikationen erfassen, verstehen und präsentieren.</td>
</tr>
<tr>
<td>Reader's advisory</td>
<td>Aktuelle Publikationen aus Fachzeitschriften, die in der Veranstaltung bekannt gegeben werden.</td>
</tr>
<tr>
<td>Links</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modulelevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Sommer- und Wintersemester</td>
</tr>
<tr>
<td></td>
<td>SE Seminar Komplexe Systeme und Modellierung (3 KP) (WiSe / SoSe)</td>
</tr>
<tr>
<td></td>
<td>VL/Ü/SE Spezielle Methoden der prozess- und systemorientierten Modellierung (3 KP oder 6 KP)</td>
</tr>
<tr>
<td></td>
<td>VL/SE Resilient Energy Systems (je 3 KP)</td>
</tr>
<tr>
<td></td>
<td>Sommersemester</td>
</tr>
<tr>
<td></td>
<td>VL/SE Netzwerke und Komplexität (6KP)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Grundkenntnisse der mathematischen Modellierung</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
</tr>
<tr>
<td>Time of examination</td>
<td></td>
</tr>
<tr>
<td>Type of examination</td>
<td></td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Präsentation oder Hausarbeit oder Seminararbeit nach Maßgabe der Dozentin oder des Dozenteen</td>
</tr>
<tr>
<td>Course type</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar755 - Fluid Dynamics

<table>
<thead>
<tr>
<th>Module label</th>
<th>Fluid Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar755</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| | {
| | Kontaktzeit: 56 h, Selbststudium: 124 h } |
| Applicability of the module | Master's Programme Environmental Modelling (Master) > Mastermodule |
| Responsible persons | Peinke, Joachim (Module responsibility) |
| | Lukassen, Laura (Module counselling) |
| Prerequisites | keine |
| Skills to be acquired in this module | Die Studierenden besitzen die Fähigkeit komplexe, theoretische Vorgehensweisen in der modernen Meeres- und Klimaforschung nachzu vollziehen und durch Selbststudium der aktuellen Literatur auch neue oder verschiedene Ansätze in der Theorie zu begreifen und einzuordnen.
| | Die Studenten besitzen die Fähigkeit, aktuelle Publikationen der Fachliteratur auszuwerten Umwelt systemmodelle zu verschiedensten Fragestellungen zu analysieren und die Resultate der Untersuchungen mit Umwelt systemmodellen auf spezielle Fragestellungen anzuwenden. |
| Module contents | Fluiddynamik I (VL+Ü):
| | Grundgleichungen: Navier-Stokes-Gleichung, Kontinuitätsgleichung, Bernoulli-Gleichung; Wirbel- und Energiegleichungen; Laminare Flüsse und Stabilitätsanalyse; exakte Lösungen, Anwendungen. |
| | P.A. Davidson: turbulence Oxford 2004 |
| Links | English , German |
| Languages of instruction | |
| Duration (semesters) | 1 Semester |
| Module frequency | jährlich |
| Module capacity | unlimited |
| Reference text | Unterrichtssprache: English. German on demand, if no international students participate |
| Modullevel / module level | MM (Mastermodul / Master module) |
| Modulart / typ of module | Wahlpflicht / Elective |
| Lehr-/Lernform / Teaching/Learning method | VL Fluiddynamik I (3KP)
<p>| | Ü Fluiddynamik I (3KP) |
| Vorkenntnisse / Previous knowledge | Vertrautheit im Umgang mit Rechnern, Matlab, Maple | |
| Examination | Time of examination | Type of examination |
| Final exam of module | KL |
| | Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung oder Hausarbeit oder Referat nach Maßgabe der Dozentin oder des Dozenten |
| Course type | Lecture and tutorial |</p>
<table>
<thead>
<tr>
<th>SWS</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar756 - Hydrogeological Modelling

<table>
<thead>
<tr>
<th>Module label</th>
<th>Hydrogeological Modelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar756</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>{</td>
</tr>
<tr>
<td></td>
<td>Kontaktzeit: 56 h, Selbststudium: 124 h</td>
</tr>
<tr>
<td></td>
<td>}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicability of the module</th>
<th>Master's Programme Environmental Modelling (Master) > Mastermodule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible persons</td>
<td>Greskowiak, Janek (Module responsibility)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>keine</td>
</tr>
</tbody>
</table>

Skills to be acquired in this module

Vermittlung von Kenntnissen zur quantitativen Hydrogeologie (Hydraulik und Advektions-Dispersion). Erwerb der Fähigkeit einfache Grundwasserströmungs- und Transportmodelle aufzubauen

Vermittlung von Kenntnissen zur quantitativen Hydrogeochemie. Erwerb der Fähigkeit zur hydrogeochemischen Modellierung

Module contents

Modellierung hydrogeochemischer Prozesse (u.a. Speziationreaktionen und Mineralreaktionen, Pyritoxidation, Oxidation organischer Substanz, Redox-Reaktionen, Ionenaustausch, Gleichgewichtsreaktionen und Reaktionskinetik) mit der Software PHREEQC (http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/)

Reader's advisory

Wird in den Veranstaltungen bekannt gegeben

Links

Language of instruction

German

Duration (semesters)

1 Semester

Module frequency

jährlich

Module capacity

unlimited

Modullevel / module level

MM (Mastermodul / Master module)

Modulart / typ of module

Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method

VL/Ü Angewandte Modellierung von Wasser und Stofftransport im Grundwasser

VL/Ü Hydrochemische Modellierung von Wasser-Gesteinswechselwirkungen mit PHREEQC (Blockkurs in der vorlesungsfreien Zeit)

Vorkenntnisse / Previous knowledge

Hydrogeologische Grundlagen

Examination

Type of examination

Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung oder Portfolio oder Hausarbeit nach Maßgabe der Dozentin oder des Dozenten

KL

Course type

Lecture and tutorial

SWS

4

Frequency

SoSe oder WiSe

Workload attendance

56 h
mar757 - Fluid Dynamics II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Fluid Dynamics II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar757</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>Kontaktzeit: 56 h, Selbststudium: 124 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Peinke, Joachim (Module responsibility)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>keine</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Die Studierenden besitzen die Fähigkeit komplexe, theoretische Vorgehensweisen in der modernen Meeres- und Klimaforschung nachzu vollziehen und durch Selbststudium der aktuellen Literatur auch neue oder verschiedene Ansätze in der Theorie zu begreifen und einzuordnen. Die Studenten besitzen die Fähigkeit, aktuelle Publikationen der Fachliteratur auszuwerten, Umwelt systemmodelle zu verschiedensten Fragestellungen zu analysieren und die Resultate der Untersuchungen mit Umwelt systemmodellen auf spezielle Fragestellungen anzuwenden.</td>
</tr>
<tr>
<td>Module contents</td>
<td>Fluidodynamik II (VL+Ü):</td>
</tr>
<tr>
<td></td>
<td>Reynolds-Gleichung, Schließungsproblem und Schließungsansätze, Turbulenzmodelle: Kaskadenmodelle – Stochastische Modelle.</td>
</tr>
<tr>
<td></td>
<td>P.A. Davidson: turbulence Oxford 2004</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td></td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Modullevel / module level</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>VL Fluidynamik II (3KP)</td>
</tr>
<tr>
<td></td>
<td>Ü Fluidynamik II (3KP)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Vertrautheit im Umgang mit Rechnern, Matlab, Maple</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td></td>
<td>Type of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td>Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung oder Hausarbeit oder Referat nach Maßgabe der Dozentin oder des Dozenten</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
</tr>
<tr>
<td></td>
<td>SWS</td>
</tr>
<tr>
<td>Lecture</td>
<td>2</td>
</tr>
<tr>
<td>Exercises</td>
<td>2</td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar768 - Statistical Analysis

Module label: Statistical Analysis
Module code: mar768
Credit points: 6.0 KP
Workload: 180 h
(Kontaktzeit: 56 h, Selbststudium: 124 h)

Applicability of the module:
• Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons:
Freund, Jan (Module responsibility)
Peppler-Lisbach, Cord (Module counselling)
Ruckdeschel, Peter (Module counselling)
Ryabov, Alexey (Module counselling)

Prerequisites:
keine

Skills to be acquired in this module:
Die Studenten besitzen erweiterte Kenntnisse über Analyse- und Modellierungsmethoden von Umweldaten.

Module contents:
Spezielle Methoden der Statistischen / Stochastischen Modellierung (VL, Ü, S)

Seminar Komplexe Systeme und Modellierung (S)
Herauführung an aktuelle Themen in der Umweltmodellierung

VL/Ü Machine learning in the environmental sciences
In this course the students will learn to think as a data scientist and ask questions about the data. First, we will learn how to work with tables and extract statistics on groups of data. Then, we will go to the basic approaches of machine learning: supervised learning (classification and regression trees, neural networks), unsupervised learning (cluster analysis, factor analysis), reducing system dimensions (PCA, MDA etc.), statistical modelling (regression, generalized linear models), and optimization of model parameters (simulated annealing, differential evolution). Finally, we will focus on typical workflow of the data processing. We will use Matlab to implement the algorithms.
(only Sommersemester)

Reader's advisory:
Fachliteratur wird in der Lehrveranstaltung bekannt gegeben.

Links:
Languages of instruction: German, English
Duration (semesters): 1 Semester
Module frequency: unlimited
Modulelevel / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method: Winter- und Sommersemester
Auswahl von Veranstaltungen von insgesamt 6KP
S Kolloquium: Komplexe Systeme und Modellierung (3 KP)
VL, Ü, S Spezielle Methoden der Statistischen und Stochastischen Modellierung (3 KP oder 6 KP) (WP) (WiSe oder SoSe)
VL Machine learning in the environmental sciences
(2 SWS, 3 KP) (SoSe)
S Machine learning in the environmental sciences
(2 SWS, 3 KP) (SoSe)

Vorkenntnisse / Previous knowledge
Erfahrung im Umgang mit R oder Matlab.

