Modulhandbuch Microbiology - Master-Studiengang

Datum 17.09.2019

Mastermodule

mar500 - Physiology and diversity of microorganisms

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Physiology and diversity of microorganisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>mar500</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Microbiology (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Ansprechpartner/-in

- Modulverantwortung
 - Bert Engelen
- Modulberatung
 - Lehrende der Mikrobiologie

Kompetenzziele

The students know the cells of pro- and eukaryotes. They understand the basic mechanisms of microbial metabolism. They know the physiological and phylogenetic groups of prokaryotes, eukaryotic microorganisms and viruses. They have an overview over applied aspects of microbiology.

Modulinhalte

Lecture + Exercises: Physiology and Life modes of Prokaryotes: Cellular and subcellular organization, assimilation and dissimilation, energy metabolism, transport, microbial growth, respiration, chemiosmotic theory, fermentation, anaerobic respiration, lithotrophy, photosynthesis, prokaryotic diversity, systematics and taxonomy, Archaea, Bacteria, Eukarya, pathogenic prokaryotes, evolution, microbiological techniques

Lecture + Exercises: Microbial Diversity The eukaryotic cell, diversity, systematics and taxonomy of prokaryotes and eukaryotic microbes, algae, protozoa, fungi, slime molds, phagocytosis, symbioses, pathogenic eukaryotes, diversity of eukaryotic microbes, components of viruses, virus reproduction, bacteriophages, diversity of viruses, virus diseases

Broadening lectures, one out of the following lectures:
- Biological significance of suspended matter
- Sediment Microbiology

This lecture presents state of the art knowledge about occurrence, life and activities of microorganisms in these environments. Physiological issues are addressed as well as evolutionary and applied aspects. Topics are:

- Formation, diagenesis and special features of sediments
- physico-chemical conditions and geological records
- interpretation of gradients
- microbes and biological processes in sediments
- methods for cultivation of sediment organisms
- molecular methods
- biogeochemical methods
- quantification of prokaryotes and viruses

(Teacher: Engelen; Form of study/semester periods per week: 4 week block, 2 lectures per week, Presence: 16 hours, private study: 74 hours; Credits: 3; 2nd Semester, Learning target/competences: Physico-chemical conditions, microbial processes and methods of studying these processes in sediments)

Broadening Seminar: Scientific writing and presentation

The students know the importance and structure of scientific publications. They have learned to critically read those, and know the requirements of different parts. They are trained to to give oral presentations and know how to produce scientific reports and posters. The know how to use the library and how to find relevant literature on the internet, and how to use data banks like Endnote. They have learned how to present themselves for an application.

Seminar Scientific writing and presentation:
- Types and relevance of scientific publications
- Parts of scientific publications step by step:
 - Abstract, Introduction, Results, Discussion
 - University facilities for literature search
 - Oral presentation
 - How to prepare posters
 - Tips for using PowerPoint, Word and Endnote
 - Job application
(Courses: Seminar (2 SPPW, 3 CP); Teachers: Engelen; Work load: Presence: 30 hours, private study: 60 hours; Passing criteria: Oral presentation or discussion of parts of scientific papers)

- alternative lectures of the MSc MUWI or Biology program (see current online schedule)

Excursions to companies and scientific institutions
<table>
<thead>
<tr>
<th>Literaturempfehlungen</th>
<th>Brock. Microbiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Unterrichtssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel</td>
<td>---</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
</tbody>
</table>

Lern-/Lehrform / Type of program	Lecture + Exercises: Physiology and life modes of prokaryotes (2 + 1 semester periods per week [SPPW], 3 CP)
	Lecture + Exercises : Microbial Diversity (2 +1 SPPW, 3 CP)
	1 broadening lecture or seminar (Biological significance of suspended matter / Sediment microbiology / Broadening Seminar: Scientific writing and presentation) (2 SPPW, 3 CP)
	Microbiological + ICBM Colloquium (2 CP)
	Excursions (1 CP)

Vorkenntnisse / Previous knowledge	
Prüfung	
Prüfungszeiten	
Prüfungsform	
Gesamtmodul	At the end of the lecture period.
	Two written tests about the contents of the lectures 'Physiology and life modes of prokaryotes' and Microbial Diversity.
	At least 50 % of the reachable points in written tests about the two lectures mentioned above.

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>6.00</td>
<td></td>
<td></td>
<td>84 h</td>
</tr>
<tr>
<td>Übung</td>
<td>2.00</td>
<td></td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Exkursion</td>
<td>1.00</td>
<td></td>
<td></td>
<td>14 h</td>
</tr>
</tbody>
</table>

| **Präsenzzeit Modul insgesamt** | 126 h |

2 / 22
mar510 - Molecular Mechanisms and Interactions

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Molecular Mechanisms and Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>mar510</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Microbiology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>Modulverantwortung</td>
</tr>
<tr>
<td></td>
<td>Ralf Andreas Rabus</td>
</tr>
<tr>
<td></td>
<td>Modulberatung</td>
</tr>
<tr>
<td></td>
<td>Lehrende der Mikrobiologie</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen

Kompetenzziele

The students know the molecular mechanisms of metabolism, genetics and evolution. They know regulatory mechanisms on the molecular level and feedback mechanisms between organisms. They know the basics of microbial ecology and the biogeochemistry of important microbial habitats. They know molecular and chemical-analytical methods of microbiology. The have experience with the field study of microorganisms.

