Modulhandbuch Neurocognitive Psychology - Master-Studiengang

Mastermodule

psy110 - Research methods

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Research methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy110</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
</tbody>
</table>

Verwendet in Studiengängen: Master Neurocognitive Psychology (Master) > Mastermodule

Ansprechpartner/-in: Modulverantwortung
Andrea Hildebrandt

Teilnahmevoraussetzungen: Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele:
Goals of module:
Students will acquire basic knowledge in planning empirical investigations, managing and understanding quantitative data and conducting a wide variety of multivariate statistical analyses. They will learn how to use the statistical methodology in terms of good scientific practice and how to interpret, evaluate and synthesize empirical results from the perspective of statistical modeling and statistical learning in basic and applied research context. The courses in this module will additionally point out statistical misconceptions and help students to overcome them.

Competencies:
++ interdisciplinary knowledge & thinking
++ statistics & scientific programming
++ data presentation & discussion
+ independent research
+ scientific literature
++ ethics / good scientific practice / professional behavior
++ critical & analytical thinking
++ scientific communication skills
+ group work

Modulinhalte

Part 1: Multivariate Statistics I (lecture): winter
- Graphical representation of multivariate data
- The Generalized Linear Modeling (GLM) framework
- Multiple and moderated linear regression with quantitative and qualitative predictors
- Logistic regression
- Multilevel regression (Generalized Linear Mixed Effects Modeling – GLMM)
- Non-linear regression models
- Path modeling
- Factor analysis (exploratory & confirmatory)
- (Multilevel) Structural equation modeling (SEM linear and non-linear)

Part 2: Analysis Methods with R (seminar): winter and summer
- Data examples and applications of GLM, GLMM, polynomial, spline and local regression, path modeling, factor analyses and SEM

Part 3: Multivariate Statistics II (lecture): summer
- Supervised and unsupervised statistical learning and prediction
- Regularized regression
- Resampling methods
- Tree-based methods
- Support Vector Machines
- Neural Networks (basics)
- Principal components and clustering

Part 4: Evaluation research (seminar): summer
- Paradigms and methods in applied evaluation research (quantitative, mixed-methods)
- Types of studies and designs in evaluation research (experimental, quasi-experimental, (multiple) time series, etc.)
- Specific statistical tools (e.g., Propensity score matching)
Research synthesis and meta-analysis

- Literatureempfehlungen
- Links
- Unterrichtssprache: Englisch
- Dauer in Semestern: 2 Semester
- Angebotsrhythmus Modul: The module will start every winter term.
- Aufnahmekapazität Modul: unbegrenzt
- Modullevel: MM (Mastermodul / Master module)
- Modulart: Pflicht / Mandatory
- Lern-/Lehrform / Type of program: Parts 1 and 3: lectures; Parts 2 and 4: seminars; additional tutorials are offered.
- Vorkenntnisse / Previous knowledge: basic statistics; otherwise please attend Introductory Course Statistics

Modulart: Pflicht / Mandatory

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>4.00</td>
<td>SoSe und WiSe</td>
<td>56 h</td>
</tr>
<tr>
<td>Seminar</td>
<td>R seminar in summer is voluntary</td>
<td>4.00</td>
<td>SoSe und WiSe</td>
<td>56 h</td>
</tr>
<tr>
<td>Tutorium</td>
<td>statistics</td>
<td>0.00</td>
<td>SoSe und WiSe</td>
<td>0 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt: 112 h
psy121 - Psychological diagnostics

Modulbezeichnung: Psychological diagnostics

Modulcode: psy121

Kreditpunkte: 12.0 KP

Workload: 360 h

Verwendet in Studiengängen: Master Neurocognitive Psychology (Master) > Mastermodule

Ansprechpartner/-in:
- Modulverantwortung: Andrea Hildebrandt
- Prüfungsberechtigt: Andrea Hildebrandt, Andreas Hellmann
- Modulberatung: Stefan Debener

Teilnahmevoraussetzungen:
Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele:
Goals of module:
Students will acquire specific knowledge about psychological assessment and will be trained to utilize this knowledge within a research context and in applied settings. With respect to research applications they will learn about traditional and modern test theories and about their usage in the domain of test construction and the systematic design of interviews and observational methods. From the perspective of applied assessment, students will reflect on the assessment process as a whole. They will learn how to analyze cases (“case conceptualization”), how to plan and conduct the information assessment phase, how to record and summarize collected data and how to integrate across the multitude of information in order to draw conclusions about the case given specific diagnostic strategies (status vs. process assessment and norm oriented vs. criterion oriented assessment, including classificatory decisions). Finally, students will learn about the requirements of report generation in written an oral form given a specific applied context. Ethical guidelines and quality norms will be an implicit topic in all courses in the module.

Competencies:
- Neuropsychological / neurophysiological knowledge
- Interdisciplinary knowledge & thinking
- Ethics / good scientific practice / professional behavior
- Critical & analytical thinking

Modulinhalte:

Part 1: Introduction to Psychological Assessment (lecture): winter
- Psychological assessment as a decision process – descriptive and prescriptive models
- Introduction to test theories (will be detailed in Part 3)
- Assessment methods, their construction and design, quality criteria
- The logic of decision making in the assessment process
- Classificatory decisions
- Psychometrics to single cases
- Summarizing results and writing reports

Part 2: The Assessment Process applied (seminar): winter
- Case conceptualization (neuropsychology and clinical psychology)
- Formulating hypotheses
- Selecting assessment procedures and planning administration
- Deciding upon decision rules for data integration
- Evaluating the application of assessment procedures
- Analyzing, summarizing and visualizing results
- Integrating results based on the decision rules
- Writing a psychological/assessment report
- Discussing a report with the client

Part 3: Test theory and test construction (lecture): summer
- Classical test theory
- Generalizability theory
- Item response theory
- Latent-State and Trait theory
- Measurement invariance across groups and time
- Constructing faking-resistant questionnaires and tests

Part 4: Assessment in Clinical Neuropsychology (seminar): summer
- Specific knowledge
- Exercises in testing / practising tests

Literaturempfehlungen:
Will be specified in the courses.

Links:

<table>
<thead>
<tr>
<th>Unterrichtssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer in Semestern</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>The module will start every winter term.</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht / Mandatory</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Part 1 and 3: 2 lectures ; Part 2 and 4: seminars</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td>You should know basic statistical concepts as they are also covered in the introductory course statistics.</td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
</tbody>
</table>
| Gesamtmodul | summer term | The module will be tested by a practical exercise (test application and protocol) 90% and an oral presentation of the planned contents 10%.
Required active participation for gaining credits:
- 2 presentations or test executions
- handing in 10 excercises
- participation in discussions on other presentations
- attendance of at least 70% in the seminars (use attendance sheet that will be handed out in the beginning of the term). |

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>4.00</td>
<td>SoSe und WiSe</td>
<td>56 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>4.00</td>
<td>SoSe und WiSe</td>
<td>56 h</td>
</tr>
<tr>
<td>Präsenzzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>112 h</td>
</tr>
</tbody>
</table>
psy130 - Communication of scientific results

Modulbezeichnung
Communication of scientific results

Modulcode
psy130

Kreditpunkte
6.0 KP

Workload
180 h

Verwendet in Studiengängen
- Master Neurocognitive Psychology (Master) > Mastermodule

Ansprechpartner/-in
- Modulverantwortung
 - Christoph Siegfried Herrmann
- Modulberatung
 - Daniel Strüber

Teilnahmevoraussetzungen
Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele
Goals of module:
Students will acquire specific knowledge about the presentation of scientific results both orally and in writing. Students will learn modern techniques for presentation, literature research and writing skills. They will also be taught about arguing scientifically.

Competencies:
++ data presentation & discussion
++ scientific literature
++ scientific English / writing
++ scientific communication skills
+ group work

Modulinhalte
Part 1: Communication of scientific results (seminar)
- Literature search
- Presentation skills
- Writing skills

Part 2: Psychological colloquium
Experienced scientists from various psychological disciplines will be giving talks about their experimental results. Speakers will be invited also from other universities. Students are encouraged to discuss the results with the experts and to make suggestions on whom to invite

Literaturneuphleungen

Links

Unterrichtssprache
Englisch

Dauer in Semestern
1-2 Semester

Angebotsrhythmus Modul
Part 1 will be offered every winter term. Part 2 will be offered every semester.

Aufnahmekapazität Modul
unbegrenzt

Hinweise
Students can chose whether they want to attend the colloquium in the first, second or both semesters.