Examination
Time of examination
Type of examination

Final exam of module
KL

Klausur am Ende der Veranstaltungszeit oder alle anderen möglichen Prüfungsleistungen nach Maßgabe der Dozentin oder des Dozenten

Course type	Comment	SWS	Frequency	Workload of compulsory attendance
Lecture | 2 | SoSe oder WiSe | 28
Seminar | 1 | SoSe oder WiSe | 14
Exercises | 1 | SoSe oder WiSe | 14

Total time of attendance for the module 56 h
mar779 - Computer-oriented Physics

Module label: Computer-oriented Physics
Module code: mar779
Credit points: 6.0 KP

Workload: 180 h
 - Kontaktzeit: 56 h, Selbststudium: 124 h

Applicability of the module:
- Master’s Programme Environmental Modelling (Master) > Mastermodule

Responsible persons:
Hartmann, Alexander (Module responsibility)

Prerequisites:

Skills to be acquired in this module:

Module contents:
Mehr als 20 Prozent aller wissenschaftlichen Veröffentlichungen basieren heutzutage auf Computersimulationen. Diese Vorlesung bietet eine Einführung in das Gebiet und behandelt die gängigsten Verfahren. Ein zentraler Bestandteil sind praktische Übungen am Computer, denn am wichtigsten sind in diesem Bereich praktische Fähigkeiten. Wichtige Kapitel (jedes Semester eine Auswahl davon): Datenstrukturen, Algorithmen, Perkolation, Monte-Carlo Simulationen, Finite-Size Scaling, neuronale Netze, Molekularodynamik Simulationen, Ereignisgetriebene Simulationen, Quanten Monte Carlo, Graphen +Algorithmen, genetische Algorithmen, Optimierungsprobleme

Reader's advisory:
A.K. Hartmann, Practical guide to computer simulation, (World-Scientific 2009)
J.M. Thijssen, Computational Physics, (Cambridge University Press, 2007)

Links:
Languages of instruction: German, English
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Modulelevel / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective
Lehr-/Lernform / Teaching/Learning method: VL, U

Vorkenntnisse / Previous knowledge: Grundkenntnisse einer objektorientierten Programmiersprache wie Java oder Python
Examination:
- Time of examination
- Type of examination
Final exam of module:
- Klausur am Ende der Veranstaltungszeit oder fachpraktische Übungen oder mündliche Prüfung oder Portfolio nach Maßgabe der Dozentin oder des Dozenten
KL
Course type: Lecture and tutorial

SWS: 4
Frequency: SoSe oder WiSe
| Workload attendance | 56 h |
mar780 - Practical Seminar in Modelling

<table>
<thead>
<tr>
<th>Module label</th>
<th>Practical Seminar in Modelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar780</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td>{ Kontaktzeit: 56 Stunden, Selbststudium: 124 }</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>• Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
<tr>
<td>Responsible persons</td>
<td>Feudel, Ulrike (Module responsibility)</td>
</tr>
<tr>
<td></td>
<td>Umweltmodellierung, Lehrende (Module counselling)</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>mindestens 6 KP im Schwerpunktfach bzw. Ergänzungsbereich müssen nachgewiesen sein</td>
</tr>
<tr>
<td>Skills to be acquired in this module</td>
<td>Die Studierenden können ein disziplinübergreifendes Forschungsprojekt unter Anleitung selbstständig bearbeiten. Sie können aktuelle wissenschaftliche Literatur verstehen und in ihrer Arbeit berücksichtigen. Sie können ein wissenschaftliches Projekt vorbereiten, durchführen, in einer schriftlichen Ausarbeitung darstellen, öffentlich präsentieren und verteidigen.</td>
</tr>
<tr>
<td>Reader's advisory</td>
<td>Wird je nach Themenstellung individuell festgelegt, im Allgemeinen sind dies aktuelle Originalarbeiten aus wissenschaftlichen Zeitschriften</td>
</tr>
<tr>
<td>Languages of instruction</td>
<td>German, English</td>
</tr>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>Ü/SE (6 KP) interdisziplinäres Forschungsprojekt, in der Regel von einer oder einem Studierenden durchgeführt, möglichst von zwei Dozenten aus verschiedenen fachlichen Bereichen betreut, sollte im Schwerpunktfach absolviert werden</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>Grundkenntnisse von Modellierungstechniken</td>
</tr>
<tr>
<td>Examination</td>
<td>Time of examination</td>
</tr>
<tr>
<td>Final exam of module</td>
<td></td>
</tr>
<tr>
<td>Course type</td>
<td>Seminar and tutorial</td>
</tr>
<tr>
<td>SWS</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>WiSe</td>
</tr>
<tr>
<td>Workload attendance</td>
<td>56 h</td>
</tr>
</tbody>
</table>
mar800 - Contact Internship/Research Project

<table>
<thead>
<tr>
<th>Module label</th>
<th>Contact Internship/Research Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar800</td>
</tr>
<tr>
<td>Credit points</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td></td>
<td>Kontaktzeit: 56 Stunden, Selbststudium: 304 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons
- Feudel, Ulrike (Module responsibility)
- Umweltmodellierung, Lehrende (Module counselling)

Prerequisites
- mindestens 12 KP im Schwerpunktfach bzw. Ergänzungsbereich müssen nachgewiesen sein

Skills to be acquired in this module
- Die Studierenden können ein disziplinübergreifendes Forschungsprojekt unter Anleitung selbstständig bearbeiten. Sie können aktuelle wissenschaftliche Literatur verstehen und in ihrer Arbeit berücksichtigen. Sie können ein wissenschaftliches Projekt vorbereiten, durchführen, in einer schriftlichen Ausarbeitung darstellen, öffentlich präsentieren und verteidigen.

Module contents
- Interdisziplinäres Forschungsprojekt, das in der Regel von zwei Dozentinnen oder Dozenten aus verschiedenen Arbeitsgruppen betreut wird.
- Die Inhalte des Forschungsprojekts sollen aktuelle Forschungsfragen, die interdisziplinär von den am Studiengang beteiligten Arbeitsgruppen bearbeitet werden, betreffen.
- Das Forschungsprojekt kann alternativ auch in einem externen Institut, einer Behörde oder einem Unternehmen absolviert werden oder im Rahmen eines Auslandssemesters anerkannt werden. In allen Fällen muss es sich um eine Tätigkeit handeln, die inhaltlich in engem Zusammenhang mit den Zielen des Studiengangs stehen, handeln. Dies muss von der betreuenden Stelle vor Beginn des Praktikums schriftlich bestätigt werden.
- In allen Fällen muss mindestens eine Betreuerin oder ein Betreuer im Studiengang prüfungsberechtigt sein.

Reader's advisory
- Wird je nach Themenstellung individuell festgelegt, im Allgemeinen sind dies aktuelle Originalarbeiten aus wissenschaftlichen Zeitschriften

Links
- Languages of instruction: German, English
- Duration (semesters): 1 Semester
- Module frequency: jährlich
- Module capacity: unlimited

Reference text
- Modullevel / module level: je nach Studiengang Pflicht oder Wahlpflicht
- Lehr-/Lernform / Teaching/Learning method: Ü (10 KP), SE (2 KP), interdisziplinäres Forschungsprojekt, in der Regel von einer oder einem Studierenden durchgeführt, möglichst von zwei Dozenten aus verschiedenen fachlichen Bereichen am Praktikumsplatz und in regelmäßigen Gesprächen betreut
- Vorkenntnisse / Previous knowledge: Grundkenntnisse in Modellierungstechniken
- Examination: Time of examination, Type of examination

Final exam of module: PR
<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>1</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Exercises</td>
<td>5</td>
<td></td>
<td>--</td>
<td>70</td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td></td>
<td></td>
<td></td>
<td>84 h</td>
</tr>
</tbody>
</table>
mar997 - Applied Statistics in Biology and Environmental Science

<table>
<thead>
<tr>
<th>Module label</th>
<th>Applied Statistics in Biology and Environmental Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mar997</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h (Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden)</td>
</tr>
</tbody>
</table>