Modulinhalt

Lecture + exercises: Molecular Microbiology
Part I on DNA: structure, DNA-proteins, DNA-replication, recombination, transposition, mutation, repair, plasmids and DNA-exchange
Part II on gene expression: transcription, regulation of transcription, translation
Part III on enzymes: protein structures, basic concepts and kinetics, catalytic and regulatory strategies
Part IV on regulatory networks: diauxie and catabolite repression, oxygen regulation, chemotaxis

Lecture + exercises: Microbial Ecology
Principles of biogeochemistry, global element cycles, mineralization of organic substances, chemotaxis, aquatic habitats, terrestrial habitats, deep subsurface biosphere, syntrophy and symbiosis, microbes in earth history, methods in microbial ecology, isotope fractionation, applied microbiology, bioremediation

Broadening Lecture: Scientific writing and presentation
Presentation and analysis of structure und style of scientific publications, presentation and discussion of own written elaborations
Excursions into the field

Literaturempfehlungen

Molecular Microbiology:
Stryer – Biochemistry
Voet – Biochemistry
Knippers – Molekulare Genetik
Snyder – Molecular Genetics of Bacteria
Brock - Microbiology

Links

Unterrichtssprache | Englisch |
Dauer in Semestern | 1 Semester |
Angebotsrhythmus Modul | jährlich |
Aufnahmekapazität Modul | unbegrenzt |
Modullevel | --- |
Modulart | Wahlpflicht / Elective |

Lern-/Lehrform / Type of program

Lecture + Exercises: Molecular microbiology, (2 +1 SPPW, 3 CP)
Lecture + Exercises: Microbial ecology (2 + 1 SPPW, 3 CP)
Broadening lecture: Scientific writing and presentation (2 SPPW, 3 CP)
Excursion (1 CP)
Microbiological + ICBM Colloquium (2 CP)

Vorkenntnisse / Previous knowledge | none |

Prüfung

Gesamtmodul
At the end of the lecture period, the exact date will be announced during the course.

Prüfungszeiten
Two written tests about the contents of the lectures 'Molecular Microbiology' and 'Microbial Ecology'. At least 50 % of the reachable points in written tests about the two lectures mentioned above. Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
<tr>
<td>Übung</td>
<td></td>
<td>2.00</td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Exkursion</td>
<td></td>
<td>1.00</td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>126 h</td>
</tr>
</tbody>
</table>
mar520 - Main Module Proteomics

<table>
<thead>
<tr>
<th>Modulebezeichnung</th>
<th>Main Module Proteomics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>mar520</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Microbiology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>Modulverantwortung</td>
</tr>
<tr>
<td></td>
<td>Ralf Andreas Rabus</td>
</tr>
<tr>
<td></td>
<td>Modulberatung</td>
</tr>
<tr>
<td></td>
<td>Lars Wöhlbrand</td>
</tr>
<tr>
<td></td>
<td>N. N.</td>
</tr>
</tbody>
</table>

Teilnahmevereinschränkungen

- Lecture: Physiology and diversity of prokaryotes
- Lecture: Molecular Microbiology

Kompetenzziele

The students are getting directly involved in actual scientific projects in the area of physiological and/or meta-proteomics (under guidance). They

- get acquainted with state-of-the-art proteomic concepts and technologies,
- know how to write concise scientific protocols,
- know how to present/discuss their results in public.

Modulinhalte

Functional proteomics: Daily lectures introduce the students to theory and concepts of modern proteomics: (i) separation of cellular compartments and protein extraction, (ii) gel-based and -free protein separation, (iii) gel-staining, protein detection and quantification by image analysis, (iv) integrative mass spectrometry-based protein identification, (v) meta-proteomics, and (vi) focused genomic analysis. Each student will prepare a seminar presentation on selected publications relevant for the actual scientific project. The following sequence of experiments will be conducted:

- extraction and quantification of total protein from prepared cell samples (incl. separation of compartments),
- protein separation by SDS-PAGE and staining with Coomassie, silver and/or fluorescent dyes,
- digital image acquisition and analysis,
- manual and/or automated band excision,
- protein identification by nanoLC-ESI-MS/MS,
- nanoLC-MALDI-coupling and protein identification by MALDI-TOF-MS/MS,
- Physiological interpretation of predicted protein functions and relevant genomic context.

Literaturempfehlungen

Lottspeich - Bioanalytik

Links

Unterrichtssprache: Englisch
Dauer in Semestern: 1 Semester
Angebotsrhythmus Modul: jährlich
Aufnahmekapazität Modul: unbegrenzt
Hinweise: 12 CP | SE; PR | 2. FS | Rabus
Modulevel: ---
Modulart: je nach Studiengang Pflicht oder Wahlpflicht
Lern-/Lehrform / Type of program: Seminar (2 CP), practical course (10 CP)
Vorkenntnisse / Previous knowledge

Prüfung

Gesamtmodul: Announced at the beginning of the course.