Modullevel
MM (Mastermodul / Master module)

Modulart
Pflicht / Mandatory

Lern-/Lehrform / Type of program
Communication of scientific results: seminar; Psychological colloquium: colloquium

Vorkenntnisse / Previous knowledge

Prüfung
Prüfungszeiten
Prüfungsform

Gesamtmodul
during winter term
Oral presentation

Required active participation for gaining credits:
70% attendance of the seminar and at least 8 colloquia (use attendance sheet that will be handed out in the beginning of the term) and active discussion in at least 1 colloquium.

Lehrveranstaltungsform
<table>
<thead>
<tr>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Kolloquium</td>
<td>2.00</td>
<td>SoSe und WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
56 h
psy141 - Minor

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy141</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>- Master Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Ansprechpartner/-in

- Modulberatung
 - Jochem Rieger
 - Kerstin Bleichner

Teilnahmeverzugssetzungen

- Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele

Goals of module:
Students will gain an overview of non-psychological topics related to cognitive neuroscience and neuropsychology. They will see how psychological theories apply in other fields. Students can strengthen their own professional profile.

Competencies:
++ interdisciplinary knowledge & thinking

Modulinhalte

- Students can take Master modules and courses from the fields
 - Biology
 - Neurosciences
 - Computer Science
 - Physics
 - Mathematics
 - Pedagogy
 - Philosophy
 - related fields
 - Psychology (additional elective module (NOT psy170, psy220, psy270, psy276, psy280) or from another study programme)

Students whose first language is not German, may take German classes.

Upon approval, German-speaking students can attend a career-relevant language course (i.e. necessary for internship, practical project or Master's thesis). English classes cannot be taken as Minor.

A list of already approved courses/modules can be found on our website. You can take other courses/modules upon approval.

We recommend taking modules/courses that strengthen your own professional profile.

Literaturempfehlungen

Links
- List of approved courses/modules and approval form:
 - https://uol.de/en/psychology/master/course-overview/
 - -> Supporting documents

Unterrichtsprachen

- Englisch, Deutsch

Dauer in Semestern

- 1 Semester

Angebotsrhythmus Modul

- irregular

Aufnahmekapazität Modul

- unbegrenzt

Hinweise

PLEASE NOTE:

If you want to take a module/course which is not listed in the list of approved courses/modules, please request approval BEFORE you start the course/module (list of approved courses/modules and approval form can be found on our website).

If you want to take an additional elective module for your Minor, you need to inform the contact person for the respective module in writing BEFORE the start of the module. If your request is NOT rejected in written form within 4 weeks, the module counts as approved for the Minor. You will receive a pass/fail for this module. You CANNOT use it afterwards as a normal elective module. You can also NOT rededicate an elective that you have already started as your Minor.

Bachelor level courses are NOT acceptable. Note that Bachelor level courses can be listed in some Master programmes (e.g. Master of Education). This does not qualify a Bachelor level course for the Minor module.
It is your responsibility to ask the teacher whether you can take part.

<table>
<thead>
<tr>
<th>Modullevel</th>
<th>MM (Mastermodul / Master module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulart</td>
<td>Pflicht / Mandatory</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Lectures and seminars (depends on the chosen modules)</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Lectures and seminars (depends on the chosen modules)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>VA-Auswahl</td>
</tr>
<tr>
<td>SWS</td>
<td>4.00</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>56 h</td>
</tr>
</tbody>
</table>
psy150 - Clinical Psychology

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Clinical Psychology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy150</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>Modulverantwortung</td>
</tr>
<tr>
<td></td>
<td>Christiane Margarete Thiel</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Enrolment in Master's programme Neurocognitive Psychology.</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Goals of the Module:</td>
</tr>
<tr>
<td></td>
<td>Students acquire scientifically sound, critical thinking regarding the genesis and psychopharmacological treatment of various mental illnesses; decision making based on the medical guidelines and evidence-based practice.</td>
</tr>
<tr>
<td></td>
<td>Competencies:</td>
</tr>
<tr>
<td></td>
<td>++ Neuropsychological / neurophysiological knowledge</td>
</tr>
<tr>
<td></td>
<td>+ experimental methods</td>
</tr>
<tr>
<td></td>
<td>+ data presentation & discussion</td>
</tr>
<tr>
<td></td>
<td>+ scientific literature</td>
</tr>
<tr>
<td></td>
<td>+ critical & analytical thinking</td>
</tr>
<tr>
<td></td>
<td>+ knowledge transfer</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>The first part of the module provides students with a theoretical and practical background on neurobiological and neurochemical bases of psychiatric disorders and pharmacological interventions. This will be complemented by psychiatric interviews in simulated patients focussing on psychopathological assessment. In the second part, the students will learn to plan and assess the effectiveness of psychological interventions for selected disorders.</td>
</tr>
<tr>
<td></td>
<td>Part 1: Neurobiological basis of psychiatric disorders and pharmacological intervention (lecture and seminar): winter</td>
</tr>
<tr>
<td></td>
<td>Basics of neurotransmitter systems and psychopharmacology</td>
</tr>
<tr>
<td></td>
<td>Substance Abuse (e.g. psychostimulants, hallucinogens)</td>
</tr>
<tr>
<td></td>
<td>Depression</td>
</tr>
<tr>
<td></td>
<td>Anxiety Disorders</td>
</tr>
<tr>
<td></td>
<td>Alzheimer's Disease</td>
</tr>
<tr>
<td></td>
<td>Schizophrenia</td>
</tr>
<tr>
<td></td>
<td>psychopathological assessment</td>
</tr>
<tr>
<td></td>
<td>Part 2: Psychological interventions within the framework of evidence-based medicine (seminar): summer (partly in German): Concepts of evidence based treatment and treatment of acquired dysfunctions of the brain</td>
</tr>
<tr>
<td></td>
<td>Treatment of ADHD</td>
</tr>
<tr>
<td></td>
<td>Selected papers (part 2)</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Unterrichtsprachen</td>
<td>Englisch, Deutsch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>Part 1 will be offered every winter term, part 2 every summer term.</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Modulart</td>
<td>Pflicht / Mandatory</td>
</tr>
<tr>
<td>Lern-Lehrform / Type of program</td>
<td>Part 1: lecture and seminar; part 2: seminar</td>
</tr>
<tr>
<td>Lern-Lehrform / Type of program</td>
<td>Part 1: lecture and seminar; part 2: seminar</td>
</tr>
</tbody>
</table>
Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>mid-February</td>
<td>The module will be tested with a written exam (2 h) on the contents of part 1. Required active participation for gaining credits: 1 presentation participation in discussions on other presentations attendance of at least 70% in the seminars (use attendance sheet that will be handed out in the beginning of the term).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>4.00</td>
<td>SoSe und WiSe</td>
<td>56 h</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 84 h |
psy170 - Neurophysiology

Modulbezeichnung
Neurophysiology

Modulcode
psy170

Kreditpunkte
6.0 KP

Workload
180 h

Verwendet in Studiengängen
- Master Neurocognitive Psychology (Master) > Mastermodule

Ansprechpartner/-in
Modulverantwortung
 - Stefan Debener

Teilnahmevoraussetzungen
Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele
Goals of module:
Students will understand the basic concepts of biomedical signal processing. They will use EEG analysis tools interactively and independently and will understand the complete chain of EEG analysis steps, from data import to the illustration of results. They will be able to use open source tools for EEG analysis and apply theoretical knowledge to practical problems of physiology.

Competencies:
++ Neuropsychological / neurophysiological knowledge
++ experimental methods
++ statistics & scientific programming
++ ethics / good scientific practice / professional behavior
+ group work
+ project & time management

Modulinhalte
Students will acquire specific knowledge about neurophysiology and neuroanatomy, learn the fundamental concepts of multi-channel EEG analysis, and acquire hands-on skills in using EEGLAB, an open-source software toolbox for advanced EEG analysis.

Part 1: Neurophysiology and neuroanatomy (lecture): winter
Neurophysiology, EEG, EMG, ECG
Neuroanatomy
Time-domain and frequency-domain analysis methods

Part 2: EEG recording and analysis (seminar): winter
Recording and analysis of biomedical signals
Averaging, filtering, signal-to-noise
Topographical EEG analysis

Part 3: EEG analysis with Matlab (seminar): summer
EEGLAB file I/O, data structure and scripting
Preprocessing, artefact rejection and artefact correction
Statistical decomposition
Event-related potentials, topographical mapping and power spectra
Illustration of results

Literaturempfehlungen

Links

Unterrichtssprache
Englisch

Dauer in Semestern
2 Semester

Angebotsrhythmus Modul
The module will start every winter term.

Aufnahmekapazität Modul
18 (The lecture is not restricted.)

Hinweise
PLEASE NOTE: We strongly recommend to take either psy170, psy270, psy276, psy280, or psy220 to gain methodological competencies (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master's theses!