Applicability of the module

- Bachelor's Programme Biology (Bachelor) > Fachnahe Angebote Biologie
- Bachelor's Programme Biology (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Bachelor's Programme Business Administration and Law (Bachelor) > Fachnahe Angebote Biologie
- Bachelor's Programme Business Administration and Law (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Bachelor's Programme Business Informatics (Bachelor) > Fachnahe Angebote Biologie more...
- Bachelor's Programme Business Informatics (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Bachelor's Programme Chemistry (Bachelor) > Fachnahe Angebote Biologie
- Bachelor's Programme Chemistry (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Bachelor's Programme Comparative and European Law (Bachelor) > Fachnahe Angebote Biologie
- Bachelor's Programme Comparative and European Law (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Bachelor's Programme Computing Science (Bachelor) > Fachnahe Angebote Biologie
- Bachelor's Programme Computing Science (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Bachelor's Programme Economics and Business Administration (Bachelor) > Fachnahe Angebote Biologie
- Bachelor's Programme Economics and Business Administration (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Bachelor's Programme Education (Bachelor) > Fachnahe Angebote Biologie
- Bachelor's Programme Education (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Bachelor's Programme Engineering Physics (Bachelor) > Fachnahe Angebote Biologie
- Bachelor's Programme Engineering Physics (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Bachelor's Programme Environmental Science (Bachelor) > Fachnahe Angebote Biologie
- Bachelor's Programme Environmental Science (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Bachelor's Programme Intercultural Education and Counselling (Bachelor) > Fachnahe Angebote Biologie
- Bachelor's Programme Intercultural Education and Counselling (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Bachelor's Programme Mathematics (Bachelor) > Fachnahe Angebote Biologie
- Bachelor's Programme Mathematics (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Bachelor's Programme Physics (Bachelor) > Fachnahe Angebote Biologie
- Bachelor's Programme Physics (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Bachelor's Programme Physics, Engineering and Medicine (Bachelor) > Fachnahe Angebote Biologie
- Bachelor's Programme Physics, Engineering and Medicine (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Bachelor's Programme Social Studies (Bachelor) > Fachnahe Angebote Biologie
- Bachelor's Programme Social Studies (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Bachelor's Programme Sustainability Economics (Bachelor) > Fachnahe Angebote Biologie
- Bachelor's Programme Sustainability Economics (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Dual-Subject Bachelor's Programme Art and Media (Bachelor) > Fachnahe Angebote Biologie
- Dual-Subject Bachelor's Programme Art and Media (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Dual-Subject Bachelor's Programme Biology (Bachelor) > Fachnahe Angebote Biologie
- Dual-Subject Bachelor's Programme Biology (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Dual-Subject Bachelor's Programme Chemistry (Bachelor) > Fachnahe Angebote Biologie
- Dual-Subject Bachelor's Programme Chemistry (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Dual-Subject Bachelor's Programme Computing Science (Bachelor) > Fachnahe Angebote Biologie
- Dual-Subject Bachelor's Programme Computing Science (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Dual-Subject Bachelor's Programme Dutch Linguistics and Literary Studies (Bachelor) > Fachnahe Angebote Biologie
- Dual-Subject Bachelor's Programme Dutch Linguistics and Literary Studies (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Dual-Subject Bachelor's Programme Economic Education (Bachelor) > Fachnahe Angebote Biologie
- Dual-Subject Bachelor's Programme Economic Education (Bachelor) > Fachnahe Angebote Umweltwissenschaften
- Dual-Subject Bachelor's Programme Economics and Business Administration (Bachelor) > Fachnahe Angebote Biologie
- Dual-Subject Bachelor's Programme Economics and Business Administration (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme Education (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme Education (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme Elementary Mathematics (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme Elementary Mathematics (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme English Studies (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme English Studies (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme Gender Studies (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme Gender Studies (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme General Education (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme General Education (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme German Studies (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme German Studies (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme History (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme History (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme Material Culture: Textiles (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme Material Culture: Textiles (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme Mathematics (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme Mathematics (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme Music (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme Music (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme Philosophy / Values and Norms (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme Philosophy / Values and Norms (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme Physics (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme Physics (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme Politics-Economics (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme Politics-Economics (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme Protestant Theology and Religious Education (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme Protestant Theology and Religious Education (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme Slavic Studies (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme Slavic Studies (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme Social Studies (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme Social Studies (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme Special Needs Education (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme Special Needs Education (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme Sport Science (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme Sport Science (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Dual-Subject Bachelor's Programme Technology (Bachelor) > Fachnahe Angebote Biologie
• Dual-Subject Bachelor's Programme Technology (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Fach-Bachelor Pädagogisches Handeln in der Migrationsgesellschaft (Bachelor) > Fachnahe Angebote Biologie
• Fach-Bachelor Pädagogisches Handeln in der Migrationsgesellschaft (Bachelor) > Fachnahe Angebote Umweltwissenschaften
• Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons

Freund, Jan (Module responsibility)
Hillebrand, Helmut (Module counselling)
Winklhofer, Michael (Module counselling)
Zotz, Gerhard (Module counselling)

Prerequisites
eigener Laptop

Skills to be acquired in this module

Anwendungs- und problemorientierte Vermittlung ausgewählter Teilgebiete der Angewandten Statistik und ihr Einsatz unter Verwendung der Statistik Software „R“.

98 / 135
Die Studierenden sollen dazu befähigt werden, die Anwendbarkeit und Aussagefähigkeit ausgewählter Verfahren der Angewandten Statistik im Kontext von Fallstudien kompetent zu beurteilen.

Module contents

Beschreibung und Anwendung statistischer Verfahren im Kontext biologischer und umweltwissenschaftlicher Forschungsprojekte:

- Elemente der Wahrscheinlichkeitsrechnung: Zufallsvariablen, Stichproben, statistische Unabhängigkeit Wahrscheinlichkeitsverteilungen, Charakterisierung durch deskriptive Statistik
- Hypothesentest: Herangehensweise, Fehler erster und zweiter Art, t-test,
- Parametrische und Nichtparametrische Methoden
- ANOVA und Posthoc-Tests, multiples Testen
- Regression und Korrelation, ANCOVA
- Variablentransformationen, Monte-Carlo Verfahren

Praktische Beispiele aus dem Bereich der Biologie und Umweltwissenschaften bilden stets die Grundlage für die Einführung sämtlicher Begriffe und für ihre Berechnung mit der Statistik Software „R“.

Reader’s advisory

Links

Languages of instruction German, English
Duration (semesters) 1 Semester
Module frequency jährlich
Module capacity 45 (Platzvergabe nach zeitlicher Staffelung in StudIP)

Reference text

Modullevel / module level PB (Professionalisierungsbereich / Professionalization)
Modulart / typ of module je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method VL/Ü Angewandte Statistik in Biologie und Umweltwissenschaften (3+3 KP, 2+2 SWS)
Aktive Teilnahme an den Übungen
Vorkenntnisse / Previous knowledge nützliche Vorkenntnisse: mathematische Grundkenntnisse, Umgang mit Softwaresystemen (u.a. Tabellenkalkulationsprogrammen wie Excel) sowie der Statistik Software „R“

Examination

Time of examination Type of examination
Final exam of module Absprache in der ersten Lehrveranstaltung KL

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Course type</td>
<td>Comment</td>
<td>SWS</td>
<td>Frequency</td>
<td>Workload of compulsory attendance</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>-----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
mat837 - Extreme Value Statistics and Applications

<table>
<thead>
<tr>
<th>Module label</th>
<th>Extreme Value Statistics and Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mat837</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Applicability of the module | - Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Mathematics (Master) > Mastermodule |
| Responsible persons | Christiansen, Marcus (Module responsibility)
May, Angelika (Module responsibility)
Ruckdeschel, Peter (Module responsibility) |
| Prerequisites | - Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschung wichtiger Verfahren und Algorithmen
- Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software
- Die Studierenden lernen die Grenzwertsätze der Extremwertstatistik und die dazu gehörigen statistischen Verfahren kennen und können diese in realen Datensituationen anwenden.
- Querverbindungen: mat315, mat826, mat843, mat805 (bzw. Versicherungsmathematik I im neuen System) |
| Module contents | als Obermenge zu verstehen; Akzentuierung durch Dozent möglich:
- Maxima: GEVD und Eigenschaften, Fisher-Tippet-Gnedenko-Thm / Attraktionsbereiche, BlockMaxima
- Schwellüberschreitungen: GPD und Eigenschaften; Pickands-Balkema-deHaan Thm; Hill Schätzer
- Punktprozesse: der Poissonprozess; Verbindung zur Exponentialvtlg; Relevanz in EVT
- Diagnostik: Mean-Excess Plot, Return Level Plot, Extremal-Index |
Reiss, R-D., Thomas, M. Statistical analysis of extreme values, Birkhäuser. |
| Languages of instruction | German, English | | | |
| Duration (semesters) | 1 Semester |
| Module frequency | unregelmäßig |
| Module capacity | unlimited |
| Reference text | Studien schwerpunkt: C |
| Modullevel / module level | MM (Mastermodul / Master module) |
| Modulart / typ of module | Wahlpflicht / Elective |
| Lehr-/Lernform / Teaching/Learning method | |
| Vorkenntnisse / Previous knowledge | Stochastik I, Statistik I |
| Examination | Time of examination | Type of examination |
| Final exam of module | nach Ende der Vorlesungszeit | KL |
| Course type | Comment | SWS | Frequency | Workload of compulsory attendance |
| Lecture | | 3 | -- | 42 |
| Exercises | | 1 | -- | 14 |
| Total time of attendance for the module | 56 h |
mat839 - Time Series Models resp. State Space Models

<table>
<thead>
<tr>
<th>Module label</th>
<th>Time Series Models resp. State Space Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mat839</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>
| Applicability of the module | • Master’s Programme Environmental Modelling (Master) > Mastermodule
• Master’s Programme Mathematics (Master) > Mastermodule |
| Responsible persons | Christiansen, Marcus (Module responsibility)
May, Angelika (Module responsibility)
Ruckdeschel, Peter (Module responsibility) |
| Prerequisites | - Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Die Studierenden lernen Grundbegriffe der Zeitreihenanalyse kennen, kennen wichtige Modelle und können diese an Daten anpassen.
- Querverbindungen: mat315, mat826 |
| Module contents | als Obermenge zu verstehen; Akzentuierung durch Dozent möglich:
– Autokovarianz und partielle Autokovarianz
– Stationarität und Ergodizität;
– Sätze von Herglotz und Bochner; Spektralmaß eines stationären Prozesses;
– ARIMA Modelle; Zustandsraummodelle; GARCH Modelle
– Schätzung und Inferenz
– Kalman Filter und Glätter; EM-Algorithmus |
Schlittgen, R., Streitberg, B.: Zeitreihenanalyse, Oldenbourg. |
| Links | |
| Languages of instruction | German, English |
| Duration (semesters) | 1 Semester |
| Module frequency | unregelmäßig |
| Module capacity | unlimited |
| Reference text | Studienschwerpunkt: C |
| Modulelevel / module level | MM (Mastermodul / Master module) |
| Modulart / typ of module | Wahlpflicht / Elective |
| Lehr-/Lernform / Teaching/Learning method | |
| Vorkenntnisse / Previous knowledge | Stochastik I, Statistik I |
| Examination | Time of examination
Type of examination |
| Final exam of module | nach Ende der Vorlesungszeit
KL |
| Course type | Comment | SWS | Frequency | Workload of compulsory attendance |
| Lecture | 3 | -- | 42 |
| Exercises | 1 | -- | 14 |
| Total time of attendance for the module | 56 h |
mat843 - Elements of Multivariate Statistics