Prüfungszeiten: One assessments of examination: Portfolio: Written protocol and contribution to the seminar (seminar presentation)

Prüfungsform: Seminar presentation (25%), written protocol (75 %), Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or...
<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Lehrveranstaltungsform</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>2.00</td>
<td></td>
<td></td>
<td>28 h</td>
</tr>
<tr>
<td>Praktikum</td>
<td>8.00</td>
<td></td>
<td></td>
<td>112 h</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>140 h</td>
</tr>
</tbody>
</table>
mar530 - Main Module Ecophysiology of prokaryotes

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Main Module Ecophysiology of prokaryotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>mar530</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Microbiology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>Modulverantwortung</td>
</tr>
<tr>
<td></td>
<td>• Bert Engelen</td>
</tr>
</tbody>
</table>

Kompetenzziele

The students can contribute to current scientific projects (under guidance). They know modern analytical techniques. They know and understand recent scientific literature. They can write scientific reports, present their results and discuss them in the public.

Modulinhalte

"Ecophysiology of prokaryotes": Projects derived from current scientific programs are carried out, typically in groups of two students guided by a senior scientist or PhD student. Typical project deal with:

- Anaerobic processes
- Molecular analysis of microbial communities
- Sediment microbiology
- Physiological experiments and activity measurements
- Impact of viruses
- Microscopic analysis of chemotaxis

In the accompanying seminar, recent scientific studies in international journals are presented by the students. The results are summarized and discussed in a protocol fulfilling scientific level requirements.

Literaturempfehlungen

will be announced

Links

- Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

jährlich

Aufnahmekapazität Modul

unbegrenzt

Modulart

Wahlpflicht / Elective

Lern-/Lehrform / Type of program

Block course, 4 weeks, seminar and laboratory work

Prüfung

Gesamtmodul

Announced during the course.

One assessments of examination:

- Portfolio: Written protocol and contribution to the seminar (seminar presentation)
- Seminar presentation (no mark), written protocol (100%)
- Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice or the course supervisor.)

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Seminar</th>
<th>2.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum</td>
<td>8.00</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

140 h
mar540 - Main Module Ecology of Marine Microbial communities

Modulbezeichnung: Main Module Ecology of Marine Microbial communities
Modulcode: mar540
Kreditpunkte: 12.0 KP
Workload: 360 h
Verwendet in Studiengängen: Master Microbiology (Master) > Mastermodule

Ansprechpartner/-in:
- Modulverantwortung: Meinhard Simon
- Modulberatung: Thorsten Henning Brinkhoff

Teilnahmevoraussetzungen: Lecture: Biological significance of suspended matter

Kompetenzziele:
The students learn how to address scientific questions and to carry out experimental and/or field work in scientific projects guided by experienced researchers and PhD students. The projects are designed in the context of ongoing research on the ecology of bacterial communities in the water column, oxic sediments and associated to eukaryotic organisms. The students learn to apply various state of the art methods and approaches in aquatic microbial ecology and how to interpret data and results of the projects. They learn to write protocols in the structure of scientific papers and to present own results and reference studies to an audience. The students gain competences in how to design experiments and address specific research questions in aquatic microbial ecology and to choose appropriate methods. They obtain practical experience in project-targeted application of state of the art methods. This enables them to obtain a more critical view on the application of these and other methods and on the validity of scientific investigations in aquatic microbial ecology.

Modulinhalte: "Ecology of marine microbes": The students carry out small projects coming out of ongoing research of PhD Thesis work and other current research of the working group. Typically a group of two of three students is guided by a senior researcher and/or a PhD student. In the accompanying seminar, recent scientific studies published in international journals are presented by the students. The results are written down and discussed in a protocol fulfilling scientific level requirements.

Literaturempfehlungen: will be announced

Links:

Unterrichtsprachen: Englisch, Deutsch
Dauer in Semestern: 1 Semester
Angebotsrhythmus Modul: jährlich
Aufnahmekapazität Modul: unbegrenzt

Modullevel: ---

Modulart: Wahlpflicht / Elective

Lern-/Lehrform / Type of program:

Vorkenntnisse / Previous knowledge:

Prüfung: to be announced during the course.

Prüfungszeiten: One assessments of examination:
- Portfolio: Written protocol and contribution to the seminar (seminar presentation)
 - Assessments of examination: Portfolio: Written protocol (75 %) and contribution to the seminar (seminar presentation 25%). Active participation in the course. This includes, e.g. specific exercises, writing a lab report and seminar presentation, according to the advice of the supervisors.

Prüfungsergebnisse:

Lehrveranstaltungsform	Kommentar	SWS	Angebotsrhythmus	Workload	Präsenzzeit Modul insgesamt
Seminar | 1.00 | | | 14 h |
Praktikum | 9.00 | | | 126 h |

Präsenzzeit Modul insgesamt: 140 h
mar560 - Profile Module Fermentation

Modulbezeichnung Profile Module Fermentation
Modulcode mar560
Kreditpunkte 6.0 KP
Workload 180 h
Verwendet in Studiengängen • Master Microbiology (Master) > Mastermodule
Ansprechpartner/-in
 Modulverantwortung
 • Ralf Andreas Rabus
 Modulberatung
 • Lars Wöhlbrand

Teilnahmevoraussetzungen Lecture: Physiology and diversity of prokaryotes (successfully completed); Lecture: Molecular Microbiology

Kompetenzziele The students are getting directly involved in actual scientific projects in the area of general physiology (under guidance). They understand the scientific rational and design of the experiment(s), get acquainted with state-of-the-art concepts and technologies for growth balancing (e.g. bioreactor), know how to write concise scientific protocols, know how to present/discuss their results in public.