Modullevel
MM (Mastermodul / Master module)

Modulart
Wahlpflicht / Elective
<table>
<thead>
<tr>
<th>Modulart</th>
<th>Wahlpflicht / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Part 1: lecture; Part 2 and 3: seminars</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>exam period at the end of the summer term</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>2 semester hours per week in first half of the winter term.</td>
<td>1.00</td>
<td>WiSe</td>
<td>14 h</td>
</tr>
<tr>
<td>Seminar</td>
<td>2 semester hours per week in second half of the winter term. 2 semester hours per week in summer term.</td>
<td>3.00</td>
<td>SoSe und WiSe</td>
<td>42 h</td>
</tr>
</tbody>
</table>

| Präsenzzeit Modul insgesamt | 56 h |
psy181 - Neurocognition

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Neurocognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy181</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>• Master Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>Modulverantwortung</td>
</tr>
<tr>
<td></td>
<td>○ Christiane Margarete Thiel</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Enrolment in Master's programme Neurocognitive Psychology.</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Goals of module:</td>
</tr>
<tr>
<td></td>
<td>Students should be able to recognize and critically evaluate the value of considering neuroscience in the study of psychological topics.</td>
</tr>
<tr>
<td></td>
<td>Competencies:</td>
</tr>
<tr>
<td></td>
<td>++ neuropsychological / neurophysiological knowledge</td>
</tr>
<tr>
<td></td>
<td>++ interdisciplinary knowledge & thinking</td>
</tr>
<tr>
<td></td>
<td>++ data presentation & discussion</td>
</tr>
<tr>
<td></td>
<td>++ scientific literature</td>
</tr>
<tr>
<td></td>
<td>+ scientific communication skills</td>
</tr>
<tr>
<td></td>
<td>+ group work</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>Students will first acquire a general understanding of the brain mechanisms of different cognitive functions and the methods used to study these functions. They will then apply this knowledge by discussing current research topics (part 1). General knowledge will be focused on the relation between the development of the human brain and the cognitive processes it supports (part 2).</td>
</tr>
<tr>
<td></td>
<td>Part 1: Introduction to cognitive neuroscience (lecture and seminar): winter</td>
</tr>
<tr>
<td></td>
<td>Brain and cognition, methods of cognitive neuroscience</td>
</tr>
<tr>
<td></td>
<td>Attention, learning and memory</td>
</tr>
<tr>
<td></td>
<td>Emotional and social behaviour</td>
</tr>
<tr>
<td></td>
<td>Language, executive functions</td>
</tr>
<tr>
<td></td>
<td>Part 2: Neurocognitive development (seminar): winter</td>
</tr>
<tr>
<td></td>
<td>Brain development and cortical plasticity</td>
</tr>
<tr>
<td></td>
<td>Effects of early-life stress on brain development</td>
</tr>
<tr>
<td></td>
<td>Development of object recognition, social cognition, memory, and executive functions</td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Unterrichtssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>The module will be offered every winter term.</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>20 (Part 1 (lecture and seminar) are unrestricted, part 2 is restricted to 20 students.)</td>
</tr>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modullevel</td>
<td>MM (Mastermodul / Master module)</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Modulart</td>
<td>Wahlpflicht / Elective</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Part 1: lecture and seminar; Part 2: seminar</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Part 1: lecture and seminar; Part 2: seminar</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Prüfung</td>
<td></td>
</tr>
<tr>
<td>Prüfungszeiten</td>
<td>mid-February</td>
</tr>
<tr>
<td>Prüfungsform</td>
<td>The module will be tested with a written exam of 2 h duration on the contents of part 1.</td>
</tr>
</tbody>
</table>
Prüfung

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Required active participation for gaining credits: 1 presentation participation in discussions on other presentations and attendance of at least 70% in the seminars (use attendance sheet that will be handed out in the beginning of the term).</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>1.00</td>
<td>WiSe</td>
<td>14 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>3.00</td>
<td>WiSe</td>
<td>42 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt: 56 h
psy190 - Sex and Cognition

Modulbezeichnung	Sex and Cognition
Modulcode | psy190
Kreditpunkte | 6.0 KP
Workload | 180 h
Verwendet in Studiengängen | • Master Neurocognitive Psychology (Master) > Mastermodule

Ansprechpartner/-in	Modulverantwortung
Daniel Strüber	

Teilnahmevoraussetzungen | Enrolment in Master's programme Neurocognitive Psychology. Neuroscience students can take part on request.

Kompetenzziele | Goals of module:
Students will acquire specific knowledge about sex differences in cognitive abilities and social behaviours. They will be able to understand the interrelated impact of social and biological influences on the brain’s control of the (sex-specific) behaviours. Students should be able to critically evaluate behavioural sex differences from different perspectives and to reflect on possible implications for society.

Competencies:
++ neuropsychological / neurophysiological knowledge
+ interdisciplinary knowledge & thinking
++ data presentation & discussion
++ scientific literature
+ critical & analytical thinking
++ scientific communication skills
+ group work
+ project & time management

Modulinhalte | Part 1: Introduction to the study of sex differences (lecture): winter
The measurement of sex differences
Sex differences in emotion
Sex differences in aggression
Sex differences in cognitive abilities
Hormones, sexual differentiation, and gender identity
Sex hormones and play preferences
Sex differences in hemispheric organization
Brain size and intelligence

Part 2: Sex, brain, and behaviour (seminar): winter
Sex differences in empathy
The extreme male brain theory of autism (S. Baron-Cohen)
Sex differences in neuropsychiatric disorders
Sex differences in stress response
Social implications of sex differences

Literaturempfehlungen
• Melissa Hines (2004) Brain Gender, Oxford University Press

Links

Unterrichtssprache | Englisch
Dauer in Semestern | 1 Semester
Angebotsrhythmus Modul | The module will be offered every winter term.
Aufnahmekapazität Modul | 30
Modullevel | MM (Mastermodul / Master module)
Modulart | Wahlpflicht / Elective

Lern-/Lehrform / Type of program | Part 1: lecture; Part 2: seminar
Vorkenntnisse / Previous knowledge |
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>during winter term</td>
<td>oral presentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Required active participation for gaining credits: participation in discussions on other presentations attendance of at least 70% in the seminar (use attendance sheet that will be handed out in the beginning of the term).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
psy201 - Neuropsychology

Modulbezeichnung Neuropsychology
Modulcode psy201
Kreditpunkte 6.0 KP
Workload 180 h
Verwendet in Studiengängen • Master Neurocognitive Psychology (Master) > Mastermodule
Ansprechpartner/-in Modulverantwortung
 o Stefan Debener
Teilnahmevoraussetzungen Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele Goals of module:
Students will learn to understand changes in thinking and behaviour that may arise from brain
dysfunctions (part 1, 3), acquire specific knowledge on cognitive rehabilitation (part 2), and learn
to understand, communicate and evaluate progress in clinical practice and experimental
research in neuropsychology (part 3).

Competencies:
++ neuropsychological / neurophysiological knowledge
+ interdisciplinary knowledge & thinking
++ experimental methods
+ data presentation & discussion
++ scientific literature
+ critical & analytical thinking
++ scientific communication skills

Modulinhalte Part 1: Introduction to Clinical Neuropsychology (lecture): winter
 Cortical lobes (anatomy, functions, lesion symptoms, neuropsychological tests)
 Higher functions (learning & memory, language, emotion, spatial behavior attention)
 Plasticity and disorders (development, learning and reading disabilities, recovery)

 Part 2: Cognitive Neurorehabilitation (seminar): summer
 Behavioural and neuropsychological approaches
 neurofeedback in neurorehabilitation and ADHD
 memory rehabilitation
 effects of physical activity on cognition
 motor recovery

 Part 3: Topics in Clinical Neuropsychology (seminar; taught partly in German): winter
 Clinical neuroanatomy
 Neurodegenerative diseases
 Dementia

Literaturempfehlungen
Links
Unterrichtssprache Englisch
Dauer in Semestern 1-2 Semester
Angebotsrhythmus Modul The module will start every winter term.
Aufnahmekapazität Modul 30 (Part 3 is not restricted.)

Hinweise Part 1 (lecture) is mandatory. Choose either part 2 or part 3 (seminars).
Modullevel MM (Mastermodul / Master module)
Modullevel MM (Mastermodul / Master module)
Modulart Wahlpflicht / Elective
Modulart Wahlpflicht / Elective
Lern-/Lehrform / Type of program Part 1: lecture; Part 2: seminar; Part 3: seminar
Lern-/Lehrform / Type of program Part 1: lecture; Part 2: seminar; Part 3: seminar

Vorkenntnisse / Previous knowledge
Prüfung exam period at the end of winter term
Prüfungszeiten
Prüfungform The module will be tested with a written exam of 2 h
duration.