Module label: Elements of Multivariate Statistics
Module code: mat843
Credit points: 6.0 KP
Workload: 180 h

Applicability of the module:
- Master’s Programme Environmental Modelling (Master) > Mastermodule
- Master’s Programme Mathematics (Master) > Mastermodule

Responsible persons:
- May, Angelika (Module responsibility)
- Christiansen, Marcus (Module responsibility)
- Ruckdeschel, Peter (Module responsibility)

Prerequisites:
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Vernetzung des eigenen mathematischen Wissens durch Herstellung auch inhaltlich komplexer Bezüge zwischen den verschiedenen Bereichen der Mathematik
- Kennenlernen ganzer Theorien und damit verbundene Beherrschung komplexer mathematischer Methoden und Techniken
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschung wichtiger Verfahren und Algorithmen
- Die Studierenden beherrschen die multivariate Normalverteilung, lernen andere multivariate Verteilungen kennen und können Hauptkomponenten- und Faktoranalyse auf Daten anwenden und interpretieren.
- Querverbindungen: mat315, mat810

Module contents:
- als Obermenge zu verstehen; Akzentuierung durch Dozent möglich: Wiederholung: Eigenwertzerlegung, Singulärwertzerlegung;
- Operationen für Multivariate Daten: Selektion und Projektion
- die multivariate Normalverteilung; Eigenschaften
- Verteilungen: Wishart, Wilks Lambda, Hotelling T
- klassische Modelle: Hauptkomponentenanalyse, Faktoranalyse, Diskriminanzanalyse, Clustering, Korrespondenzanalyse, Kanonische Korrelation, Multidimensional Scaling, Conjoint Analyse

Reader's advisory:
Jolliffe, I.: Principal component analysis, Wiley.

Links:
Languages of instruction: German, English
Duration (semesters): 1 Semester
Module frequency: unregelmäßig
Module capacity: unlimited
Reference text: Studienschwerpunkt: C
Modullevel / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective

Vorkenntnisse / Previous knowledge:

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>nach Ende der Vorlesungszeit</td>
<td>KL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>--</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>--</td>
<td>14</td>
</tr>
</tbody>
</table>

Total time of attendance for the module: 56 h
mat847 - Elements of Exploratory Data Analysis, Robust Statistics, and Diagnostics

Module label: Elements of Exploratory Data Analysis, Robust Statistics, and Diagnostics
Module code: mat847
Credit points: 6.0 KP
Workload: 180 h

Applicability of the module:
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Mathematics (Master) > Mastermodule

Responsible persons:
- Christiansen, Marcus (Module responsibility)
- May, Angelika (Module responsibility)
- Ruckdeschel, Peter (Module responsibility)

Prerequisites:
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software
- Beherrschung der Analyse und Komplexität von Algorithmen
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Die Studierenden lernen die zentralen Konzepte, Argumente und Verfahren der explorativen Datenanalyse und der robusten Statistik kennen und können diese in R anwenden.
- Querverbindungen: mat315, mat330, mat350, mat525, mat530

Module contents:
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Fähigkeit zur Anwendung durch Implementierung konkreter Probleme und durch Beherrschung der gängigen Software
- Beherrschung der Analyse und Komplexität von Algorithmen
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Die Studierenden lernen die zentralen Konzepte, Argumente und Verfahren der explorativen Datenanalyse und der robusten Statistik kennen und können diese in R anwenden.
- Querverbindungen: mat315, mat330, mat350, mat525, mat530

Module contents:
- Konzepte der graphischen Datenanalyse
- Konzepte der interaktiven Datenanalyse
- Begriffe, Werkzeuge und Schlussweisen der robusten Statistik
- Umgebungen, Influenzkurve, Maxbiaskurve, Gross Error Sensitivity
- Bruchpunkt, Minimax-Ansätze, Robuste Optimalität
- Beispiele robust Verfahren für Lokation, Skala, Kovarianzen, Regression
- auf robusten Verfahren basierende Diagnostik

Reader's advisory:
Rousseeuw, P.J., Leroy A.M.: Robust regression and outlier detection, Wiley.

Links:

Languages of instruction: German, English
Duration (semesters): 1 Semester
Module frequency: unregelmäßig
Module capacity: unlimited
Reference text: Studien schwerpunkt: C
Modul level / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective

Lehr-/Lernform / Teaching/Learning method:

Vorkenntnisse / Previous knowledge: Stochastik I, Statistik I

Examination:
- Time of examination: nach Ende der Vorlesungszeit
- Type of examination: KL

Final exam of module:
- Course type: Lecture, Exercises
- Comment: SWS, Frequency, Workload of compulsory attendance
- Lecture: 3, 42
- Exercises: 1, 14

Total time of attendance for the module: 56 h
mat849 - Statistical Algorithms

Module label: Statistical Algorithms
Module code: mat849
Credit points: 6.0 KP
Workload: 180 h
Applicability of the module:
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Mathematics (Master) > Mastermodule

Responsible persons:
- Christiansen, Marcus (Module responsibility)
- May, Angelika (Module responsibility)
- Ruckdeschel, Peter (Module responsibility)

Prerequisites:
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch breite, als auch vertiefte Kenntnisse der Reinen und Angewandten Mathematik
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Die Studierenden lernen wichtige Algorithmen und deren Implementation in Standard-Software kennen und können diese anwenden.
- Querverbindungen: mat840, mat705, mat730, mat843

Module contents:
- Systematische Vertiefung und Erweiterung der im Bachelorstudium erlangten Kenntnisse und Fähigkeiten zur Mathematik
- Kennenlernen vertiefter Anwendungen der Mathematik, auch exemplarisch mit Projektcharakter
- Beherrschen wichtiger Verfahren und Algorithmen
- Stärkung des mathematischen Urteilsvermögens und des akademischen Selbstvertrauens durch breite, als auch vertiefte Kenntnisse der Reinen und Angewandten Mathematik
- Erwerb direkt berufsbezogener inhaltlicher und prozessorientierter Kompetenzen
- Die Studierenden lernen wichtige Algorithmen und deren Implementation in Standard-Software kennen und können diese anwenden.
- Querverbindungen: mat840, mat705, mat730, mat843

Reader's advisory:
Efron, B., Tibshirani, R.J.: An introduction to the bootstrap.
Hall, P.: The bootstrap and Edgeworth expansion.
Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning.
Ripley, B.D.: Stochastic Simulation.

Links:
Languages of instruction: German, English
Duration (semesters): 1 Semester
Module frequency: unregelmäßige
Module capacity: unlimited
Reference text: Studienschwerpunkt: C
Modullevel / module level: MM (Mastermodul / Master module)
Modulart / typ of module: Wahlpflicht / Elective

Vorkenntnisse / Previous knowledge:
Stochastik I, Statistik I, Statistik II

Examination:
- Time of examination: nach Ende der Vorlesungszeit
- Type of examination: KL

Final exam of module:
- Course type: Lecture
 - Comment: 3
 - SWS: --
 - Frequency: 42
- Course type: Exercises
 - Comment: 1
 - SWS: --
 - Frequency: 14

Total time of attendance for the module: 56 h
wir808 - Multivariate Statistics

Module label | Multivariate Statistics
Module code | wir808
Credit points | 6.0 KP
Workload | 180 h

Applicability of the module
- Master's Programme Business Administration, Economics and Law (Master) > Basismodule
- Master's Programme Business Administration, Economics and Law (Master) > Mantelmodule (MPO2020)
- Master's Programme Business Administration, Economics and Law (Master) > Schwerpunkt "Volkswirtschaftslehre" (VWL) (MPO2020)
- Master's Programme Business Informatics (Master) > Module der Wirtschafts- und Rechtswissenschaften (Master)
- Master's Programme Computing Science (Master) > Nicht Informatik
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Sustainability Economics and Management (Master) > Basic and Accentuation Modules

Responsible persons
Stecking, Ralf Werner (Module responsibility)
Lehrenden, Die im Modul (Authorized examiners)

Prerequisites

Skills to be acquired in this module
With successful completion of the course, students shall:
- be aware of and be able to evaluate advanced methods of multivariate data analysis.
- be able to select adequate methods in relevant fields of application, like prediction, classification, and segmentation analysis.
- be able to run computer-aided analyses and to interpret the results properly.

Module contents
Various methods of quantitative data analysis such as:
- Linear Regression,
- Logistic Regression,
- Linear Discriminant Analysis,
- Principal Component Analysis,
- Feature selection and evaluation methods.