Modulinhalte "Growth balancing": Daily lectures introduce the students to theory and concepts of growth stoichiometry: (i) aerobic or anaerobic growth experiments in glass vessels and/or bioreactors, (ii) experimental design, (iii) design and operating laboratory fermenters, (iv) HPLC, IC and GC-MS analysis. Each student will prepare a seminar presentation on selected publications relevant for the actual scientific project. The following sequence of experiments will be conducted:
- cultivation of bacterial pure cultures in Erlenmeyer flasks, glass bottles or controlled bioreactors
- determination of optical density, the live count, dry weight of cells and microscopic inspection during cultivation
- (dis)assembly and sterilization of fermentation devices
- operate process-controlled fermenters (incl. O2 and pH adjustments and sterile sampling)
- determine O2-consumption and CO2-production rates based on on-line GC-MS measurements
- quantification of substrate consumption for HPLC and IC
- quantitative determination and calculation growth balances and efficiencies

Literaturempfehlungen

Links

Unterrichtssprache Englisch
Dauer in Semestern 1 Semester
Angebotsrhythmus Modul jährlich
Aufnahmekapazität Modul unbegrenzt
Modullevel ---
Modulart Wahlpflicht / Elective

Lern-/Lehrform / Type of program Seminar (1 SPPW); practical course (4 SPPW)

Vorkenntnisse / Previous knowledge

Prüfung

Gesamtmodul Announced at the beginning of the course. One assessment of examination: Portfolio (seminar presentation, written protocol)
 Protocol (100 %), seminar presentation (no mark). Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)

Lehrveranstaltungsform Kommentar SWS Angebotsrhythmus Workload Präsenzzeit

Seminar 1.00 14 h
Praktikum 4.00 56 h

Präsenzzeit Modul insgesamt 70 h
mar570 - Profile Module Introduction to DNA-sequencing and sequence analysis

Modulbezeichnung
Profile Module Introduction to DNA-sequencing and sequence analysis

Modulcode
mar570

Kreditpunkte
6.0 KP

Workload
180 h

Verwendet in Studiengängen
- Master Microbiology (Master) > Mastermodule

Ansprechpartner/-in
- Modulverantwortung
 - Thorsten Henning Brinkhoff
- Prüfungsberechtigt
 - Thorsten Henning Brinkhoff
 - Liliana Cristina Moraru
- Modulberatung
 - Liliana Cristina Moraru

Teilnahmevoraussetzungen
Lecture during the course

Kompetenzziele
The students know how to
- sequence DNA by Sanger sequencing
- assemble DNA sequences
- use internet databases for sequence comparison
- use the various facilities of the NCBI database
- analyze bacterial genomes for presence of specific genes
- use Genious for genome analysis
- use ARB, databases and literature data to create phylogenetic trees
- design primers and probes
- present and discuss scientific results
- write a scientific protocol

Modulinhalte
"Introduction into DNA-sequencing and sequence analysis": The course starts with a lecture on the first two days. During the following days the participants will give seminar talks about different scientific studies for which DNA sequencing was highly relevant. DNA sequencing will be taught in the lab of the working group. Sequence analysis, introduction into the use of various internet databases, the sequence analysis program Genious and the phylogeny program ARB will be demonstrated by individual use of laptops of the institute.

Literaturempfehlungen

Links

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel

Modulart
Wahlpflicht / Elective

Lern-/Lehrform / Type of program
Seminar (1 SPPW); practical course (4 SPPW)

Vorkenntnisse / Previous knowledge

Gesamtmodul
Announced during the course.

Prüfung
One assessment of examination:
- Protocol (75 %), seminar presentation (25 %).
- Active participation (active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)

Prüfungszweck

Lehrveranstaltungsform

Kommentar

SWS

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Prüfung</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td>1.00</td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Praktikum</td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
70 h
mar580 - Profile Module Microbial ecology of marine sediments