Required active participation for gaining credits:
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>presentation participation in discussions on other presentations attendance of at least 70% in the seminars (use attendance sheet that will be handed out in the beginning of the term).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td>SoSe oder WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt 56 h
psy210 - Applied Cognitive Psychology

Modulebezeichnung
Applied Cognitive Psychology

Modulcode
psy210

Kreditpunkte
6.0 KP

Workload
180 h

Verwendet in Studiengängen
- Master Neurocognitive Psychology (Master) > Mastermodule

Ansprechpartner/-in
Modulverantwortung
- Jochem Rieger

Teilnahmevoraussetzungen
Enrolment in Master's programme Neurocognitive Psychology. Neuroscience students can take part on request.

Kompetenzziele
Goals of the module:
Students will gain an overview of theories of (Neuro)Cognitive Psychology with potential for application. On completion of this module students should have a repertoire of cognitive psychology concepts relevant for real world situations, be able to transfer the learned theoretical concepts into practical contexts and evaluate potential issues arising in the process of translation.

Competencies:
+ Neuropsychological / neurophysiological knowledge
+ Interdisciplinary knowledge & thinking
+ Experimental methods
+ Scientific literature
+ Ethics / good scientific practice / professional behavior
+ Critical & analytical thinking
+ Scientific communication skills
+ Knowledge transfer

Modulinhalte
The module will cover core concepts of cognitive psychology, their neuronal basis, basic knowledge of neuroimaging and data analysis techniques. Special emphasis will be put on research aiming at complex real-world settings and translation of basic science in to practice. Examples of successful transfers will be analyzed. The lecture provides the theoretical basis. In the seminar the material is consolidated by examples from the literature which will be presented, critically analyzed and discussed.

Part 1: (Neuro)Cognitive Psychology in the wild I (lecture): summer
- Neurocognitive Psychology with emphasis in real world context
- Methodological considerations: Generalization, validity of theories and research methods
- Information uptake and representation: Sensation, perception, categorization
- Selection of information and capacity: Attention and memory enhancement and failure
- Generation and communication: Language, reading, dyslexia
- Pursuing goals: Thinking, problem solving and acting

Part 2: (Neuro)Cognitive Psychology in the wild II (seminar): winter
In the accompanying seminar we will work through recent examples in the literature for topics of the lecture. The goal is to apply novel knowledge from the lecture to understand and critically discuss actual research approaches.

Literaturempfehlungen

Links
- Unterrichtssprache: Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: Part 1 will be offered every summer term, part 2 every winter term.
- Aufnahmekapazität Modul: 30
- Modullevel: MM (Mastermodul / Master module)
- Modullevel: MM (Mastermodul / Master module)
- Modulart: Wahlpflicht / Elective
- Modulart: Wahlpflicht / Elective
Lern-/Lehrform / Type of program

Part 1: 1 lecture (2 SWS); Part 2: 1 seminar (2 SWS)

Vorkenntnisse / Previous knowledge

Prüfung

Gesamtmodul

* last class in summer term

The module will be evaluated with a written exam of 2 hours duration.

Required active participation for gaining credits:

1-2 presentations participation in discussions on other presentations

attendance of at least 70% in the seminar (use attendance sheet that will be handed out in the beginning of the term).

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2.00</td>
<td>SoSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
psy220 - Human Computer Interaction

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Human Computer Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy220</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendet in Stuudiengängen</td>
<td>Master Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Ansprechpartner/-in

Modulverantwortung

Jochem Rieger

Teilnahmeveraussetzungen

Enrolment in Master's programme Neurocognitive Psychology or other programs related to the field (e.g. neuroscience, computer science, physics etc.).

Kompetenzziele

Goals of module:
The goal of the module is to provide students with basic skills required to plan, implement and evaluate brain computer interfaces as devices for human computer interaction. BCIs are an ideal showcase as they fully span the interdisciplinary field of HCI design, implementation and evaluation. Moreover, BCI-techniques can be used for modern data-driven basic neuroscience. The module combines a lecture on the theoretical foundations of the most important techniques with a seminar/hands on course in which students learn to implement the BCI-processing steps on real neurophysiological data and further elaborate specific subtopics.

Competencies:

++ Understanding of the foundations of statistical learning techniques
+ provide basics to understand technical time series processing and machine learning papers
++ interdisciplinary knowledge & thinking
+ experimental methods
++ statistics & scientific programming
+ critical & analytical thinking
+ scientific communication skills
+ knowledge transfer
+ group work
+ project & time management

Modulinhalte

Part 1: HCI and BCI Lecture: (Lecture on methodological foundations of BCI): summer

Part 2: Hands on BCI implementation (practical seminar): summer

Topics covered:

- A brief history of BCIs and examples of HCI control and basic neuroscience using BCI techniques.
- Data preprocessing (e.g. filtering, projection techniques) and common artifacts and artifact treatment
- Feature generation (e.g. fourier transform, spectral estimation techniques, principle components)
- Machine learning for classification and regression (e.g. model parameter optimization in multivariate regression)
- Evaluation (e.g. measures of model quality, cross validation to test model generalization, permutation tests)

Where possible the lecture provides mathematical backgrounds of the data analysis techniques. The practical seminar implements BCI techniques on a real data set and further elaborates specific topics in seminar form.

Literaturempfehlungen

There is no required textbook. The lecture slides and notes should be sufficient. However some resources from which they were developed on are given below:

General tutorial text providing and overview and accompanying python code on github:

Signal processing:

PCA & SVD

Unsupervised feature Learning and deep learning tutorial:

General texts:

Machine learning and AI:

Hastie, Tibshirani, and Friedman. The elements of statistical learning. Covers a wide range of machine learning topics. Free online.

Additional literature and material will be provided on the course website.

Links

Unterrichtssprache Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul The module will be offered every summer term.
Aufnahmekapazität Modul 15
Hinweise We strongly recommend to take either psy170, psy270, psy276, psy280, or psy220 to gain methodological competencies (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master's theses!
Modullevel MM (Mastermodul / Master module)
Modullevel MM (Mastermodul / Master module)
Modulart Wahlpflicht / Elective
Modulart Wahlpflicht / Elective
Lern-/Lehrform / Type of program Part 1: lecture; Part 2: practical seminar
Lern-/Lehrform / Type of program Part 1: lecture; Part 2: practical seminar
Vorkenntnisse / Previous knowledge Basic programming skills, some high-school level maths
Vorkenntnisse / Previous knowledge Basic programming skills, some high-school level maths
Prüfung Prüfungszeiten The module will be evaluated with an oral exam (max. 20 min).
Prüfung Prüfungsform

Gesamtmittel

Präsenzzeit Modul insgesamt 56 h
psy230 - Neuromodulation of Cognition

Modulbezeichnung
Neuromodulation of Cognition

Modulcode
psy230

Kreditpunkte
6.0 KP

Workload
180 h

Verwendet in Studiengängen
- Master Neurocognitive Psychology (Master) > Mastermodule

Ansprechpartner/-in
Modulverantwortung
- Jochem Rieger

Teilnahmevoraussetzungen
Enrolment in Master's programme Neurocognitive Psychology. Neuroscience students can take part on request.

Kompetenzziele
Goals of module:
The aim of this module is to provide students with a theoretical background on how cognitive functions can be altered via neuromodulation.

Competencies:
++ Neuropsychological / neurophysiological knowledge
+ interdisciplinary knowledge & thinking
++ experimental methods
+ ethics / good scientific practice / professional behavior
+ critical & analytical thinking
+ scientific communication skills

Modulinhalte
Students will be introduced to the concepts of neuromodulation and the application of theoretical knowledge of neurophysiology to the modulation of cognitive functions.

Part 1: Neuromodulation of cognition (lecture): winter
Neurotransmitter and neuromodulator systems
Neuropharmacological intervention
Mechanisms of neural plasticity
Neurofeedback
Electric and magnetic brain stimulation
Therapeutical applications

Part 2: Topics in Neuromodulation (seminar): winter
Psychological an therapeutical effects of neuromodulation
Modulation of neuronal network function
Deep brain stimulation for therapeutical modulation

Literaturempfehlungen

Links

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
The module will be offered every winter term.