Reader's advisory

Links
Language of instruction | German
Duration (semesters) | 1 Semester
Module frequency | jährlich
Module capacity | unlimited
Modulart / typ of module | je nach Studiengang Pflicht oder Wahlpflicht

Vorkenntnisse / Previous knowledge
Examination
Time of examination | at the end of the semester
Type of examination | written exam or oral exam
Course type | Comment | SWS | Frequency | Workload of compulsory attendance
Lecture | 2 | 28
Exercises | 2 | 28
Total time of attendance for the module | 56 h
inf005 - Software Engineering I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Software Engineering I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf005</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td></td>
</tr>
<tr>
<td>Bachelor's Programme Business Informatics (Bachelor) > Aufbaucurriculum - Pflichtbereich</td>
<td></td>
</tr>
<tr>
<td>Bachelor's Programme Computing Science (Bachelor) > Aufbaumodule</td>
<td></td>
</tr>
<tr>
<td>Bachelor's Programme Mathematics (Bachelor) > Nebenfachmodule</td>
<td></td>
</tr>
<tr>
<td>Dual-Subject Bachelor's Programme Computing Science (Bachelor) > Aufbaumodule (60 KP)</td>
<td></td>
</tr>
<tr>
<td>Master of Education Programme (Vocational and Business Education) Computing Science (Master of Education) > Pflichtbereich</td>
<td></td>
</tr>
<tr>
<td>Master's Programme Environmental Modelling (Master) > Mastermodule</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsible persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter, Andreas (Module responsibility)</td>
</tr>
<tr>
<td>Lehrenden, Die im Modul (Authorized examiners)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skills to be acquired in this module</td>
</tr>
<tr>
<td>The objective of the module is to convey the development and maintenance of large scale software systems. The complete software developing process including requirements collection, software architecture and quality control is observed. The basics of object oriented modelling and software development are enhanced.</td>
</tr>
</tbody>
</table>

Professional competence

The students:

- comprehend the different developmental phases of software (especially requirements engineering, software design, software implementation and quality control)
- name the tasks of each phase
- select appropriate methodical utilities
- select suitable methods and utilities for each project phase
- understand the advantages of the modelling process with UML
- model moderate tasks in UML
- understand and develop solutions for given problems by means of development environments

Methodological competence

The students:

- structure, document and evaluate problems and solutions with the tools of object oriented modelling
- apply methods and techniques of object oriented modelling purposefully

Social competence

The students:

- create, present and discuss solutions with modelling techniques - present and solve modelling problems in teams

Self-competence

The students: reflect their problem-solving behaviour with regard to the capabilities of software technology

<table>
<thead>
<tr>
<th>Module contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>The module introduces fundamental terms and concepts in software engineering. This includes: - need for software engineering - activities and process-models in software development - object-oriented modelling, meta modelling - Interdependencies between code and models - requirements elicitation - definition of software architectures - application of software patterns - software quality management - software maintenance, evolution and operation Software engineering tools are presented and applied in practical exercises.</td>
</tr>
</tbody>
</table>

Reader's advisory

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
</tbody>
</table>

Modullevel / module level

AC (Aufbaucurriculum / Composition)

Modulart / typ of module

Pflicht / Mandatory

Lehr-/Lernform / Teaching/Learning method

V+Ü

Vorkenntnisse / Previous knowledge

- inf030
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period or during the lecture period (portfolio)</td>
<td>Written exam or oral exam or portfolio (≥ 3 services)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>WiSe</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module: 70 h
inf006 - Software Engineering II

Module label: Software Engineering II
Module code: inf006
Credit points: 6.0 KP
Workload: 180 h

Applicability of the module
- Bachelor's Programme Business Informatics (Bachelor) > Akzentsetzungsbereich Praktische Informatik und Angewandte Informatik
- Bachelor's Programme Computing Science (Bachelor) > Akzentsetzungsbereich - Wahlbereich Informatik
- Master of Education Programme (Gymnasium) Computing Science (Master of Education) > Wahlpflichtmodule (Praktische Informatik)
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Praktische Informatik
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons
Winter, Andreas (Module responsibility)
Lehrenden, Die im Modul (Authorized examiners)

Prerequisites

Skills to be acquired in this module
The objective of the module inf005 Software Engineering II is to deepen the subjects and skills of the module Software Engineering I. Special software engineering topics will be presented, deepened and discussed. The lecture deals with different software engineering methods and technology which will be discussed in the seminar. The discussions are contextualised by scientific research projects, practical projects and latest research findings.

Professional competence
The students:
- Deepen software engineering methods and techniques
- Use specific software engineering methods and techniques
- Differentiate developmental techniques of software systems
- Discuss software engineering topics
- Design software systems by using appropriate methods
- Solve software engineering problems independently
- Reflect self-designed software engineering solutions critically and present them appropriately

Methodological competence
The Students:
- Structure problems with modelling techniques
- Develop actual methods of software engineering
- Present software engineering solutions
- Write scientific papers independently

Social competence
The Studentis:
- Explain and discuss software development solutions in their practical use
- Accept criticism and see it as an asset

Self-competence
The Students:
- Reflect their problem-solving behaviour with regard to the possibilities of software technology
- Internalize the presented developmental methods and integrate them in their own actions

Module contents
The following subjects are provided:
- Concept of systems
- Iterative and agile process models of software development
- System development and cost estimation
- Methods, techniques and tools to collect requirements
- Techniques to develop and describe software architecture
- Measurement and evaluation of software systems
- Extended techniques of modelling, meta-modelling, domain specific languages
• Model based development
• Methods and techniques of software evolution

Reader's advisory

• Jochen Ludewig, Horst Lichter: Software Engineering, dpunkt.verlag, 3. Auflage 2013
• Helmut Balzert: Lehrbuch der Software-Technik, Spektrum Akademischer Verlag, 3. Auflage 2009
• Chris Rupp, Stefan Queins: UML 2 glasklar. Praxiswissen für die UML-Modellierung, Carl Hanser Verlag, 4. Auflage 2012

and actual papers from IEEE Software, IEEE Transactions on Software-Engineering, Informatik-Spektrum and conferences (z.B. ICSE, ICSM, WCRE, CSMR, ICPC, SLE, u.a.)

Links

Language of instruction German
Duration (semesters) 1 Semester
Module frequency jährlich
Module capacity unlimited
Module level / module level AS (Akzentsetzung / Accentuation)
Modulart / typ of module je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method V+S

Vorkenntnisse / Previous knowledge Softwaretechnik I

Examination Time of examination Type of examination
Final exam of module At the end of the lecture period Portfolio (30-minute presentation, 1 paper (4 pages, IEEE) and oral exam)

Course type Comment SWS Frequency Workload of compulsory attendance
Lecture 2 SuSe 28
Seminar 2 SuSe 28

Total time of attendance for the module 56 h
inf501 - Environmental Information Systems

Module label: Environmental Information Systems
Module code: inf501
Credit points: 6.0 KP
Workload: 180 h

Applicability of the module:
- Master Applied Economics and Data Science (Master) > Data Science
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodul der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Sustainability Economics and Management (Master) > Additional Modules

Responsible persons:
- Vogel-Sonnenschein, Ute (Module responsibility)
- Lehrende, Die im Modul (Authorized examiners)

Prerequisites:
The module gives an overview of the phases and important aspects of the environmental information processing. **Professional competence** The students: - apply basic processing algorithms to classify and process data - compare, evaluate and design data structures to store spatial data efficiently - apply basic functions of a geo-information system - describe, evaluate and apply basic processes of data mining - describe, evaluate and apply basic geostatistics processes - evaluate and apply multicriteria decision making processes

Methodological competence The students: - use geoinformation systems for environmental application - use data mining tools for data analysis **Social competence** The students: - present and discuss their solutions in class **Self-competence** The students: - reflect their own behaviour with regard to the methods of environmental informatics

Module contents:
Content of the Module: Environmental information systems make information about the general environmental state available for public management and public facilities, enterprises or interested citizens. The collection, storage and evaluation of this information is interesting for computer science. Within the scope of the lecture we will examine the processing of environmental information step-by-step, this means: - problems of data acquisition and data processing, - data structures and database concepts for an efficient access to (usually) spatial data, - introduction of data analysis (in particular from geostatistics and data mining), - introduction of multicriteria decision processes, as well as - the supply of data supported by meta data. The module "Umweltinformationssysteme" is accompanied by the module "Modellbildung in Simulation ökologischer Systeme". The subjects of "Modellbildung in Simulation ökologischer Systeme" represent the dynamic aspects of environmental systems (mainly of ecological systems). Nevertheless, the modules can be taken independently from each other.

Reader's advisory:

Links:
Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: jährlich
Module capacity: unlimited
Reference text: Associated with the module: - inf500 Modellbildung. und Sim. ökol. Systeme

Modulelevel / module level:
Modulart / typ of module:
Vorkenntnisse / Previous knowledge:
- Datenbanken
- Grundlagen der Statistik/Stochastik

Examination:
Time of examination: Second and third week after the end of the lecture period - retake before the upcoming lecture period
Type of examination: Practical exercises and oral examination or portfolio

Final exam of module:

Course type: Lecture, Exercises
Comment: 3
SWS: 3
Frequency: SuSe
Workload of compulsory attendance: 42
Frequency: 1
SWS: 1
Workload of compulsory attendance: 14

Total time of attendance for the module: 56 h

112 / 135
inf510 - Energy Information Systems

Module label
Energy Information Systems

Module code
inf510

Credit points
6.0 KP

Workload
180 h

Applicability of the module
- Master Applied Economics and Data Science (Master) > Specialization
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons
Lehnhoff, Sebastian (Module responsibility)
Lehrenden, Die im Modul (Authorized examiners)

Prerequisites
The students will learn different approaches to integrate distributed facilities, the regulatory framework, relevant standards and architecture concepts of energy management systems and will be able to apply this knowledge.

Skills to be acquired in this module

Professional competence
The students:
- develop and evaluate IT-architectures for energy management systems
- model objects of this domain appropriately
- model energy information systems
- realise and differentiate advanced tasks of decentralised energy management systems

Methodological competence
The students:
- identify problems of energy management, analyse these problems systematically and provide solutions
- apply different simulation approaches of decentralised plants and consumers

Social competence
The students:
- discuss solutions for energy management systems in the group
- develop use cases in teams
- present self-developed solutions

Self-competence
The students:
- reflect their actions with regard to structuring and decomposing systems
- reflect their own use of power as a limited resource

Module contents
This module provides the computer science basics for energy management. It provides the requirements of energy supply information systems with the focus on technical components and the requirements of decentralised and renewable energy plants.