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Profile Module Microbial ecology of marine sediments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>mar580</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>• Master Microbiology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>Modulverantwortung</td>
</tr>
<tr>
<td></td>
<td>» Bert Engelen</td>
</tr>
<tr>
<td>Teilnahmenvoraussetzungen</td>
<td>Lecture: Microbial ecology</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>The students know how to</td>
</tr>
<tr>
<td></td>
<td>- sample marine sediments</td>
</tr>
<tr>
<td></td>
<td>- characterize the cores sedimentologically and biogeochemically</td>
</tr>
<tr>
<td></td>
<td>- collect and analyze porewater</td>
</tr>
<tr>
<td></td>
<td>- determine total cell counts</td>
</tr>
<tr>
<td></td>
<td>- quantify groups of organisms molecular biologically</td>
</tr>
<tr>
<td></td>
<td>- present and discuss scientific results</td>
</tr>
<tr>
<td></td>
<td>- write a scientific protocol</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>"Microbial ecology of marine sediments": The physiological diversity of microorganisms and their spatial distribution within marine sediments are demonstrated according to chemical and physical parameters. Different physiological groups are analysed along the sediment column of intertidal sandflat or beach. Sediment sampling is performed at the back barrier area of the island “Spiekeroog” at the beginning of the course. Oxygen penetration, porewater sulfate and methane concentrations are measured down to a depth of app. 5 meters. As microbiological parameters, total cell numbers are counted and the numbers of archaea and bacteria are calculated after quantitative PCR (qPCR). More specifically, the relative amounts of sulfate reducers and methanogens are also determined by qPCR targeting key-genes for sulfate reduction and methanogenesis. Furthermore, every single group of students will specifically enrich one physiological type of microorganisms from distinctive sediment layers. Microbial growth and activity are monitored over the whole period of the course. Accompanying the course, all participants will give a talk to introduce “their” physiological group concerning its ecology, physiology, and strategies for a specific enrichment. All the data and observations of the single groups will be combined at the end of the course to draw an overall picture of microbial diversity and the occurrence of the different physiological groups corresponding to relevant geochemical gradients.</td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td></td>
</tr>
<tr>
<td>Links</td>
<td></td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>jährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel</td>
<td>---</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Block course, 2 weeks, seminar and laboratory work</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Prüfung</td>
<td>One assessment of examination: Portfolio (seminar presentation, written protocol)</td>
</tr>
<tr>
<td></td>
<td>Protocol (100 %), seminar presentation (no mark).</td>
</tr>
<tr>
<td></td>
<td>Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Praktikum</td>
<td></td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>70 h</td>
</tr>
</tbody>
</table>
mar600 - Profile Module Methods in Aquatic Microbial Ecology

Modulbezeichnung Profile Module Methods in Aquatic Microbial Ecology

Modulcode mar600

Kreditpunkte 6.0 KP

Workload 180 h

Verwendet in Studiengängen
- Master Microbiology (Master) > Mastermodule

Ansprechpartner/-in

- Modulverantwortung
 - Meinhard Simon

- Modulberatung
 - Thorsten Henning Brinkhoff

Teilnahmevoraussetzungen
For the practical course lecture: Methods in Aquatic Microbial Ecology

Kompetenzziele
The students learn to:
- Analyze bacterial substrates at ambient concentrations such as dissolved amino acids and carbohydrates by high performance liquid chromatography (HPLC), organic carbon by TOC and POC/PON analyser and the composition of the pool of dissolved organic matter by Fourier-Transform Ion Cyclotron Resonance Mass spectrometry (FT-ICR-MS).
- Determine bacterial cell numbers by flow cytometry and epifluorescence microscopy and to analyse these data by image analysis.
- Extract bacterial DNA from water and sediment samples.
- To amplify bacterial genes by specific primers and PCR.
- Assess bacterial communities by culture-independent methods such as denaturing gradient gel electrophoresis.
- Present and discuss scientific results
- Write a scientific protocol
- The students gain competences in:
 - Understanding how to analyse dissolved substrates of heterotrophic aquatic bacterial communities by state of the art approaches.
 - How to assess the abundance of aquatic bacterial communities by state of the art approaches.
 - Analyzing the composition of bacterial communities by PCR-based culture-independent approaches.

Modulinhalte
*“Methods in Aquatic Microbial Ecology”: The course starts with a lecture introducing basic issues of aquatic microbial ecology with an emphasis on methodological aspects. This lecture is completed before the practical work starts.
During the practical course of a block of two weeks the participants carry out analyses and experiments on:
- Determining the concentration of dissolved organic substrates (amino acids, carbohydrates, dissolved and particulate organic carbon),
- The abundance of bacterial communities in aquatic systems
- The composition of bacterial communities in environmental samples by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA targeted gene fragments.
The main emphasis is on analyses and approaches of bacterial communities in the water column.

Literaturrempfehlungen
Lecture notes, available on Stud.IP

Links

Unterrichtssprache Englisch

Dauer in Semestern 1 Semester

Angebotsrhythmus Modul jährlich

Aufnahmekapazität Modul unbegrenzt

Modullevel ---

Modulart Wahlpflicht / Elective

Lern-/Lehrform / Type of program Seminar (1 SPPW); practical course (4 SPPW)

Vorkenntnisse / Previous knowledge

Prüfung
One assessment of examination:
- Portfolio (seminar presentation, written protocol)
- Protocol (100 %), seminar presentation (no mark).
- Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)

Lehrveranstaltungsform

Kommentar

SWS

Angebotsrhythmus

Workload Präsenzzeit
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Praktikum</td>
<td></td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
<tr>
<td>Präsenzzeit Modul insgesamt</td>
<td></td>
<td></td>
<td></td>
<td>70 h</td>
</tr>
</tbody>
</table>
mar610 - Profile Module Isolation and characterization of microorganisms

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Profile Module Isolation and characterization of microorganisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>mar610</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Microbiology (Master) > Mastermodule</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>Modulverantwortung</td>
</tr>
<tr>
<td></td>
<td>• Bert Engelen</td>
</tr>
</tbody>
</table>

Teilnahmevoraussetzungen: Microbial Physiology and diversity (M1)

Kompetenzziele:
In this course the students will isolate bacteria and other microorganisms. They will learn classical microbiological techniques as enrichment culture, aseptic work, preparation of liquid and solid media, cultivation under oxic and anoxic condition, on agar plates and in deep agar dilution, description of microbes by techniques as staining, microscopy, microphotography.

Modulinhalte:
"Isolation and characterization of microorganisms": Seminar
Prior to the laboratory work the participants shall read literature about first isolation, description and current studies on their target organisms and present this and their isolation strategy in the seminar. During the course and at the end, results and a possible molecular identification of isolates will be presented and discussed.