Aufnahmekapazität Modul
15

Modullevel
MM (Mastermodul / Master module)

Modulart
Wahlpflicht / Elective

Prüfung

Prüfungszeiten

Prüfungsform

gesamtmodul during winter term
Presentation 80% written test on the topics of the lecture 20%
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Required active participation for gaining credits: participation in discussions on other presentations attendance of at least 70% in the seminar (use attendance sheet that will be handed out in the beginning of the term).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
psy240 - Computation in Neuroscience

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Computation in Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy240</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Verwendet in Stuudiengängen</td>
<td>Master Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>Modulverantwortung</td>
</tr>
<tr>
<td></td>
<td>○ Heiko Stecher</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Enrolment in Master's programme Neurocognitive Psychology.</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Goals of module: Students will acquire scientific programming skills as well as specific knowledge of computational methods in neuroscience and cognition. They will learn to judge the appropriateness and complexity of computational problems and solutions.</td>
</tr>
</tbody>
</table>
| | Competencies: *
| | + Neuropsychological / neurophysiological knowledge
| | + experimental methods
| | ++ statistics & scientific programming
| | + critical & analytical thinking
| | + knowledge transfer
| | + group work
| Modulinhalte | Part 1: Introduction to scientific programming I (lecture): winter
| | Basic data types and structures
| | Flow control (conditions, loops, errors)
| | Testing and debugging
| | Functions
| | Part 2: Introduction to scientific programming II (lecture): summer
| | Classes and objects
| | Parallel processing
| | Frequency analysis methods
| | EEG processing
| | Part 3: Scientific programming I (excercise): winter
| | Implementation of examples from part 1
| | Part 4: Scientific programming II (excercise): summer
| | Implementation of examples from part 2
| | Part 5: Computer-controlled experimentation (seminar): summer
| | Computer hardware basics
| | Scripting and programming in Presentation
| | Combining stimulus delivery with EEG
| | Temporal precision
| Literatureempfehlungen | Mathworks (2009): MATLAB online documentation
| Links | Unterrichtssprache: Englisch |
| Dauer in Semestern | 2 Semester |
| Angebotsrhythmus Modul | The module will start every winter term. |
| Aufnahmekapazität Modul | unbegrenzt |
| Modullevel | MM (Mastermodul / Master module) |
| Modullevel | MM (Mastermodul / Master module) |
| Modularart | Pflicht / Mandatory |
| Modularart | Pflicht / Mandatory |
| Lern-/Lehrform / Type of program | Part 1 and 2: lectures; Part 3 and 4: excercises; Part 5: seminar; additional tutorials |
| Lern-/Lehrform / Type of program | Part 1 and 2: lectures; Part 3 and 4: excercises; Part 5: seminar; additional tutorials |
Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>exam period at the end of the summer term</td>
<td>The participants will have to independently develop and program a solution for a given neuroscientific problem. Both the written code as well as the documentation of the approach taken will be assessed. Required active participation for gaining credits: script for the presentation of experimental stimuli in part 5 attendance of at least 70% in the seminar 'Presentation', part 5 (use attendance sheet that will be handed out in the beginning of the term).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>4.00</td>
<td>SoSe und WiSe</td>
<td>56 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td>SoSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2.00</td>
<td>SoSe und WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Tutorium</td>
<td></td>
<td>0.00</td>
<td>SoSe oder WiSe</td>
<td>0 h</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>112 h</td>
</tr>
</tbody>
</table>
psy251 - Internship

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Internship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy251</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Ansprechpartner/-in
- Modulverantwortung
 - Cornelia Kranczioch-Debener

Teilnahmevoraussetzungen
Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele
Goals of module:
- Students will obtain provide direct experience in the field of psychology. This includes being involved in the provision of psychological or neuropsychological services in real-life situations, such as neuropsychological testing or counselling in a hospital or mental health clinic, or conducting and contributing to psychological research. The internship should be chosen by the student such that it can provide a meaningful educational opportunity that will help students to decide on their preferred area of work.

Competencies:
- ++ expert neuropsychological/neurophysiological knowledge
- + interdisciplinary knowledge & thinking
- + experimental methods
- ++ ethics / good scientific practice / professional behavior
- ++ knowledge transfer
- + project & time management

Modulinhalte
The students will work in a field of psychology of personal choice. The student will get to know and participate in the daily work routines of a psychologist.

Literaturempfehlungen
Information on internships and necessary forms: https://uol.de/en/psychology/master/course-overview/

Unterrichtsprachen
Englisch, Deutsch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
irregular

Aufnahmekapazität Modul
unbegrenzt

Hinweise
The internship lasts 360 hours (9-10 weeks). It can be performed at 2 different institutions with a minimum duration of 150 hours (4 weeks) for each part.

A part of your internship (maximally 150 hours) can be performed internally in the Department of Psychology. Internal internships cannot be performed in the same lab in which you will perform / have performed your Practical Project psy260!

Your supervisor must be a psychologist. If your supervisor is NOT a psychologist, please contact us for approval BEFORE you start your internship.

Please note that details are regulated in the exam regulations.

To generate ideas, a folder with information on internships that other students have performed is available in the office of Dr. Cornelia Kranczioch.

Modullevel
MM (Mastermodul / Master module)

Modulart
Pflicht / Mandatory

Lern-/Lehrform / Type of program
- Internship at (external) institution

Vorkenntnisse / Previous knowledge

Prüfung
Individual; 2-3 possibilities per semester to present the internship to other students

Prüfungszeiten
The students have to hand in a written report (2-3 pages) and give a short presentation about their internship. They have to show a certificate from the institution at which they performed the internship. The internship is evaluated as pass/fail.
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Praktikum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS</td>
<td>0.00</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe oder WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>0 h (360 hours presence at internship institution)</td>
</tr>
</tbody>
</table>
psy260 - Practical project

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Practical project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy260</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h (<-HTML--->attendance in the lab and accompanying seminars as necessary for your project (~ 200h))</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Ansprechpartner/-in

- Jochem Rieger
- Christoph Siegfried Hermann
- Stefan Debener
- Jalenur Özyurt
- Andrea Hildebrandt

Modulberatung

- Riklef Weerda

Teilnahmevoraussetzungen

Enrolment in Master's programme Neurocognitive Psychology.

You can only start the practical project if you have passed the exam of psy241 / psy240 Computation in Neuroscience!

Priority is given to students with experience in methods used in the respective lab or students who have taken the respective teaching modules.

Kompetenzziele

Goals of module:

Students will learn to plan, perform and analyse a study in the field of neurocognition. They will need to apply statistical knowledge and programming competencies to the data acquisition and analysis of data. Results will be related to the current neurocognitive literature and presented in a student poster symposium at the end of the module. Additionally, students should gain experience as participants in studies.

Competencies:

++ experimental methods
+ statistics & scientific programming
++ data presentation & discussion
+ independent research
+ scientific literature
+ ethics / good scientific practice / professional behavior
+ scientific communication skills
+ knowledge transfer
+ group work
++ project & time management

Modulinhalte

- The students develop an empirical investigation, carry it out and analyse the results. The students present and discuss their project in respect to recent literature in regular meetings and in a poster symposium.
- Students can develop an experimental design for a follow-up study which could potentially be the topic of their Master’s thesis.
- As part of the practical project, students should participate in studies of other practical projects!

Literaturrempfehlungen

- Links: https://uol.de/en/psychology/master/course-overview/

Unterrichtssprache

- Englisch

Dauer in Semestern

- 1 Semester

Angebotsrhythmus Modul

- The module will be offered every winter term.

Aufnahmekapazität Modul

- unbegrenzt

Hinweise

Topics for projects will be presented in a colloquium at the end of the summer term.

Students can chose to perform the practical work in either of the research groups of the Department of Psychology. External projects are possible upon approval (information and approval form can be found on the programme website).

Modullevel

- MM (Mastermodul / Master module)

Modulart

- Pflicht / Mandatory
Modulart
- Pflicht / Mandatory

Lern-/Lehrform / Type of program
- practical work and regular seminar meetings in the group where the project is performed

Vorkenntnisse / Previous knowledge

PLEASE NOTE:

Many projects require knowledge of either EEG, IMRI, TBS, or HCI analysis! We strongly recommend to take either psy170: Neurophysiology, psy270/276: IMRI Data Analysis, psy280: Transcranial Brain Stimulation, or psy220 Human Computer Interaction prior to the practical project.

It is expected that students show basic knowledge of Matlab programming before starting the practical project.

Prüfung

<table>
<thead>
<tr>
<th>Gesamtmodul</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poster presentation in a student symposium (30% of the grade) and daily project work (70% of the grade).</td>
<td>usually end of April</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Seminar</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please select the group in which you perform your practical project.</td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
<td></td>
</tr>
</tbody>
</table>

| Praktikum | attendance as necessary for your project (~ 200h) | 0.00 | WiSe | 0 h |

Präsenzzeit Modul insgesamt
- 28 h
psy270 - Functional MRI Data Analysis

Modulebezeichnung Functional MRI Data Analysis
Modulcode psy270
Kreditpunkte 9.0 KP
Workload 270 h

Verwendet in Studiengängen
- Master Neurocognitive Psychology (Master) > Mastermodule

Ansprechpartner/-in
- Modulverantwortung
 - Carsten Gießing

Teilnahmevoraussetzungen
- Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele
- Goals of module:
 Students will learn the basics about planning and performing a neuroimaging study. They will focus on the statistical and methodological background of functional neuroimaging data analysis and analyse a sample functional MRI data set.