These are:
- Architectures for energy information systems, e.g. SOA, Seamless Integration Architecture (IEC TC 57), OPC-UA
- Norms and standards of energy industry data models (CIM, 61850)
- Systematisation of energy information system requirements based on ontologies
- Development, analysis and adaption of energy industry reference models and processes
- Methods and technologies to support energy industry processes
- Methods and algorithms to support decision processes of the decentralised energy plants control
- Smart Grid plant communication, particularly for load management
- Methods for modelling and simulation of power supply system dynamics

Reader's advisory
- Crastan V.: "Elektrische Energieversorgung II", Springer 2004
<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
<tr>
<td>Modullevel / module level</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehr-/Lernform / Teaching/Learning method</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vorkenntnisse / Previous knowledge</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Final exam of module</th>
</tr>
</thead>
<tbody>
<tr>
<td>At the end of the semester</td>
</tr>
<tr>
<td>Student research project or presentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total time of attendance for the module</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
</tr>
</tbody>
</table>
inf511 - Smart Grid Management

<table>
<thead>
<tr>
<th>Module label</th>
<th>Smart Grid Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf511</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Engineering Physics (Master) > Schwerpunkt: Renewable Energies
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Sustainable Renewable Energy Technologies (Master) > Mastermodule

Responsible persons
Lehnhoff, Sebastian (Module responsibility)
Lehrenden, Die im Modul (Authorized examiners)

Prerequisites

Skills to be acquired in this module
After successful completion of the course the students should be able to understand the existing structures and technical basis of energy systems to produce, transfer and distribute electricity and their interaction and dependency on each other. They should have developed an understanding for necessary IT- and process control technology components, methods and processes to control and operate electrical energy systems. The students are able to estimate and evaluate the requirements and challenges of ICT and computer science which are caused by the development and integration of unforeseeable fluctuations of decentralised plants.

The students will be able to estimate the influence of distributed control concepts and algorithms for decentralised plants and consumers in the so called Smart Grid energy systems. Regarding the requirements the students will be able to analyse the safety, reliability, realtime capability and flexibility of Smart Grid energy systems.

Professional competence
The students:
- understand the existing structures and the technical basis of energy systems producing, transferring and distributing electricity and their interaction and dependency on each other.
- develop an understanding for necessary IT- and process control technology components, methods and processes to control and operate electrical energy systems.
- estimate and evaluate the requirements and challenges of ICT and computer science which are caused by the development and integration of unforeseeable fluctuations of decentralised plants.
- estimate the influence of distributed control concepts and algorithms for decentralised plants and consumers in the so called Smart Grid energy systems.

Methodological competence
The students:
- analyse the safety, reliability, realtime capability and flexibility of Smart Grid energy systems
- use advanced mathematical methods to calculate networks

Social competence
The students:
- create solutions in small teams
- discuss their solutions

Self-competence
The students:
- reflect their own use of electricity as a limited resource

Module contents
Content of the Module: In this course information technology, economical energy industry and technical basic knowledge and methods are analysed by using concrete Smart Grid approaches. The basic calculation methods for an intelligent grid management are introduced.

This module deals with the technical and economical framework for a permissable electrical network as well as mathematical modelling and calculation methods to analyse conditions of electrical energy networks (in stationary conditions). These are:
• The organisation of the EU energy market (regulatory framework, responsibility in liberalisation of electrical energy systems)
• Establishment and operation of electrical energy supply networks (network topology, statutory duties of supply, supply quality/system services, malfunctions and protection systems)
• Network calculation (complex vector representation, effective/idle power, mathematical performance models/net model, transformation: node performance to node voltage and electricity, calculation of conductive current, current flow, fix-point-iteration, Newton-Raphson-Method, voltage drop, transformer model)
• Intelligent network management (Smart Grids), aggregation forms, machine learning approaches)

Reader's advisory

Suggested reading:

• Crastan V.: "Elektrische Energieversorgung II", Springer 2004
• Konstantin, P.: "Praxisbuch Energiewirtschaft", Springer 2006
• Schwab, A.: "Elektroenergiesysteme, Springer 2009"

Links

<table>
<thead>
<tr>
<th>Language of instruction</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
<td>V+Ü</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the semester</td>
<td>Oral exam</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>3</td>
<td>SuSe</td>
<td>42</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>1</td>
<td>SuSe</td>
<td>14</td>
</tr>
<tr>
<td>Total time of attendance for the module</td>
<td></td>
<td>56 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
inf535 - Computational Intelligence I

Module label: Computational Intelligence I
Module code: inf535
Credit points: 6.0 KP
Workload: 180 h

Applicability of the module:
- Master Applied Economics and Data Science (Master) > Data Science
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodul der Informatik
- Master's Programme Computing Science (Master) > angewandte Informatik
- Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
- Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons:
Kramer, Oliver (Module responsibility)
Lehrenden, Die im Modul (Authorized examiners)

Prerequisites

Skills to be acquired in this module:

Professional competence:
The students:
- recognise optimisation problems
- implement simple algorithms of heuristic optimisation
- critically discuss solutions and selection of methods
- deepen previous knowledge of analysis and linear algebra

Methodological competence:
The students:
- deepen programming skills
- apply modelling skills
- learn about the relation between problem class and method selection

Social competence:
The students:
- cooperatively implement content introduced in lecture
- evaluate own solutions and compare them with those of their peers

Self-competence:
The students:
- evaluate own skills with reference to peers
- realize personal limitations
- adapt own problem solving approaches with reference to required method competences

Module contents:
Computational Intelligence comprises intelligent and adaptive methods for optimisation and learning. The module "Computational Intelligence I" concentrates on methods for evolutionary optimisation and heuristic approaches. The exercises introduce and deepen practical aspects of the implementation and algorithmic design, also taking into account application aspects.

Overview of Content:
- foundations of optimisation
- genetic algorithms and evolution strategies
- parameter control and self-adaptation
- runtime analysis
- swarm algorithms
- constrained optimisation
- multi-objective optimisation
- meta-modelling

Reader's advisory
Links

<table>
<thead>
<tr>
<th>Languages of instruction</th>
<th>English, German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration (semesters)</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Module frequency</td>
<td>jährlich</td>
</tr>
<tr>
<td>Module capacity</td>
<td>unlimited</td>
</tr>
<tr>
<td>Module level / module level</td>
<td>AS (Akzentsetzung / Accentuation)</td>
</tr>
<tr>
<td>Module type / typ of module</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
</tbody>
</table>

Vorkenntnisse / Previous knowledge
- Grundlagen der Statistik

Final exam of module
- At the end of the lecture period
- Written or oral exam

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module
- 56 h
inf536 - Computational Intelligence II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Computational Intelligence II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf536</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td></td>
</tr>
</tbody>
</table>
 - Master Applied Economics and Data Science (Master) > Data Science
 - Master's Programme Business Informatics (Master) > Akzentsetzungmodule der Informatik
 - Master's Programme Computing Science (Master) > Angewandte Informatik
 - Master's Programme Engineering of Socio-Technical Systems (Master) > Embedded Brain Computer Interaction
 - Master's Programme Engineering of Socio-Technical Systems (Master) > Human-Computer Interaction
 - Master's Programme Environmental Modelling (Master) > Mastermodule

<table>
<thead>
<tr>
<th>Responsible persons</th>
<th>Kramer, Oliver (Module responsibility)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lehrenden, Die im Modul (Authorized examiners)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Skills to be acquired in this module</th>
</tr>
</thead>
</table>

In the lecture "Convolutional Neural Networks" you will learn the basics of Convolutional Neural Networks, from methodological understanding to implementation.

Professional competence
Students will learn Deep Learning expertise, which are essential qualifications as AI experts and Data Scientists.

Methodological competence
Students learn the methods mentioned as well as the implementation in Python, NymPy and Keras.

Social competence
Students are encouraged to discuss the taught content in groups and work together to implement the programming tasks in the exercises.

Self-competence
Students are guided to conduct independent research on advanced methods as the teaching field changes dynamically.

<table>
<thead>
<tr>
<th>Module contents</th>
</tr>
</thead>
</table>

Students learn the basics of machine learning and in particular the topics of dense layers, cross-entropy, backpropagation, SGD, momentum, Adam, batch normalization, regularization, convolution, pooling, ResNet, DenseNet, and convolutional SOMs.

<table>
<thead>
<tr>
<th>Reader's advisory</th>
</tr>
</thead>
</table>

Deep Learning by Aaron C. Courville, Ian Goodfellow und Yoshua Bengio

<table>
<thead>
<tr>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language of instruction</td>
</tr>
<tr>
<td>Duration (semesters)</td>
</tr>
<tr>
<td>Module frequency</td>
</tr>
<tr>
<td>Module capacity</td>
</tr>
<tr>
<td>Module level / module level</td>
</tr>
<tr>
<td>Modulart / typ of module</td>
</tr>
<tr>
<td>Lehr-/Lernform / Teaching/Learning method</td>
</tr>
</tbody>
</table>
| Vorkenntnisse / Previous knowledge | - inf535 Computational Intelligence I
 - Statistik |
<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>lecture-free period at the end of the semester</td>
<td>Written</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module: 56 h
inf651 - Environmental Management Information Systems I

<table>
<thead>
<tr>
<th>Module label</th>
<th>Environmental Management Information Systems I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf651</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Business Administration, Economics and Law (Master) > Schwerpunktmodule NM - interdisziplinär
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Environmental Modelling (Master) > Mastermodule
- Master's Programme Sustainability Economics and Management (Master) > Additional Modules

Responsible persons
Marx Gomez, Jorge (Module responsibility)
Lehrenden, Die im Modul (Authorized examiners)

Prerequisites
This module completes the knowledge and abilities gained in the field of Environmental Informatics and it creates a strong reference to up to date topics in the field of sustainability. The content taught in this module can directly be applied in an upcoming study and professional career.