Practical work: Every student prepares media and agar plates required for the isolation of the different target organisms. If pure cultures have been isolated, they should be transferred to long-term storage on agar and in liquid nitrogen. Sampling sites and different stages of the enrichment and isolation are documented by macro- and microphotography and described in the report. Finally, tests to verify purity of the culture and its identification, as well as a phylogenetic analysis are requested.

Literaturempfehlungen:

Links:

Unterrichtssprache: Englisch
Dauer in Semestern: 1 Semester
Angebotsrhythmus Modul: jährlich
Aufnahmekapazität Modul: unbegrenzt
Modullevel: MM (Mastermodul / Master module)
Modulart: Wahlpflicht / Elective

Vorkenntnisse / Previous knowledge:
Seminars and laboratory work, twice per week, half a day each

Prüfung:
Gesamtnote: One assessment of examination: Portfolio (seminar presentation, written protocol)
Protocol (100 %), webpage, seminar presentation (no mark). Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload</th>
<th>Präsenzzeit Modul insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Praktikum</td>
<td></td>
<td>4.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt: 70 h
mar620 - Profile Module Marine Chemical Ecology

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Profile Module Marine Chemical Ecology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>mar620</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>• Master Microbiology (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Ansprechpartner/-in
- Modulverantwortung: Peter Schupp
- Modulberatung: Sven Rohde

Teilnahmevoraussetzungen
Lecture: Organic chemistry

Kompetenzziele
Students will learn about the chemical properties and major ecological roles of secondary metabolites, how to investigate the secondary metabolites of marine invertebrates and algae, how to analyze secondary metabolite profiles, how to isolates compounds of interest and how to conduct various bioassays to assess potential ecological roles of crude extracts and potentially isolated compounds. Students will also learn how to statistically evaluate their results.

Modulinhalte
“Chemical Ecology”; The course consists of lectures, followed by laboratory experiments. Students will research about various topics in marine chemical ecology. Laboratory work will include production of extracts from various invertebrates and algae. Extracts will be tested in various feeding assays to assess the chemical properties of extracts. Extracts will also be tested for antimicrobial activity with environmental strains. This includes the culture of test bacteria and antimicrobial assays. Final evaluation will be a laboratory report about the experiments. This will include statistical analysis of their experiments and discussion of their results in the framework of the lectures and seminars presented during the course.

Literaturempfehlungen
Marine Chemical Ecology, McClintock, Baker

Links
Unterrichtssprache: Englisch

Dauer in Semestern
1 Semester

Angebotsrhythmus Modul
jährlich

Aufnahmekapazität Modul
unbegrenzt

Modullevel
MM (Mastermodul / Master module)

Modulart
je nach Studiengang Pflicht oder Wahlpflicht

Lern-/Lehrform / Type of program
Compact Course

Vorkenntnisse / Previous knowledge

Prüfung
One assessment of examination:
- Portfolio (seminar presentation, written protocol)
- Portfolio (seminar presentation – no mark, written protocol 100%).
- Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)

Lehrveranstaltungsform

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>1.00</td>
<td></td>
<td>14 h</td>
</tr>
<tr>
<td>Praktikum</td>
<td></td>
<td>4.00</td>
<td></td>
<td>56 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
70 h
mar621 - Profile Module Techniques in light microscopy and electron microscopy

Modulbezeichnung	Profile Module Techniques in light microscopy and electron microscopy
Modulcode | mar621
Kreditpunkte | 6.0 KP
Workload | 180 h
Verwendet in Studiengängen | Master Microbiology (Master) > Mastermodule
---|---
Ansprechpartner/-in | Modulverantwortung
 - Erhard Rhiel
---|---
Teilnahmevoraussetzungen | none
---|---
Kompetenzziele | The students will learn
 - the basics/theory of scanning electron microscopy (SEM) and transmission electron microscopy (TEM)
 - different sample preparation methods for SEM
 - to operate our scanning electron microscope
 - to operate our critical point drying device
 - to perform sputter coating
 - to perform negative staining TEM
 - to operate our transmission electron microscope
 - to perform immuno-labelling for light microscopy
---|---
Modulinhalte | The profile module "Techniques in light microscopy and electron microscopy" runs over a period of 10 days, distributed over three weeks. On the first day, seminars will introduce into the theory, i.e. of SEM and TEM. The remaining 9 days are for practice. The main topics of the course are: basic principles and functioning of light and electron microscopes, sample preparation, fixation, low temperature SEM, low vacuum SEM, negative staining TEM, and immuno-labelling for light microscopy.
---|---
Literaturempfehlungen | will be announced
---|---
Links |
---|---
Unterrichtssprache | Englisch
Dauer in Semestern | 1 Semester
Angebotsrhythmus Modul | jährlich
Aufnahmekapazität Modul | unbegrenzt
Modullevel | MM (Mastermodul / Master module)
Modulart | je nach Studiengang Pflicht oder Wahlpflicht
---|---
Lern-/Lehrform / Type of program | Seminar and laboratory work, at three days for three weeks
---|---
Vorkenntnisse / Previous knowledge | Prüfung
Prüfung | Prüfungszeiten
---|---
Präsenzzeit Modul insgesamt | 70 h
---|---
Lehrveranstaltungsform | Seminar, Praktikum
Kommentar | SWS, Angebotsrhythmus, Workload Präsenzzeit
---|---
Seminar | 1.00, 14 h
Praktikum | 4.00, 56 h
---|---
mar630 - Research Project