Comptenecies:
- ++ experimental methods
- ++ statistics & scientific programming
- + data presentation & discussion
- ++ group work

Modulinhalte
- Part 1: Functional MRI data analysis (lecture): summer
- Part 2: Planning, performance and analysis of functional neuroimaging studies using MATLAB-based software (seminar): summer
- Part 3: Hands-on fMRI data analysis with SPM (exercise): summer

Literaturempfehlungen

Links
- Englisch

Dauer in Semestern 1 Semester

Angebotsrhythmus Modul
- The module will be offered every summer term.

Aufnahmekapazität Modul
- 15
 - The remaining places are reserved for Biology and Neuroscience students.

Hinweise
- Since the module is primarily offered for the Master's programme Biology it has to be offered as a blocked course. Please contact us if you are interested in the module but have problems with interfering other courses.

 PLEASE NOTE:
 We strongly recommend to take either psy170, psy270, psy276, psy280, or psy220 to gain methodological competencies (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master's theses!

 You can take either psy270 or psy276 due to overlapping content.

Modullevel
- MM (Mastermodul / Master module)

Modulart
- Wahlpflicht / Elective

Vorkenntnisse / Previous knowledge
- Students need to have solid statistical knowledge as taught in the Introductory Course Statistics and in Research Methods.

Vorkenntnisse / Previous knowledge
- Students need to have solid statistical knowledge as taught in the Introductory Course Statistics and in
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2.00</td>
<td>SoSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>4.00</td>
<td>SoSe</td>
<td>56 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td>SoSe</td>
<td>14 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt: 98 h

Research Methods.

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszenten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>end of summer term</td>
<td>Oral or written examination</td>
</tr>
</tbody>
</table>

Required active participation for gaining credits:
1-2 presentations
participation in discussions on other presentations
attendance of at least 70% in the seminars and exercises (use attendance sheet that will be handed out in the beginning of the term).
psy276 - Essentials of fMRI Data Analysis with SPM and FSL

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Essentials of fMRI Data Analysis with SPM and FSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy276</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ansprechpartner/-in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortung</td>
</tr>
<tr>
<td>Riklef Weerda</td>
</tr>
<tr>
<td>Peter Sörös</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilnahmevoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrolment in Master's programme Neurocognitive Psychology, 3rd semester or higher.</td>
</tr>
</tbody>
</table>

Kompetenzziele

Goals of this module:
This module offers a concise introduction to the basic principles of functional magnetic resonance imaging (fMRI). Students will gain essential knowledge about experimental design, data collection and analysis. Special emphasis will be laid on the statistical background of fMRI data analysis and a hands-on introduction to SPM and FSL, two widely-used and free software packages for fMRI data analysis and results visualisation.

Competencies:
+ Neuropsychological / neurophysiological knowledge
+ interdisciplinary knowledge & thinking
 ++ experimental methods
 ++ statistics & scientific programming
+ data presentation & discussion
+ independent research
+ scientific literature
+ ethics / good scientific practice / professional behaviour
+ critical & analytical thinking
+ group work

Modulinhalte

- Methodological basics of functional magnetic resonance imaging (fMRI)
- Basic principles of fMRI experimental design and data collection
- Statistical background of fMRI data analysis
- Hands-on training in fMRI data analysis and results visualisation with SPM and FSL

Literatureempfehlungen

Links

- Unterrichtssprache: Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: The module will be offered in the winter term, blocked in the first half (seven weeks).
- Aufnahmekapazität Modul: unbegrenzt
- Hinweise: PLEASE NOTE: We strongly recommend to take either psy170, psy270, psy276, psy280, or psy220 to gain methodological competencies (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master's theses! You can take either psy270 or psy276 due to overlapping content.

- Modullevel: MM (Mastermodul / Master module)
- Modulart: Wahlpflicht / Elective

Lern-/Lehrform / Type of program

- Part 1: 1 seminar (2 SWS)
- Part 2: 1 supervised exercise (3 SWS)

Vorkenntnisse / Previous knowledge
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>end of winter term</td>
<td>written exam</td>
</tr>
<tr>
<td>Required active participation for gaining credits: 1 presentation participation in discussions on other presentations attendance of at least 70% in the seminars and exercises (use attendance sheet that will be handed out in the beginning of the term).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>3.00</td>
<td>WiSe</td>
<td>42 h</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>70 h</td>
</tr>
</tbody>
</table>
psy280 - Transcranial Brain Stimulation

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Transcranial Brain Stimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy280</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>Modulverantwortung</td>
</tr>
<tr>
<td></td>
<td>Christoph Siegfried Herrmann</td>
</tr>
</tbody>
</table>

Kompetenzziele

Goals of module: Students will gain theoretical and practical knowledge on various non-invasive brain stimulation techniques.

Competencies:
- ++ Neuropsychological / neurophysiological knowledge
- ++ experimental methods
- + statistics & scientific programming
- + scientific literature
- + ethics / good scientific practice / professional behaviour

Modulinhalte

In this module, we will introduce the theoretical concepts, neurophysiological underpinnings and neurocognitive as well as clinical applications of various non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and transcranial random noise stimulation (tRNS). A focus will be tACS, because it is especially suited to modulate brain oscillations which have been shown to correlate with cognitive processes.

Part 1: Introduction to transcranial brain stimulation (lecture): summer

- Historical overview of brain stimulation
- Different techniques (TMS, IDCS, IACS, tRNS)
- Physiological mechanisms (entrainment, after-effects etc.)
- The use of transcranial brain stimulation in cognitive neuroscience - Experimental parameters (intensity, electrode montage, etc.)
- Pros and cons of TMS vs. tACS
- Technical aspects (artifact correction, modelling current flow, etc.)
- Safety issues
- Ethical considerations of brain stimulation

Part 2: Effects of tACS on physiology and cognition (seminar): summer

- Physiology of tACS (on-line and after-effects)
- Modulating cognitive functions (e.g. memory, attention, and perception)
- Clinical applications of IACS
- Hands-on experience in the lab

Literaturempfehlungen

Links

- Unterrichtssprache: Englisch
- Dauer in Semestern: 1 Semester
- Angebotsrhythmus Modul: The module will be offered every summer term.
- Aufnahmekapazität Modul: 10

Hinweise

We strongly recommend to take either psy170, psy270, psy276, psy280, or psy220 to gain methodological competencies (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master's thesis!

Modullevel

- MM (Mastermodul / Master module)

Modulart

- Wahlpflicht / Elective
Lern-/Lehrform / Type of program

Part 1: lecture; Part 2: seminar

Vorkenntnisse / Previous knowledge

Gesamtmodul
- **Prüfung**: during summer term
- **Prüfungsform**: Oral presentation in the seminar.

 Required active participation for gaining credits: attendance of at least 70% in the seminar (use attendance sheet that will be handed out in the beginning of the term).

Lehrveranstaltungsform / SWS / Angebotsrhythmus / Workload Präsenzzeit

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2.00</td>
<td>SoSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td>SoSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
psy241 - Computation in Neuroscience

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Computation in Neuroscience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy241</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>Modulverantwortung</td>
</tr>
<tr>
<td></td>
<td>Johannes Voßkuhl</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>Enrolment in Master's programme Neurocognitive Psychology.</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>Goals of module: Students will acquire scientific programming skills as well as specific knowledge of computational methods in neuroscience and cognition. They will learn to judge the appropriateness and complexity of computational problems and solutions.</td>
</tr>
</tbody>
</table>
| | Competencies:
| | + Neuropsychological / neurophysiological knowledge
| | + experimental methods
| | ++ statistics & scientific programming
| | + critical & analytical thinking
| | + knowledge transfer
| | + group work |
| Modulinhalte | Part 1: Introduction to scientific programming I (theoretical-practical seminar) |
| | • Basic data types and structures
| | • Flow control (conditions, loops, errors)
| | • Testing and debugging
| | • Functions |
| | Part 2: Introduction to scientific programming II (theoretical-practical seminar) |
| | • Classes and objects
| | • Parallel processing
| | • Frequency analysis methods
| | • EEG processing |
| | Part 3: Scientific programming I (excercise) |
| | • Implementation of examples from part 1 |
| | Part 4: Scientific programming II (excercise) |
| | • Implementation of examples from part 2 |
| Literatureempfehlungen | • Mathworks (2009): MATLAB online documentation
| Links | Unterrichtssprache: Englisch |
| | Dauer in Semestern: 2 Semester |
| | Angebotshäufigkeit Modul: The module will be offered every winter term. |
| | Aufnahmekapazität Modul: unbegrenzt |
| | Modullevel: MM (Mastermodul / Master module) |
| | Modulart: Pflicht / Mandatory |
| | Lern-/Lehrform: Part 1: theoretical-practical seminar; Part 2: theoretical-practical seminar; Part 3: excercise; Part 4: excercise; additional tutorials |
Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>exam period at the end of the summer term</td>
<td>The participants will have to independently develop and program a solution for a given neuroscientific problem. Both the written code as well as the documentation of the approach taken will be assessed. Bonus for regularly handing in a total of 12 programming exercises.</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorie-Praxis-Seminare</td>
<td>2 semester hours per week for winter and summer term</td>
<td>4.00</td>
<td>SoSe und WiSe</td>
<td>56 h</td>
</tr>
<tr>
<td>Übung</td>
<td>1 semester hour per week for winter and summer term.</td>
<td>2.00</td>
<td>SoSe und WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Tutorium</td>
<td>2 semester hours per week in winter and summer term</td>
<td>0.00</td>
<td>SoSe und WiSe</td>
<td>0 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