Skills to be acquired in this module

Professional competence
The students:
- are able to classify and explain the sustainability paradigm
- are aware of the current status of sustainability reporting
- are able to define and to model material flows
- have obtained know-how in the field of corporate environmental management information systems (CEMIS)

Methodological competence
The students:
- implement CEMIS
- apply different techniques and methods to case studies
- develop new case studies in teams

Social competence
The students:
- are supposed to work in teams and therefore have to identify working packages and have to take on responsibility for the jobs assigned to them
- present and discuss their own results with the team and the other members of the course

Self-competence
The students:
- learn about their own limitations and learn to accept criticism in order to strengthen their own abilities

Module contents
This course teaches methods, approaches and techniques in the field of information processing in order to support solutions to problems that arise from companies' impact on the environment. In particular, ICT supported approaches of production-integrated environmental protection, environmental controlling and reporting are introduced and discussed. In order to enable the integration of such approaches into environmental protection, environmental management and its systems are taught as well.

The content in detail:
- environmental management as a basis for sustainability
- sustainability and material flow management
- strategic environmental management
- eco-controlling life cycle
- characteristics and system architectures of CEMIS
- standard software systems
- environmental accounting systems
Reader's advisory

Links
http://www.wi-ol.de

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
jährlich

Module capacity
unlimited

Modullevel / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
je nach Studiengang Pflicht oder Wahlpflicht

Lehr-/Lernform / Teaching/Learning method
V+Ü

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>At the end of the lecture period</td>
<td>exercises and written exam (max. 120 min.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>SuSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module
56 h
inf659 - Environmental Management Information Systems II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Environmental Management Information Systems II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf659</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Applicability of the module</td>
<td>Master's Programme Business Administration, Economics and Law (Master) > Schwerpunktmodule NM - interdisziplinär</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Computing Science (Master) > Angewandte Informatik</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Environmental Modelling (Master) > Mastermodule</td>
</tr>
<tr>
<td></td>
<td>Master's Programme Sustainability Economics and Management (Master) > Additional Modules</td>
</tr>
</tbody>
</table>

Responsible persons

Marx Gomez, Jorge (Module responsibility)

Lehrenden, Die im Modul (Authorized examiners)

Prerequisites

Skills to be acquired in this module

This course aims at examining emerging research questions in the field of corporate environmental management information systems (CEMIS). After finishing this course, the students will have extensive knowledge regarding Business Environmental Informatics. In addition, they will be aware of recent research topics and challenges as well as relevant software solutions and practical projects.

Professional competence

The students:

- will obtain extensive knowledge in the field of CEMIS
- know emerging research questions and challenges as well as software solutions and projects

Methodological competence

The students:

- find their own solutions or apply already existing approaches to new and unsolved questions in the field of CEMIS
- capture required data, analyse it and present it to their team or the whole group

Social competence

The students:

- are supposed to work in teams and therefore have to identify working packages and have to take on responsibility for the jobs assigned to them
- present and discuss their own results with the team and the other members of the course

Self-competence

The students:

- learn about their own limitations and learn to accept criticism in order to strengthen their own abilities

Module contents

A strong social pressure forces enterprises to question their current way of implementing their business and to include different aspects of sustainability into their strategies and operational actions. Such a rethinking of one's business is supported by corporate environmental management information systems. Such systems aim at optimising the energy and resource usage, emission and waste minimisation as well as production integrated environmental protection. Of course they support the fulfillment of legal requirements such as waste management or hazardous material handling.

The module will cover:

- recent and emerging research questions and topics related to the field of CEMIS as well as Business Environmental Informatics.
- discussion and hands-on experience of standard software systems and newly established solutions.
- applying the knowledge obtained to the definition of new as well as on solving new case studies.

Reader's advisory

Marx Gómez, Jorge, Scholtz, Brenda (Eds.) (2016): Information Technology in Environmental Engineering. Springer International Publishing

Hershey (PA), London

- Rautenstrauch, C. (1999), Betriebliche Umweltinformationssysteme, Springer-Verlag

Links http://www.wi-ol.de
Languages of instruction German, English
Duration (semesters) 1 Semester
Module frequency jährlich
Module capacity unlimited
Reference text Type and language of program will be announced prior to the beginning of the course
Modullevel / module level AS (Akzentsetzung / Accentuation)
Modulart / typ of module je nach Studiengang Pflicht oder Wahlpflicht
Lehr-/Lernform / Teaching/Learning method V (2 SWS), Ü (2 SWS) oder SE
Nach Ankündigung zu Beginn der Veranstaltung (2SWS V + 2 SWS Ü oder Blockseminar)

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Examination</th>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam of module</td>
<td>Usually 2 weeks after the end of the lecture period</td>
<td>Seminar paper and presentation or term paper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course type</th>
<th>Comment</th>
<th>SWS</th>
<th>Frequency</th>
<th>Workload of compulsory attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
<td>2</td>
<td>WiSe</td>
<td>28</td>
</tr>
</tbody>
</table>

Total time of attendance for the module 56 h
inf810 - Special Topics in Computer Science I

Module label: Special Topics in Computer Science I
Module code: inf810
Credit points: 6.0 KP
Workload: 180 h

Applicability of the module:
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons:
Marx Gomez, Jorge (Module responsibility)
Fränzle, Martin Georg (Module responsibility)
Lehrenden, Die im Modul (Authorized examiners)

Prerequisites:

Skills to be acquired in this module:
This module integrates current computer science developments into the business informatics program by appropriate study courses.

Professional competence
The students:
- Know recent technological or scientific computer science developments
- Transfer computer science methods and development models to IT application area requirements
- Evaluate the possibilities and limitations of computer science methods and tools and apply them appropriately

Methodological competence
The students:
- Review problems, formulate them with formal models and explore them appropriately
- Identify and present (one or more) computer science problem solutions
- Select and evaluate appropriate tools and methods
- Examine problems with technical and scientific literature

Social competence
The students:
- work in a team

Self-competence:
The Students:
- Plan their informatical actions independently

Module contents:
According to the assigned task

Reader's advisory:
According to the assigned task

Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: Sommer und Winter
Module capacity: unlimited
Modulart / typ of module: Wahlmodul / Opportunity
Lehr-/Lernform / Teaching/Learning method: 4 aus V, Ü, S, P, PR

Vorkenntnisse / Previous knowledge:
Examination:
Time of examination:
Type of examination: Exercises or presentation or oral exam or written exam

Course type: Course selection

SWS: 2
Frequency: SoSe oder WiSe
| Workload attendance | 28 h |
inf811 - Special Topics in Computer Science II

<table>
<thead>
<tr>
<th>Module label</th>
<th>Special Topics in Computer Science II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>inf811</td>
</tr>
<tr>
<td>Credit points</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons
- Marx Gomez, Jorge (Module responsibility)
- Fränzle, Martin Georg (Module responsibility)
- Lehrenden, Die im Modul (Authorized examiners)

Prerequisites

Skills to be acquired in this module
This module integrates current computer science developments into the business informatics program, especially considering the selected focus area, by appropriate study courses.

Professional competence
- The students:
 - Know recent technological or scientific computer science developments
 - Transfer computer science methods and development models to IT application area requirement
 - Evaluate the possibilities and limitations of computer science methods and tools and apply them appropriately

Methodological competence
- The students:
 - Review problems, formulate them with formal models and explore them appropriately
 - Identify and present (one or more) computer science problem solutions
 - Select and evaluate appropriate tools and methods
 - Examine problems with technical and scientific literature

Social competence
- The students:

Self-competence:
- The Students:
 - Plan their informational actions independently

Module contents
According to the assigned task

Reader's advisory
According to the assigned task

Language of instruction
German

Duration (semesters)
1 Semester

Module frequency
Sommer und Winter

Module capacity
unlimited

Module level / module level
AS (Akzentsetzung / Accentuation)

Modulart / typ of module
Wahlmodul / Opportunity

Lehr-/Lernform / Teaching/Learning method
4 aus V, Ü, S, PR

Vorkenntnisse / Previous knowledge

Examination
<table>
<thead>
<tr>
<th>Time of examination</th>
<th>Type of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exercises or presentation or oral exam or written exam</td>
</tr>
</tbody>
</table>

Final exam of module

Course type
Course selection

<table>
<thead>
<tr>
<th>SWS</th>
<th>Frequency</th>
<th>Workload attendance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>SoSe oder WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>
inf812 - Current Topics in Computer Science I

<table>
<thead>
<tr>
<th>Module code</th>
<th>inf812</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points</td>
<td>3.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>90 h</td>
</tr>
</tbody>
</table>
| Applicability of the module | Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
Master's Programme Computing Science (Master) > Angewandte Informatik
Master's Programme Environmental Modelling (Master) > Mastermodule |
| Responsible persons | Lehrenden, Die im Modul (Authorized examiners)
Marx Gomez, Jorge (Module responsibility)
Fränzle, Martin Georg (Module responsibility) |
| Prerequisites | This module integrates current computer science developments into the business informatics program by appropriate study courses. |
| Skills to be acquired in this module | Professional competence
The students:
Know recent technological or scientific computer science developments
Transfer computer science methods and development models to IT application area requirements
Evaluate the possibilities and limitations of computer science methods and tools and apply them appropriately
Methodological competence
The students
Review problems, formulate them with formal models and explore them appropriately
Identify and present (one or more) computer science problem solutions
Select and evaluate appropriate tools and methods
Examine problems with technical and scientific literature
Social competence
The students:
work in a team
Self-competence:
The Students:
Plan their informatical actions independently |
| Module contents | According to the assigned task | |
| Reader's advisory | According to the assigned task |
| Language of instruction | German |
| Duration (semesters) | 1 Semester |
| Module frequency | Sommer und Winter |
| Module capacity | unlimited |
| Module level / module level | AS (Akzentsetzung / Accentuation) |
| Modulart / typ of module | Wahlmodul / Opportunity |
| Lehr-/Lernform / Teaching/Learning method | 2 aus V, Ü, S, P, PR |
| Vorkenntnisse / Previous knowledge | |
| Examination | Time of examination | Type of examination |
| Final exam of module | Exercises or presentation or oral exam or written exam |
| Course type | Course selection |
| SWS | 2 |
| Frequency | SoSe oder WiSe |
| Workload attendance | 28 h |
inf813 - Current Topics in Computer Science II

Module label: Current Topics in Computer Science II
Module code: inf813
Credit points: 3.0 KP
Workload: 90 h

Applicability of the module:
- Master's Programme Business Informatics (Master) > Akzentsetzungsmodule der Informatik
- Master's Programme Computing Science (Master) > Angewandte Informatik
- Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons:
Lehrenden, Die im Modul (Authorized examiners)
- Marx Gomez, Jorge (Module responsibility)
- Fränzle, Martin Georg (Module responsibility)

Prerequisites:
This module integrates current computer science developments into the business informatics program, especially considering the selected focus area, by appropriate study courses.