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Research Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>mar630</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Microbiology (Master) > Mastermodule</td>
</tr>
</tbody>
</table>

Ansprechpartner/-in
- Modulverantwortung
 - Bert Engelen
- Modulberatung
 - Lehrende der Mikrobiologie

Teilnahmevoraussetzungen
- 1 main and 1 profile module

Kompetenzziele
The students are able to work (under guidance) on an ambitious research project. They understand recent scientific literature and can regard it for their own work. They can prepare, carry out, write down, present and defend their work in the public.

Modulinhalte
The contents concern variable recent scientific questions on a high scientific level.

Literaturempfehlungen
- project-specific, will be announced

Links

Unterrichtssprache
- Englisch

Dauer in Semestern
- 2 Semester

Angebotsrhythmus Modul
- halbjährlich

Aufnahmekapazität Modul
- unbegrenzt

Modullevel
- MM (Mastermodul / Master module)

Modulart
- Pflicht / Mandatory

Lern-/Lehrform / Type of program
- Seminar (2 SPPW); Practical work (4 SPPW)

Vorkenntnisse / Previous knowledge

Prüfung

<table>
<thead>
<tr>
<th>Gesamtmodul</th>
<th>Announced during the course.</th>
</tr>
</thead>
</table>

Prüfungszeiten

- Two assessments of examination:
 - Written protocol and / or written English thesis, presentation
 - Quality of the scientific performance and thesis (75 %), Final seminar and public defense (25 %). Active participation (Active and documented participation in practical courses (labs, exercises, seminars, field trips) and courses. These include e.g. the delivery of exercises, writing a lab report or seminar presentations according to the advice of the course supervisor.)

<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrhythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>6.00</td>
<td></td>
<td>84 h</td>
</tr>
<tr>
<td>Praktikum</td>
<td></td>
<td>12.0</td>
<td></td>
<td>168 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt
- 252 h
mar640 - Research Project

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Research Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>mar640</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>12.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>360 h</td>
</tr>
</tbody>
</table>

Verwendet in Studiengängen
- Master Microbiology (Master) > Mastermodule

Ansprechpartner/-in
- Modulverantwortung
 - Bert Engelen
- Modulberatung
 - Lehrende der Mikrobiologie

Teilnahmevoraussetzungen
1 main and 1 profile module

Kompetenzziele
The students are able to work (under guidance) on an ambitious research project. They understand recent scientific literature and can regard it for their own work. They can prepare, carry out, write down, present and defend their work in the public.

Modulinhalte
The contents concern variable recent scientific questions on a high scientific level.

Literaturrempfehlungen
project-specific, will be announced

Links
- Unterrichtssprache: Englisch
- Dauer in Semestern: 2 Semester
- Angebotsrhythmus Modul: halbjährlich
- Aufnahmekapazität Modul: unbegrenzt
- Modullevel: MM (Mastermodul / Master module)
- Modulart: Pflicht / Mandatory
- Lern-/Lehrform / Type of program: Seminar (2 SPPW); Practical work (4 SPPW)

Vorkenntnisse / Previous knowledge

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Prüfungszeiten</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtmodul</td>
<td>Announced during the course.</td>
<td>Two assessments of examination: Written protocol and / or written English thesis, presentation Quality of the scientific performance and thesis (75 %), Final seminar and public defense (25 %).</td>
</tr>
</tbody>
</table>

Lehrveranstaltungsform
- Seminar: 6.00 SWS, Angebotsrhythmus: 84 h
- Praktikum: 12.00 SWS, Angebotsrhythmus: 168 h

Präsenzzeit Modul insgesamt: 252 h
mar622 - Profile Module R programming for (meta)-genomic sequence analysis

Modul bezeichnung

Profile Module R programming for (meta)-genomic sequence analysis

Modulcode

mar622

Kreditpunkte

6.0 KP

Workload

180 h

Verwendet in Studiengängen

- Master Microbiology (Master) > Mastermodule

Ansprechpartner/-in

- Modulverantwortung
 - Liliana Cristina Moraru
- Prüfungsberechtigt
 - Liliana Cristina Moraru

Teilnahmevoraussetzungen

The course „Introduction in sequencing and sequence analysis“. Previous programming experience is not required.

Kompetenzziele

DNA sequencing has become a routine method in microbiology research. Most of the times, sequence analysis requires knowledge of a programming language. One of the programming languages most used for this purpose is R.

After successful participation the students will have the competence to understand, interpret and carry out simple genome sequence analyses. They will acquire transferable skills in using R

Modulinhalte

The course will cover the following topics:

1. programming in R using an integrated development environment (RStudio)
2. working with strings (stringr package)
3. working with lists and data frames (readr and dplyr package)
4. sequence analysis (seqinr, Bioconductor packages: Biostrings, GenomicRanges, Decipher)
5. (meta)-genomic and data visualization (ggplot2, Gviz)
6. Creating sequence / metadata databases
7. Accessing and mining sequence / metadata databases though R based web applications (Shiny, DT and Shinyjs packages)
8. reporting in R (Rmarkdown and Knitr packages)
9. managing code (Roxygen2 package)
10. microbial genome annotation using R.