84 h
Psy250 - Internship

Modulebezeichnung: Internship
Modulcode: psy250
Kreditpunkte: 15.0 KP
Workload: 450 h

Verwendet in Studiengängen:
- Master Neurocognitive Psychology (Master) > Mastermodule

Ansprechpartner/-in:
- Modulverantwortung
 Cornelia Kranczioch-Debener

Teilnahmevoraussetzungen:
Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele:
Goals of module:
Students will to obtain provide direct experience in the field of psychology. This includes being involved in the provision of psychological or neuropsychological services in real-life situations, such as neuropsychological testing or counselling in a hospital or mental health clinic, or conducting and contributing to psychological research. The internship should be chosen by the student such that it can provide a meaningful educational opportunity that will help students to decide on their preferred area of work.

Competencies:
++ expert neuropsychological/neurophysiological knowledge
+ interdisciplinary knowledge & thinking
+ experimental methods
++ ethics / good scientific practice / professional behavior
++ knowledge transfer
+ project & time management

Modulinhalte:
The students will work in a field of psychology of personal choice. The student will and get to know and participate in the daily work routines of a psychologist.

Literaturempfehlungen:
Links:
Information on internships and necessary forms: https://uol.de/en/psychology/master/course-overview/

Unterrichtsprachen:
Englisch, Deutsch

Dauer in Semestern:
1 Semester

Angebotsrhythmus Modul:
unregelmäßig

Aufnahmekapazität Modul:
unbegrenzt

Hinweise:
The internship lasts 450 hours (12 weeks). It can be performed at 2 different institutions with a minimum duration of 150 hours (4 weeks) for each part. Your supervisor must be a psychologist.

Please note that details are regulated in the exam regulations.

A blank internship certificate and the report form can be found on the programme website.

To generate ideas, a folder with information on internships that other students have performed is available in the office of Dr. Cornelia Kranczioch.

Modullevel:
MM (Mastermodul / Master module)

Modulart:
Pflicht / Mandatory

Lern- / Lehrform / Type of program:
internship at (external) institution

Vorkenntnisse / Previous knowledge:

Prüfung:
Gesammodul:
Individual; 2-3 possibilities per semester to present the internship to other students

The students have to hand in a written report (2-3 pages) and give a short presentation about their internship. They have to show a certificate from the institution at which they performed the internship. The internship is evaluated as pass/fail.

Lehrveranstaltungsform:
Praktikum

SWS:
0.00

Angebotsrhythmus:
SoSe und WiSe

Workload Präsenzzeit:
0 h / 450 h attendance at internship institution
psy120 - Psychological diagnostics

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Psychological diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy120</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Ansprechpartner/-in

- Andrea Hildebrandt
- Andreas Hellmann

Prüfungsberechtigt

- Andrea Hildebrandt
- Andreas Hellmann

Modulberatung

- Stefan Debener

Teilnahmeverzweigten

Enrolment in Master’s programme Neurocognitive Psychology.

Kompetenzziele

Goals of module:

Students will acquire specific knowledge about psychological assessment and will be trained to utilize this knowledge within a research context and in applied settings. With respect to research applications they will learn about traditional and modern test theories and about their usage in the domain of test construction and the systematic design of interviews and observational methods. From the perspective of applied assessment, students will reflect on the assessment process as a whole. They will learn how to analyze cases (“case conceptualization”), how to plan and conduct the information assessment phase, how to record and summarize collected data and how to integrate across the multitude of information in order to draw conclusions about the case given specific diagnostic strategies (status vs. process assessment and norm oriented vs. criterion oriented assessment, including classificatory decisions). Finally, students will learn about the requirements of report generation in written an oral form given a specific applied context. Ethical guidelines and quality norms will be an implicit topic in all courses in the module.

Competencies:

- Neuropsychological / neurophysiological knowledge
- Interdisciplinary knowledge & thinking
- Ethics / good scientific practice / professional behavior
- Critical & analytical thinking

Modulinhalte

Part 1: Introduction to Psychological Assessment (lecture)

- Psychological assessment as a decision process – descriptive and prescriptive models
- Theories of reliability (classical and modern approaches)
- Theories of validity (classical and modern approaches)
- Assessment methods, their construction and design, quality criteria
- The logic of decision making in the assessment process
- Psychometrics to single cases
- Summarizing results and writing reports

Part 2: Psychological Testing (seminar)

- Psychometric bases of tests and questionnaires
- Types of tests and questionnaires
- Challenges in psychological testing (for example faking good vs. bad)
- Examples of published tests and questionnaires
- Exercising test applications, scoring and result interpretations

Part 3: Assessment in Clinical Neuropsychology (seminar)

- Specific knowledge
- Exercises in testing / practising tests

Literaturempfehlungen

Will be specified in the courses.

Links

- Unterrichtssprache: Englisch
- Dauer in Semestern: 2 Semester
Angebotsrhythmus Modul
The module will be offered every winter term.

Aufnahmekapazität Modul
unbegrenzt

Hinweise
If you want to earn the bonus, you need to use the official bonus sheet to prove your attendance which will be handed to you in the beginning of the winter term.

Modullevel
MM (Mastermodul / Master module)

Modulart
Pflicht / Mandatory

Lern-/Lehrform / Type of program
Part 1: 1 lecture ; Part 2: 1 seminar; Part 3: 1 seminar

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>summer term</td>
<td>The module will be tested by a practical exercise (test application and protocol). Bonus for two presentations or test executions (max.) and attendance of at least 70% in the seminars. Group presentations can be counted as one half.</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>2.00</td>
<td>WiSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>4.00</td>
<td>SoSe</td>
<td>56 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
84 h
psy275 - Essentials of fMRI Data Analysis with SPM and FSL

Modulbezeichnung
Essentials of fMRI Data Analysis with SPM and FSL

Modulcode
psy275

Kreditpunkte
6.0 KP

Workload
180 h
(Attendance: 56 h. (4 SWS), reading and practising: 124 h., total: 180 h.)

Verwendet in Studiengängen
• Master Neurocognitive Psychology (Master) > Mastermodule

Ansprechpartner/-in
Modulverantwortung
• Riklef Weerda
• Peter Sörös

Teilnahmevoraussetzungen
Enrolment in Master’s programme Neurocognitive Psychology, 3rd semester or higher.

Kompetenzziele
• Neuropsychological / neurophysiological knowledge
• interdisciplinary knowledge & thinking
• experimental methods
• statistics & scientific programming
• data presentation & discussion
• independent research
• scientific literature
• ethics / good scientific practice / professional behaviour
• critical & analytical thinking
• group work

This module offers a concise introduction to the basic principles of functional magnetic resonance imaging (fMRI). Students will gain essential knowledge about experimental design, data collection and analysis. Special emphasis will be laid on the statistical background of fMRI data analysis and a hands-on introduction to SPM and FSL, two widely-used and free software packages for fMRI data analysis and results visualisation.

Modulinhalte
1. Methodological basics of functional magnetic resonance imaging (fMRI)
2. Basic principles of fMRI experimental design and data collection
3. Statistical background of fMRI data analysis
4. Hands-on training in fMRI data analysis and results visualisation with SPM and FSL

Literaturempfehlungen

Links

Unterrichtssprache
Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
The module will be offered in the winter term, blocked in the first half (seven weeks).

Aufnahmekapazität Modul
20

Hinweise
PLEASE NOTE:
We strongly recommend to take either psy170, psy270, psy275, psy280, or psy220 to gain methodological competences (EEG, fMRI, TBS, HCI) that are needed for most practical projects and Master’s theses!