Professional competence:
The students:
- Know recent technological or scientific computer science developments
- Transfer computer science methods and development models to IT application area requirements
- Evaluate the possibilities and limitations of computer science methods and tools and apply them appropriately

Methodological competence:
The students:
- Review problems, formulate them with formal models and explore them appropriately
- Identify and present (one or more) computer science problem solutions
- Select and evaluate appropriate tools and methods
- Examine problems with technical and scientific literature

Social competence:
The students:
- work in a team

Self-competence:
The Students:
- Plan their informatical actions independently

Module contents:
According to the assigned task

Reader's advisory:
According to the assigned task

Links:

Language of instruction: German
Duration (semesters): 1 Semester
Module frequency: Sommer und Winter
Module capacity: unlimited
Modullevel / module level: AS (Akzentsetzung / Accentuation)
Modulart / typ of module: Wahlmodul / Opportunity
Lehr-/Lernform / Teaching/Learning method: 2 aus V, Ü, S, P, PR

Vorkenntnisse / Previous knowledge:

Examination:
Time of examination:
Type of examination:
Final exam of module: Exercises or presentation or oral exam or written exam

Course type:
Course selection

SWS:
2
Frequency:
SoSe oder WiSe
Workload attendance:
28 h
inf980 - Introduction to Computer Science for Natural Science Students

Module label
Introduction to Computer Science for Natural Science Students

Module code
inf980

Credit points
6.0 KP

Workload
180 h

Applicability of the module
- Bachelor's Programme Biology (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Biology (Bachelor) > Säule "Überfachliche Professionalisierung"
- Bachelor's Programme Business Administration and Law (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Business Administration and Law (Bachelor) > Säule "Überfachliche Professionalisierung"
- Bachelor's Programme Business Informatics (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Chemistry (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Chemistry (Bachelor) > Säule "Überfachliche Professionalisierung"
- Bachelor's Programme Comparative and European Law (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Comparative and European Law (Bachelor) > Säule "Überfachliche Professionalisierung"
- Bachelor's Programme Computing Science (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Computing Science (Bachelor) > Säule "Überfachliche Professionalisierung"
- Bachelor's Programme Economics and Business Administration (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Economics and Business Administration (Bachelor) > Säule "Überfachliche Professionalisierung"
- Bachelor's Programme Education (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Education (Bachelor) > Säule "Überfachliche Professionalisierung"
- Bachelor's Programme Engineering Physics (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Engineering Physics (Bachelor) > Säule "Überfachliche Professionalisierung"
- Bachelor's Programme Environmental Science (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Environmental Science (Bachelor) > Säule "Überfachliche Professionalisierung"
- Bachelor's Programme Intercultural Education and Counselling (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Intercultural Education and Counselling (Bachelor) > Säule "Überfachliche Professionalisierung"
- Bachelor's Programme Mathematics (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Mathematics (Bachelor) > Säule "Überfachliche Professionalisierung"
- Bachelor's Programme Physics (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Physics (Bachelor) > Säule "Überfachliche Professionalisierung"
- Bachelor's Programme Physics, Engineering and Medicine (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Physics, Engineering and Medicine (Bachelor) > Säule "Überfachliche Professionalisierung"
- Bachelor's Programme Social Studies (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Social Studies (Bachelor) > Säule "Überfachliche Professionalisierung"
- Bachelor's Programme Sustainability Economics (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Bachelor's Programme Sustainability Economics (Bachelor) > Säule "Überfachliche Professionalisierung"
- Dual-Subject Bachelor's Programme Art and Media (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Dual-Subject Bachelor's Programme Art and Media (Bachelor) > Säule "Überfachliche Professionalisierung"
- Dual-Subject Bachelor's Programme Biology (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Dual-Subject Bachelor's Programme Biology (Bachelor) > Säule "Überfachliche Professionalisierung"
- Dual-Subject Bachelor's Programme Chemistry (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
- Dual-Subject Bachelor's Programme Chemistry (Bachelor) > Säule "Überfachliche Professionalisierung"
• Dual-Subject Bachelor's Programme Computing Science (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Computing Science (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Dutch Linguistics and Literary Studies (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Dutch Linguistics and Literary Studies (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Economic Education (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Economic Education (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Economics and Business Administration (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Economics and Business Administration (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Education (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Education (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Elementary Mathematics (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Elementary Mathematics (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme English Studies (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme English Studies (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Gender Studies (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Gender Studies (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme General Education (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme General Education (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme German Studies (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme German Studies (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme History (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme History (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Material Culture: Textiles (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Material Culture: Textiles (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Mathematics (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Mathematics (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Music (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Music (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Philosophy / Values and Norms (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Philosophy / Values and Norms (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Physics (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Physics (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Politics-Economics (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Politics-Economics (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Protestant Theology and Religious Education (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Protestant Theology and Religious Education (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Slavic Studies (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Slavic Studies (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Special Needs Education (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Social Studies (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
• Dual-Subject Bachelor's Programme Social Studies (Bachelor) > Säule “Überfachliche Professionalisierung”
• Dual-Subject Bachelor's Programme Special Needs Education (Bachelor) > PP “Medieninformatik für Studierende musisch-künstlerischer Fächer”
Dual-Subject Bachelor's Programme Special Needs Education (Bachelor) > Säule "Überfachliche Professionalisierung"
Dual-Subject Bachelor's Programme Sport Science (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
Dual-Subject Bachelor's Programme Sport Science (Bachelor) > Säule "Überfachliche Professionalisierung"
Dual-Subject Bachelor's Programme Technology (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
Dual-Subject Bachelor's Programme Technology (Bachelor) > Säule "Überfachliche Professionalisierung"
Fach-Bachelor Pädagogisches Handeln in der Migrationsgesellschaft (Bachelor) > PP "Medieninformatik für Studierende musisch-künstlerischer Fächer"
Fach-Bachelor Pädagogisches Handeln in der Migrationsgesellschaft (Bachelor) > Säule "Überfachliche Professionalisierung"
Master Applied Economics and Data Science (Master) > Data Science
Master's Programme Environmental Modelling (Master) > Mastermodule

Responsible persons
Vogel-Sonnenschein, Ute (Module responsibility)
Vogel-Sonnenschein, Ute (Authorized examiners)
Lehrenden, Die im Modul (Authorized examiners)

Prerequisites
Diese Modul wendet sich an Studierende in Studiengängen außerhalb der Informatik. Studierende des Departments für Informatik der Bachelor- und Master-Studiengänge Informatik und Wirtschaftsinformatik gehören nicht zur Zielgruppe.

Skills to be acquired in this module

Module contents
- Computer representation of information
- formal languages, grammar and automata
- basic data structures;
- problem solving paradigms, algorithms and complexity;
- programming in the small (Language: Python)
- basic concepts of data bases

Reader's advisory
see literature lists in StudIP

Links
Languages of instruction
German, English
Duration (semesters)
1 Semester
Module frequency
jeweils im Wintersemester
Module capacity
unlimited
Reference text

Modullevel / module level
PB (Professionalisierungsbereich / Professionalization)
Modulart / typ of module
Ergänzung/Professionalisierung
Lehr-/Lernform / Teaching/Learning method
1V+ 1Ü

Vorkenntnisse / Previous knowledge
Kenntnisse einer Programmiersprache sind nützlich, aber nicht zwingend notwendig. Sie können auch begleitend erworben werden.

Examination
Time of examination
Type of examination
Final exam of module
written or oral exam
2 weeks after the end of the lecture

Course type
Lecture
Exercises

Comment

SWS
3
1

Frequency
WiSe
WiSe

Workload of compulsory attendance
42
14

Total time of attendance for the module
56 h
Abschlussmodul

mam - Master´s Thesis Module

<table>
<thead>
<tr>
<th>Module label</th>
<th>Master´s Thesis Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module code</td>
<td>mam</td>
</tr>
<tr>
<td>Credit points</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
<tr>
<td></td>
<td>(Kontaktzeit: 56 Stunden, Selbststudium: 844 Stunden)</td>
</tr>
</tbody>
</table>

Applicability of the module
- Master's Programme Environmental Modelling (Master) > Abschlussmodul

Responsible persons
- Feudel, Ulrike (Module responsibility)
- Umweltmodellierung, Lehrende (Module counselling)

Prerequisites
Regelungen gem. Prüfungsordnung

Skills to be acquired in this module

Module contents
Die Inhalte sind variabel und betreffen aktuelle Forschungsfragen, die auf hohem wissenschaftlichen Niveau bearbeitet werden.

Reader's advisory
Wechselnd in Abhängigkeit der spezifischen Themenstellung. Neben der Literatur sind in der Regel auch weitere Informationsquellen zu erschließen und auszuwerten

Links
- German, English

Duration (semesters)
1 Semester

Module frequency
unlimited

Modullevel / module level
MM (Mastermodul / Master module)

Modulart / typ of module
- Master-Arbeit
- Seminar zur Master-Arbeit

Vorkenntnisse / Previous knowledge
Kenntnisse in Modellierungstechniken

Examination
Time of examination
G

Course type
Seminar

SWS

Frequency

Workload attendance
0 h