A single, introductory lecture will be offered within the first day of the course. Then, the course will be structured in programming exercises which cover all topics listed. The exercises are designed to exemplify the use R programming within the framework of microbial (meta)-genome analysis.

In addition to the teacher–student sessions, the students will work on individual projects. Each student will receive a short microbial genome (e.g. viral genome), and will analyze it by building custom, self-programmed pipelines. The output from the individual projects will consist in an analysis report prepared in Rmarkdown and Knitr packages. The report will include both the R code and the genome analysis results.

Literatiumwpfehlungen

will be announced

Links

Unterrichtssprache

Englisch

Dauer in Semestern

1 Semester

Angebotsrhythmus Modul

jährlich

Aufnahmekapazität Modul

15 (Proportionale Aufteilung zwischen Master MUWI und Master Microbiology)

Modullevel

AC (Aufbaucurriculum / Composition)

Modulart

Wahlpflicht / Elective

Lern-/Lehrform / Type of program

Seminars and computer lab, 2 continuous weeks

Vorkenntnisse / Previous knowledge

Teilnahme an mar454 Einführung in die DNA-Sequenzierung und Sequenzanalyse. Grundlagen der Programmierung in R, Grundlagen der Molekularen Taxonomie

Prüfung

Prüfungszeiten

Gesamtmodul

Wird während des Kurses bekannt gegeben.

Prüfungsform

1 benotete Prüfungsleistung
1 Portfolio (80%), aktive Teilnahme (20%)

Aktive Teilnahme

Aktive Teilnahme umfasst die regelmäßige Teilnahme am Praktikum und Begleitseminar, Nacharbeiten der Aufgaben und die Erstellung des Portfolios (Protokoll) während bzw. nach Ende des Praktikums.

Lehrveranstaltungsform

Kommentar

SWS

Angebotsrhythmus

Workload Präsenzzeit

19 / 22
<table>
<thead>
<tr>
<th>Lehrveranstaltungsform</th>
<th>Kommentar</th>
<th>SWS</th>
<th>Angebotsrythmus</th>
<th>Workload Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
<td>2.00</td>
<td>SoSe</td>
<td>28 h</td>
</tr>
<tr>
<td>Praktikum</td>
<td></td>
<td>2.00</td>
<td>SoSe</td>
<td>28 h</td>
</tr>
</tbody>
</table>

Präsenzzeit Modul insgesamt

56 h
Abschlussmodul

mam - Master Thesis Module

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Master Thesis Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulcode</td>
<td>mam</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>30.0 KP</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
<tr>
<td>Verwendet in Studiengängen</td>
<td>Master Microbiology (Master) > Abschlussmodul</td>
</tr>
<tr>
<td>Ansprechpartner/-in</td>
<td>Modulverantwortung</td>
</tr>
<tr>
<td></td>
<td>Bert Engelen</td>
</tr>
<tr>
<td></td>
<td>Modulberatung</td>
</tr>
<tr>
<td></td>
<td>Lehrende der Mikrobiologie</td>
</tr>
<tr>
<td>Teilnahmevoraussetzungen</td>
<td>The students are able to work (under guidance) on an extended research project. They understand recent scientific literature and can regard it for their own work. They can prepare, carry out, write down, present and defend their work in the public.</td>
</tr>
<tr>
<td>Kompetenzziele</td>
<td>The contents concern variable recent scientific questions on a high scientific level</td>
</tr>
<tr>
<td>Modulinhalte</td>
<td>The contents concern variable recent scientific questions on a high scientific level</td>
</tr>
<tr>
<td>Literatureempfehlungen</td>
<td>Englisch</td>
</tr>
<tr>
<td>Links</td>
<td>Englisch</td>
</tr>
<tr>
<td>Unterrichtssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Dauer in Semestern</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsrhythmus Modul</td>
<td>halbjährlich</td>
</tr>
<tr>
<td>Aufnahmekapazität Modul</td>
<td>unbegrenzt</td>
</tr>
<tr>
<td>Modullevel</td>
<td>---</td>
</tr>
<tr>
<td>Modulart</td>
<td>je nach Studiengang Pflicht oder Wahlpflicht</td>
</tr>
<tr>
<td>Lern-/Lehrform / Type of program</td>
<td>Seminar (2 SPPW); Practical work (28 SPPW)</td>
</tr>
<tr>
<td>Vorkenntnisse / Previous knowledge</td>
<td></td>
</tr>
<tr>
<td>Prüfung</td>
<td>Prüfungszeiten</td>
</tr>
<tr>
<td>Gesamtmodul</td>
<td>Written English thesis, seminar with public discussion in English</td>
</tr>
<tr>
<td></td>
<td>According to the examination regulations; quality of the scientific performance and thesis (83.3 %), final seminar and public defense (16.7 %)</td>
</tr>
<tr>
<td>Lehrveranstaltungsform</td>
<td>Seminar</td>
</tr>
<tr>
<td>SWS</td>
<td>2.00</td>
</tr>
<tr>
<td>Angebotsrhythmus</td>
<td></td>
</tr>
<tr>
<td>Workload Präsenzzeit</td>
<td>28 h</td>
</tr>
</tbody>
</table>