Modullevel
MM (Mastermodul / Master module)

Modulart
Wahlpflicht / Elective

Lern-/Lehrform / Type of program
Part 1: 1 seminar (1 SWS)
Part 2: 1 supervised exercise (3 SWS)

Vorkenntnisse / Previous knowledge

Prüfung
Prüfungszeiten
Prüfungform
Gesamtdatum
end of winter term
written exam

Lehrveranstaltungsform
Kommentar
SWS
Angebotsrhythmus
Workload Präsenzezeit
Seminar
1.00
WiSe
14 h
Attendance: 56 h. (4 SWS), reading and practising: 124 h., total: 180 h.

Übung
3.00
WiSe
42 h
Attendance: 56 h. (4 SWS), reading and practising: 124 h., total: 180 h.
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>
psy200 - Neuropsychology

Modulbezeichnung Neuropsychology
Modulcode psy200
Kreditpunkte 9.0 KP
Workload 270 h
Verwendet in Studiengängen • Master Neurocognitive Psychology (Master) > Mastermodule
Ansprechpartner/-in Modulverantwortung
 » Stefan Debener
Teilnahmevoraussetzungen Enrolment in Master's programme Neurocognitive Psychology.
Kompetenzziele Goals of module:
Students will learn to understand changes in thinking and behaviour that may arise from brain dysfunctions (part 1, 4), acquire specific knowledge on cognitive rehabilitation (part 2), and learn to understand, communicate and evaluate progress in clinical practice and experimental research in neuropsychology (part 3, 4).

Competencies:
++ neuropsychological / neurophysiological knowledge
+ interdisciplinary knowledge & thinking
++ experimental methods
+ data presentation & discussion
++ scientific literature
+ critical & analytical thinking
+ scientific communication skills

Modulinhalte Part 1: Introduction to Clinical Neuropsychology (lecture)

• Cortical lobes (anatomy, functions, lesion symptoms, neuropsychological tests)
• Higher functions (learning & memory, language, emotion, spatial behavior attention)
• Plasticity and disorders (development, learning and reading disabilities, recovery)

Part 2: Cognitive Neurorehabilitation (seminar)

• Behavioural and neuropsychological approaches
• neurofeedback in neurorehabilitation and ADHD
• memory rehabilitation
• effects of physical activity on cognition
• motor recovery

Part 3: Research Colloquium Clinical and Experimental Neuropsychology (colloquium)

• Presentations covering recent advances in the field of Experimental and Clinical Neuropsychology

Part 4: Topics in Clinical Neuropsychology (seminar; taught partly in German)

• Clinical neuroanatomy
• Neurodegenerative diseases
• Dementia

Literaturrempfehlungen

Links

Unterrichtsprachen Englisch, Deutsch
Dauer in Semestern 2-3 Semester
Angebotsrhythmus Modul The module will be offered every winter term.
Aufnahmekapazität Modul 30 (Part 4 is not restricted.)

Hinweise 3 CP for each module part, choose 3 out of 4 parts! Part 1 (lecture) is mandatory.
If you want to earn the bonus, you need to use the official bonus sheet to prove your attendance which will be handed to you in the beginning of the winter term.

Modullevel MM (Mastermodul / Master module)
Modulart
Wahlpflicht / Elective

Lern-/Lehrform / Type of program
Part 1: lecture; Part 2: seminar; Part 3: colloquium; Part 4: seminar

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>exam period at the end of winter term</td>
<td>The module will be tested with a written exam of 2 h duration. Bonus for a presentation and participation in discussions on other presentations and attendance of at least 70% in the seminars and colloquium.</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform
Kommentar
SWS
Angebotsrhythmus
Workload Präsenzzeit

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Seminar</th>
<th>Kolloquium</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>4.00</td>
<td>2.00</td>
</tr>
<tr>
<td>WiSe</td>
<td>SoSe und WiSe</td>
<td>SoSe</td>
</tr>
<tr>
<td>28 h</td>
<td>56 h</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
112 h
psy140 - Minor

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>psy140</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>9.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Neurocognitive Psychology (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Ansprechpartner/-in
- Kerstin Bleichner
- Jochem Rieger

Teilnahmevoraussetzungen
Enrolment in Master's programme Neurocognitive Psychology.

Kompetenzziele
Goals of module:
Students will gain an overview of non-psychological topics related to cognitive neuroscience and neuropsychology. They will see how psychological theories apply in other fields. Students can strengthen their own professional profile.

Competencies:
++ interdisciplinary knowledge & thinking

Modulinhalte
Students can take Master modules and courses from the fields
- Biology
- Neurosciences
- Computer Science
- Physics
- Mathematics
- Pedagogy
- Philosophy
- related fields

The content of the courses/modules taken as Minor needs to be clearly different from the contents of the Neurocognitive Psychology modules.

A list of approved courses/modules can be found on our website.

Upon approval, German-speaking students can attend a career-relevant language course (i.e. necessary for internship, practical project or Master's thesis; maximum of 6 CP for this module).

Students whose first language is not German, may take German classes.

We recommend taking modules/courses that strengthen your own professional profile.

Literaturempfehlungen

Links
List of approved courses/modules and approval form: https://uol.de/en/psychology/master/course-overview/

Unterrichtsprachen
Englisch, Deutsch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
irregular

Aufnahmekapazität Modul
unbegrenzt

Hinweise
PLEASE NOTE:
- If you want to take a module/course which is not listed in the list of approved courses/modules, please request approval BEFORE you start the course/module (list of approved courses/modules and approval form can be found on our website)
- Bachelor level courses are NOT acceptable. Note that Bachelor level courses can be listed in some Master programmes (e.g. Master of Education). This does not qualify a Bachelor level course for the Minor module.
- It is your responsibility to ask the teacher whether you can take part.

Modullevel
MM (Mastermodul / Master module)

Modulart
Pflicht / Mandatory

Lern-/Lehrform / Type of program
Lectures and seminars (depends on the chosen modules)

Vorkenntnisse / Previous knowledge

Prüfung

Gesamtmodul
If grades are earned in the minor, those are counted as pass/fail. Certificates for grades can be separately requested from the examination office.

Lehrveranstaltungsform
Vorlesung oder Seminar
(Please refer to the module description for information on the courses you can have counted towards psy140 Minor.)

<table>
<thead>
<tr>
<th>SWS</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe und WiSe</td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>0 h / Depends on the chosen course, but at least 14 hours attendance.</td>
</tr>
</tbody>
</table>
Abschlussmodul

mam - Masterabschlussmodul

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Masterabschlussmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>mam</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h (attendance in the lab meetings: 28h (2 SWS); thesis work: 872 hours)</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>• Master Neurocognitive Psychology (Master) > Abschlussmodul</td>
</tr>
</tbody>
</table>

Ansprechpartner/-in

Teilnehmervoraussetzungen

Enrolment in Master's programme Neurocognitive Psychology. Completion of at least 60 credit points in other modules including module psy241 or psy240 (Computation in Neuroscience). Assignment of a topic by thesis supervisor and official application with the examination office.

Kompetenzziele

Goals of module:

Students will demonstrate that they are able to perform a psychological experiment according to scientific standards. In addition, they will demonstrate that they are acquainted with the necessary methods and can present their results orally and in written form.

Competencies:

++ experimental methods
+ statistics & scientific programming
+ data presentation & discussion
++ independent research
+ scientific literature
++ scientific English / writing
+ ethics / good scientific practice / professional behavior
+ critical & analytical thinking
+ scientific communication skills
+ knowledge transfer
++ project & time management

Modulinhalte

Part 1: Master's thesis

The students work on a given topic in cognitive neuroscience using literature research and the appropriate experimental methods.

Part 2: Master's colloquium

The preparation of the thesis is accompanied by regular participation in the lab meetings of the groups in which the thesis is performed. Students present their study design at the beginning of their thesis preparation and their results towards the end. In addition, they listen to the presentations of the other lab members and students in the group.

Literaturempfehlungen

Rules and guidelines for Master's theses are explained here: https://uol.de/en/psychology/master/course-overview/

Unterrichtssprache

Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

irregular

Aufnahmekapazität Modul

unbegrenzt

Hinweise

If you want to do a Master's thesis outside the Department of Psychology, please follow the rules stated on the program website. We encourage students to use the LaTeX template provided on the course website.

Modullevel

Abschlussmodul (Abschlussmodul / Conclude)

Modulart

Pflicht / Mandatory

Lern-/Lehrform / Type of program

individual thesis preparation with supervision

Vorkenntnisse / Previous knowledge

contact your supervisor for details

Prüfung

Prüfungszeiten

The written thesis will be evaluated by the
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>supervisor and an additional reviewer (90%). The oral presentation and defence of the thesis results will be evaluated (10%).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Seminar und Projekt</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SWS</th>
<th>2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angebotsrhythmus</td>
<td>SoSe und WiSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload Präsenzzeit</th>
<th>28 h (Attendance as required for your project and 2 hours per week for participating in the lab meetings.)</th>
</tr>
</thead>
</table>